
Evaluating Test Adequacy Coverage of High Level Petri Nets Using
Spin

Junhua Ding, Peter J. Clarke, Gonzalo Argote-Garcia, and Xudong He
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

email: {jding01, clarkep, gargo001, hex}@cis.fiu.edu

Technical Report FIU-SCIS: 2006-05-02

Abstract

High level Petri nets have been extensively used for system modeling; however their strong expressive power cost
their analyzability. Currently, there are no effective general formal analysis techniques for high level Petri nets.
Fortunately, high level Petri nets are executable and as a result they can be tested. In recent years, some theoretical
testing adequacy coverage measurements have been proposed. In this paper, we propose an approach to validate the
above theoretical results through experiments using the simulation functionality of the model checker Spin.

1 Introduction

Software systems have increasingly become more complex and safety and mission critical. How to ensure the
dependability of complex software systems is a grand research challenge. Modeling especially based on a well-
defined formal method plays an essential and critical role in large system development.

High level Petri nets [7] are a formal computation model well suited for concurrent and distributed systems,
and have been extensively applied to system modeling in almost every branch in computer science as well as in
many other scientific and engineering disciplines. There have been over 10000 publications related to Petri nets
world wide in the past few decades, and the number is increasing rapidly. The benefits of high level Petri nets as
a modeling method are particularly significant due to the nature of today’s software systems that are operating
concurrently in a distributed and networked environment. The strong modeling power of high level Petri nets
covering functionality, data, behavior, and structure makes them difficult to analyze. Despite various attempts in
extending traditional Petri net reachability tree analysis technique and adapting model checking techniques to high
level Petri nets in the past decades, there are no effective general formal analysis techniques for them. Fortunately,
high level Petri nets are executable and thus they can be tested as programs. Since high level Petri nets are
often more abstract and concise, they are often much more simple than programs. In the past few years, some
testing theories and methods for concurrent systems in general and Petri nets in particular have been proposed
[16]. However the testing theories and methods proposed in [16] have not been validated for their practical use due
to a lack of suitable tools for recording the dynamic behavior and for measuring test adequacy coverage. Recently,
we exploited the simulation capability of the well-known model checker Spin [9], and found its applicability in
validating the testing methods of high level Petri nets.

In this paper, we present our new results on how to use the simulation capability of model checker Spin to
validate the testing methods of high level Petri nets. We use the model checker Spin [9] to control the execution of
a high level Petri net expressed as a Promela [9] process with a global state and use a monitor (another Promela
process) to record and evaluate the events generated by the net process against test coverage criteria [16]. We

1

present two approaches used to evaluate the Petri net: (1) external evaluation whereby net events are recorded
in the monitor and the evaluation is done by a program external to Spin, and (2) an internal evaluation process
whereby the evaluation is done in a monitor process during the simulation of the net using Spin. We present a
case study to show how our approach can be scaled to models consisting of more than one high level Petri net.

In the next section we present concepts essential to high level Petri nets, testing of high level Petri nets, and
the simulation capability of Spin. Section 3 describes how we record net events and evaluate the test coverage
criteria. Section 4 describes how we use the Spin model checker to simulate the behavior of a high level Petri net
and to evaluate testing coverage criteria. Section 5 presents a case study. In Section 6 we provide a discussion on
our approach. Section 7 describes related work followed by concluding remarks in Section 8.

2 Background

Predicate transitions nets (PrT nets) are a class of high level Petri nets, and can be used to define other high
level Petri nets easily. We choose PrT nets in this paper due to the facts that the formal definitions of PrT nets
are very close to the newly proposed international standards on high level Petri nets [7] and the testing theory and
methods proposed in [16] are based on PrT nets.

In this section we overview several key concepts related to predicate transition nets (PrT nets), testing PrT
nets, and the Spin model checker.

2.1 Predicate Transition Nets

Thinking Chopstick
Pickup

f2
<ch1, ch2>

f4<ph, ch1, ch2>

<ph, ch1, ch2> f3

Eating
<ph>

Putdown

(ch1 = ph) /\
<ph>
f1

(ch2 = ph 1)

true

f5 f6<ch1, ch2>

ϕ(Thinking) = ℘(PHIL)

ϕ(Chopstick) = ℘(CHOP)

ϕ(Eating) = ℘(PHIL, CHOP, CHOP)

PHIL and CHOP are sorts to represent philosophers and chopsticks respectively.

Where ⊕ is modulus k addition and ℘(A) is the power set of A.

Figure 1. A PrT net for dining philosophers.

A PrT net consists of: (1) a finite net structure (P, T, F), (2) an algebraic specification SPEC, and (3) a net
inscription (ϕ, L, R,M0) [7, pp. 459-476]. P and T are the set of predicates and transitions, respectively, where
P ∩ T = ∅. F is the flow relation where F ⊆ P × T ∪ T × P . SPEC is a meta-language to define the tokens,
labels, and constraints of a PrT net. The underlying specification SPEC = (S, OP,Eq) consists of a signature
Σ = (S, OP) and a set Eq of Σ-equations. S is a set of sorts and OP is a family of sorted operations. Tokens
of a PrT net are ground terms of the signature Σ, written MCONS . The set of labels is denoted by LabelS(X),
where X is the set of sorted variables disjoint with OP . Each label can be a multiset expression of the form

2

Markings mi Transitions ni

Thinking Eating Chopstick Fired Token(s) consumed
Transition

{1, 2, 3, 4, 5} {} {1, 2, 3, 4, 5} Pickup ph=1, ch1=1, ch2=2
{2, 3, 4, 5} {< 1, 1, 2 >} {3, 4, 5} Putdown <ph, ch1, ch2> = < 1,1,2>
{1, 2, 3, 4, 5} {} {1, 2, 3, 4, 5} Pickup ph=2, ch1=2, ch2=3
{1, 3, 4, 5} {< 2, 2, 3 >} {1, 4, 5} Pickup ph=4, ch1=4, ch2=5
{1, 3, 5} {< 2, 2, 3 >, {1}

< 4, 4, 5 >}

Table 1. A flat execution of the dinning philosophers’ PrT net.

{k1x1, ..., knxn}. Constraints of a PrT net are a subset of first order logic formulas containing the S-terms of sort
bool over X, denoted as TermOP, bool(X).

The net inscription (ϕ, L, R,M0) associates each graphical symbol of the net structure (P, T, F) with an entity
in the underlying SPEC, and thus defines the static semantics of a PrT net. Each predicate in a PrT net is a
data structure and a component of the overall system state. Mapping ϕ : P → ℘(S) assigns a subset of sorts to
each predicate p in P , which defines its valid values, i.e. proper tokens. Mapping L : F → LabelS(X) is a sort-
respecting labeling of flows. Mapping R : T → TermOP, bool(X) associates each transition t in T with a constraint
expressed in a first order logic formula in the underlying algebraic specification. The constraints define a transition
in terms of pre-condition and post-conditions. The pre-condition specifies the constraints on the incoming arcs
and the post-conditions specify the relationships between the variables of the incoming arcs and label variables of
the outgoing arcs.

A marking m of a PrT net is a mapping P → MCONS from the set of predicates to multi-sets of tokens. M0 is
a set of initial markings, which are thus the test cases. A transition is enabled if its pre-set contains enough tokens
and its constraint is satisfied with an occurrence mode. The pre-set (•t) for a transition are the set of input places
for that transition. Similarly, the post-set (t•) for a transition are the set of output places for that transition.
The firing of an enabled transition consumes the tokens in the pre-set and produces tokens in the post-set. Two
transitions (including the same transition with two different occurrence modes) fire concurrently if they are not
in conflict. Conflicts are resolved non-deterministically. The firing of an enabled transition is atomic. We define
the behavior of a PrT net to be the set of all possible execution sequences E. Each execution sequence e ∈ E
represents consecutively reachable markings from the initial marking, in which a successor marking is obtained
through a step (firing of some enabled transitions) from the predecessor marking. We denote an execution as

e : m0
n0−→ m1

n1−→ m2
n2−→ ...

nk−1−→ mk
nk−→ ...

where ni is a set of transitions, m0 ∈ M0 is an initial marking, mi, i = 1, 2, ..., are markings such that mi is obtained
from mi−1 by firing transition set ni. The execution sequence e is said to be flat if all the ni’s are singletons,
otherwise e is said to be non-flat. We can obtain a flat execution sequence from a non-flat execution sequence by
interleaving the transitions in the non-singleton ni’s.

Figure 1 shows a PrT net model for the dinning philosophers problem. The PrT net in Figure 1 consists of
three predicates - Thinking, Eating and Chopsticks, and two transitions - Pickup and Putdown. The flow relation
in Figure 1 consists of the six labeled arcs f1 through f6, and annotated with variables of the sorts shown in italics.

Table 1 shows the markings and tokens consumed after the transitions Pickup, Putdown, Pickup and Pickup
are fired. The first three columns of Row 1 in Table 1 show the initial marking m0 of the PrT net. The first
transition fired (n0 = {Pickup}) is shown in Column 4 of Row 1 and the tokens consumed are shown in Column 5
of Row 1. For example, Row 1 of Table 1 states that the initial marking of the net in Figure 1 consists of Thinking
= {1, 2, 3, 4, 5}, Eating = {}, and Chopstick = {1, 2, 3, 4, 5}. After firing transition Pickup the tokens consumed
are ph = 1, ch1 = 1 and ch2 = 2, giving the marking in the first three columns of Row 2. The partial execution
sequence in Table 1 is a flat execution sequence since multiple transitions do not fire at any point in the execution.
An example of a non-flat partial execution is given in [16].

2.2 Testing PrT Nets

PrT nets are formal models that use graphical and mathematical notations, and are well suited for modeling
and analysis of concurrent and distributed systems. Zhu and He [16] state that PrT nets can play two different

3

roles in the development of concurrent systems: (1) as a formal specification, and (2) as an executable model. In
general hese two roles provide the developer with the opportunity to combine both verification and testing of the
PrT net model thereby providing a higher level of confidence in the correctness of the system. Verification of the
PrT net model can be performed by using a model checker e.g., Spin, to check various properties of the net [6]. The
properties of a PrT net allow the application of both specification-based and program-based testing techniques.
This is possible since a PrT net is considered as both a specification and an executable model. In this paper we
will focus on structural test coverage criteria of PrT nets.

Beizer [2] defines test coverage as any metric of completeness with respect to a test selection criterion. Zhu et
al. [15] further explains the notion of test data adequacy criteria by describing the three definitions of test data
adequacy criteria. These include: (1) test data adequacy as stopping rules, (2) test data adequacy criteria as
measurements, and (3) test data adequacy criteria as generators. In this paper we focus on the second definition
presented by Zhu et al. [15], test adequacy criteria as measurements. The formal definition presented by Zhu et
al. [15] states that test data adequacy criteria as measurements is a mapping from the cross product of a set of
programs, a set of specifications, and a class of test sets to a real number in the range of zero and one. The greater
the real number the more adequate the test set is. Applying the dual nature of PrT nets to the concept of test
data adequacy criteria as measurements imply that: (1) PrT nets, execution models, map to the set of programs,
(2) PrT nets map to the set of specifications, and (3) the initial markings for each PrT net represent the test sets.

Zhu and He [16] provide a methodology of testing high-level PrT nets based on general theory of testing
concurrent software systems. They identified four classes of testing strategies: transition-oriented testing, state-
oriented testing, flow-oriented testing, and specification-oriented testing [16]. For each strategy, a set of schemes to
observe and record testing results and a set of coverage criteria to measure test adequacy are defined. The authors
formally define the concept of an observational scheme for concurrent system p as the ordered pair <B, µ> where
B is the set of partial orders of events generated by p, and µ represents the mapping from a test set to a non-empty
consistent subset of all partial orders for p [16]. Note that due to non-determinism and concurrency, two or more
partial orders may be generated by the same test input for a given p. Zhu and He [16] state that unlike test data
adequacy criteria (used to measure the adequacy of a test set), an observation scheme determines how to observe
and record a system’s dynamic behavior during test executions.

In this paper we focus on coverage criteria for (1) transition-oriented testing i.e., transition coverage, and (2)
state-oriented coverage i.e., state coverage. These coverage criteria are defined below. We use N to represent a PrT
net and E to represent a collection of test executions of N.

1. Transition coverage (Transition-oriented testing) - is the ratio of transitions fired during an execution of a
PrT net to the total number of transitions.

TransitionCoverage(N,E) =

∥∥∥∥ ⋃
e∈E

Firing(e)
∥∥∥∥

‖TN‖

where Firing(e) =
⋃

i=0,1,...ni
, e = m0

n0−→ m1
n1−→ m2

n2−→ ...
nk−1−→ mk

nk−→ ..., and ni are non-empty subsets
of transitions that are not in conflict with each other. TN is the set of transitions of N . Note that a Trace
of an execution e is defined as Trace(e) = < n0, n1, ...nk, ... >. In this paper we use the flatten version of
the execution sequence.

2. State coverage (State-oriented testing) - is the ratio of of the reachable markings associated with abstract
states during an execution to the finite set of abstract states for the PrT net. An abstract state (AS) is one
of a finite set of states that is reachable in a PrT net given an initial marking.

StateCoverage(N,E) =

∥∥∥∥StateN

(⋃
e∈E

Markings(e)
)∥∥∥∥

‖ASN‖

where StateN : Mark(N) → ASN defines how markings are associated with states. ASN is a finite set of
abstract states of N . Examples of abstract states for the dinning philosopher’s problem are given in Section
3.2.

4

2.3 Spin

Spin [13] is a generic model checking tool to formally analyze the logical consistency of distributed systems,
which are defined using Promela [9]. Spin has three basic functions: (1) As an exhaustive state space analyzer
for rigorously proving the validity of user-specified correctness requirements. (2) As a system simulator for rapid
prototyping. (3) As a bit-state space analyzer that can validate large protocol systems with maximal coverage of
the state space.

Promela [9] is a verification modeling language with C programming language style. It provides a way for
making abstractions of distributed systems that suppress details that are unrelated to process interaction. A
Promela program consists of processes, message channels, and variables. Processes are global objects. Message
channels and variables can be declared either globally or locally within a process. Processes specify behavior,
channels and global variables define the environment in which processes run. In this paper we will focus on the
simulator component of the Spin tool.

Spin offers three options for performing simulation these include: (1) random, (2) interactive, and (3) guided.
The simulation mode in Spin is intended primarily for the debugging of a model. The random simulation option
allows a user to monitor the behavior of a model by printing any output produced by the model to the console.
Interactive simulation allows a user to resolve non-deterministic choices during the simulation of the model by
selecting an option during the simulation process. If there is only one option then Spin will immediately select
that option and continue the simulation. Guided simulation uses a specially encoded trail file generated by the
verifier, after a correctness violation, to guide the search. The execution sequence stored in the trail file represents
the events leading up to the error.

We use the random simulation option to monitor the behavior of PrT net models. It is possible for a Spin
simulation to be executed indefinitely, making it difficult to monitor the behavior of the model from the console.
Therefore we pipe the output from the simulation to a file for analysis at a later time. To limit the output of
the simulation on the model we use different combinations of the -u and -j options. The -uN option limits the
simulation to the first N steps, and the -jN option skips over the first N steps. There are other options provided
by the Spin tool [13] that provides for additional flexibility in managing the output from the random simulation
facility.

3 Recording Dynamic Behavior for Test Coverage Evaluation

In this section we describe our approach to evaluating the event stream generated by the execution of PrT nets
using the two classes of testing strategies identified by Zhu and He [16]. These classes of testing coverage strategies
are: transition and state, introduced in Section 2.2. We also explain how our technique may be extended to other
variants of transition-oriented and state-oriented testing strategies described by Zhu and He [16].

3.1 Transition-Oriented Coverage

Transition coverage criteria is one of three forms of transition-oriented described by Zhu and He [16]. The others
coverage criteria are K-concurrency length-L trace coverage, all transition trace coverage and interleaving length-L
transition sequence coverage. A hierarchy of transition-oriented coverage criteria is presented in [16]. We will focus
on transition coverage criteria.

Transition coverage is defined over a collection of executions E in terms of the total number of transitions fired
FE and the total number of transitions in the PrT net TN see Section 2.2. Our approach executes the PrT net
using simulation for a finite set of executions recording the transitions fired. We then determine the transition
coverage using the quotient stated in Section 2.2. During execution of the PrT net we record the transitions fired
in a log. Note that since each PrT net has a finite set of transitions it is possible to get 100% test coverage if the
model is allowed to execute for a long enough time and the initial markings (test cases) are adequate. However,
If the transition coverage was less than the adequacy required by the tester the information in the log is used to
perform other forms of validation such as manual inspection. In Section 4.2 we describe the two approaches used
to evaluate the coverage criteria during the simulation process. The simulation environment provided by Spin is
adequate to determine transition coverage for PrT net models.

5

K-concurrency length-L trace coverage over a collection of executions E of a PrT net is defined as, the existence
of at least one e ∈ E covered by the transition trace q with length less than or equal to L and concurrency degree
less than or equal to K [16]. K and L are natural numbers greater than zero. The concurrency degree of a transition
trace is the maximum number of transitions that may fire between any successive markings in that trace. We can
use a similar approach to the one described in the previous paragraph to test whether a feasible transition trace
q of N is covered by at least one execution e of the test set E(e ∈ E), and to decide the coverage of any trace
coverage. The added difficulty is how to determine the concurrency degree for a transition trace, since we have
not yet found a way to record multiple transition firings in Promela.

Interleaving length-L transition sequence coverage over a collection of executions E of a PrT net is defined as,
given any feasible transition sequence q with length less than or equal to L there is at least one e ∈ E the logically
covers q [16]. A execution e logically covers sequence q if a flattening of e contains q as a consecutive subsequence
of transition firings. Using Spin it is possible to perform interleaving length-L transition sequence coverage. To
obtain the best results it is better to chose the longest possible feasible transition sequence q since the longer
sequence coverage subsumes the shorter sequence coverage [16]. All transition trace coverage requires that there is
at least on e ∈ E that covers any feasible transition trace q. In general all transition trace coverage is infeasible.

3.2 State-Oriented Coverage

The state-oriented test coverage described by Zhu and He [16] includes state coverage, state transition coverage,
and state transition path coverage. We focus on state coverage defined in Section 2.2. Recall that state coverage
is defined over a collection of executions E for a PrT net N, if for all feasible states s ∈ ASN , there is at least one
execution e in E such that there is at least one m ∈ Markings(e) and StateN (m) = s [16]. The main challenge in
our approach is the identification of the abstract states to be used during model simulation. The concept of the
abstract states provides a way to reducing the state space of the model by identifying a set of finite states to be
used during state coverage testing. Note that if the state space is small enough then there can be a one to one
mapping to the states to the abstract states. In general a mapping needs to be defined from the marking in the
net to the abstract states, due to the state explosion problem.

An example of a set of abstract states for the dining philosophers problem is the number of philosophers eating.
In this cases the state are 0, 1, 2. One set of possible markings associated with these state are: 0 - Thinking =
{1,2,3,4,5}, Eating = {}, Chopsticks = {1,2,3,4,5}, 1 - Thinking = {2,3,4,5}, Eating = {<1,1,2>}, Chopsticks =
{3,4,5}, and 2 - Thinking = {1,3,5}, Eating = {<2,2,3>, <4,4,5>}, Chopsticks = {1}. Therefore by inspecting
the content of the variables that store the markings of the net it is possible to deduce which abstract states have
been covered. Note that in the above example there is one possible marking for the abstract state 0, five possible
markings for the abstract state 1, and five possible markings for abstract state 2. In our example in Section 4.3
we use the abstract states previously described in this paragraph.

State transition coverage over a collection E of test executions is satisfied, if for all feasible state transitions
< s1, s2 > there is at least one execution e in E such that e covers that state transition. We can extend our current
approach for state transition coverage. For example, using the abstract states described in the previous paragraph
it is possible to track if the transition from the abstract state 0 to the abstract state 1 fires or not. To handle the
situation where two concurrent transitions fire would require additional modification to the implementation of the
net since Spin does not automatically handle concurrent state changes.

The final state-oriented testing criteria considered by Zhu and He [16] is state transition path coverage. State
transition path coverage, more specifically length-k state transition path coverage, is defined over a set of execution
E and is satisfied, if and only if for any feasible state transition path q of length less than or equal to k there is
an execution e in E such that e covers path q. Assume k is a natural number greater than 1. A state transition
path of length k is defined as a sequence of states < s1, s2, ..., sk >. In general it is not practical to handle state
transition path coverage, however, the restriction of specifying a length of the path makes it more practical. We
do not address this coverage criteria in our current approach, but with a small enough k it would be possible to
create a state machine that could be used to keep track of the state transition paths covered.

6

4 Evaluating Test Coverage Criteria of PrT Net Models

In this section we describe two approaches that use Spin to analyze PrT net models for various test coverage
criteria. We also provide insight on the translation process from a PrT net into a Promela program using the
dinning philosopher problem. In addition, we use this example to show how Spin analyzes PrT net models for
state and transition test coverage criteria.

4.1 Transforming PrT Nets to Promela

In order to simulate PrT nets using Spin, it is necessary to translate PrT net models into Spin models - specified
using Promela. Several researchers have used Spin to check models specified using Petri nets [3, 4, 6]. The basic
idea is to translate Petri nets into equivalent Spin models - Promela programs, and their properties into assertions
or never claims in Promela programs. We provide a general procedure and rules for translating a PrT net into a
Promela program in Spin.

The Promela program structure. Each individual net is translated into a process in the Promela program,
assuming the PrT net is a composition of other PrT nets. The sorts of a PrT net are translated into integer
types and structured types in Promela. Predicates (places) in the PrT net are translated into fixed-length array
variables. The transitions in the PrT net are translated into a process. The init process is used to assign initial
values for the program according to the PrT net initial markings.

Translating predicates into Promela. Each predicate in a net is translated into a global variable in the Promela
program. The type of the predicate is translated into an equivalent variable type in the Promela program. If a
type is not a predefined type in the Promela program, then the type needs to be defined in the Promela program,
which has the same domain, range and operations as the type in the PrT net. This may not be possible because
of the restricted types in Promela.

Given a predicate T is defined in the PrT net: ϕ(T) = ℘(PHIL, CHOP , CHOP), then a corresponding type
will be defined for the type of predicate T: typedefine T {byte ph, byte ch, byte ch} in the Promela program. The
value range of each variable represents the possible markings of the predicate in the PrT net. Therefore, the
number of possible values of a variable is the number of possible markings of the corresponding place. If a place p
is k-bounded, the declaration statement for place p is an array with k elements and its type is the predicate type.
Thus, we treat a predicate symbol as a set of proposition symbols. This can be done when each p is bounded and
—ϕ(p)— is finite [8].

Translating transitions into Promela. The transitions in the PrT net are translated into a Promela process.
The transitions are enclosed in a do .. od statement. Each transition is defined as a guarded atomic statement
within that process. This atomic statement defines the firing rules of the transition. The combination of the do
.. od statement and the guarded atomic statements ensures the non-deterministic firing of the transitions. Global
variables and channel variables can be used to synchronize and communicate between different processes.

Defining the initial marking. Each global variable of the Promela program is initialized via the init process
with a value that is the initial marking of the corresponding predicate in the PrT net.

The Dinning Philosopher problem shown in Figure 1 is translated into the Promela program shown in Appendix
I.

4.2 Evaluation of Test Criteria

Figure 2 shows a high level representation of the two approaches that use Spin to analyze PrT nets for various
test coverage criteria. We refer to the tool in Figure 2 as the Test Coverage Criteria Analyzer or TCC analyzer. In
both approaches the PrT net model is converted into Promela programs using the steps outlined in the previous
section. In addition, the Promela program is instrumented with statements to collect events, ETC , for test coverage
analysis to a special process, referred to as the Monitor [11].

Figure 2(a) shows the approach that evaluates the test coverage criteria of the PrT net external to Spin. In the
external evaluation approach, the monitor, MonitorR, is used to record the events, ETC , that are later analyzed

7

(initial marking)
Mo PrT Net Model

in Promela

MonitorR
(Recorder)

Spin

MonitorE
(Evaluator)

(a)

Test Coverage
Criteria

Evaluator
Results

Evaluation System

Output of Events

Mo
(initial marking)

PrT Net Model
in Promela

(b)

Spin

ResultsTest Coverage
Criteria

Figure 2. Test coverage criteria analyzer. (a) External evaluation. (b) Internal Evaluation.

using the various test coverage criteria by a program external to Spin. The external evaluation process, shown
in Figure 2(a) as the box labeled Evaluation System, uses the criteria provided by the box labeled Test Coverage
Criteria and checks the event trace supplied from the Spin tool for the level of coverage. This is done by simply
searching the event trace for the events associated with a specific test coverage criterion.

Figure 2(b) shows the approach that internally evaluates the PrT net model against the test coverage criteria.
The internal evaluation process is done in the Spin tool by a runtime monitor. The test coverage criteria are
supplied to the monitor during process initialization and as events ETC are accepted by the MonitorE process the
evaluation of the test coverage criteria occur.

The results generated from both approaches shown in Figure 2 parts (a) and (b) identify the coverage obtained
by the initial marking M0 supplied to the net. In Section 3 we describe the test coverage criteria and the associated
events generated for each test criterion.

4.3 Analyzing a PrT Net Model

An outline of the Promela program used to analyze test coverage criteria for the Dining Philosopher PrT net
(see Figure 1) is shown in Figure 3. Recall that the PrT net for the dinning philosophers problem consist of three
predicates (Thinking,Eating, Chopsticks) and two transitions (Pickup, Putdown). The flow relation in Figure
1 consists of six arcs labeled f1 through f6, each arc is also labeled with a tuple representing the types of the
tokens consumed when a transition fires. In this example we present an approach that evaluates the test coverage
criteria for transition and state coverage. When a transition is fired in an execution of the net we conclude that
the transition has been covered. We identify three abstract states for state coverage, these are not-eating - no
philosopher is eating, one-eating - one philosopher is eating, and two-eating - two philosophers are eating.

The Promela program in Figure 3 consists of four main sections: (1) global declarations to define user-defined
types, global variables and other macros, lines 1 through 8, (2) process DP representing the PrT net in Figure
1, line 10 through 24, (3) process Monitor, representing the monitor in Figure 2(b), lines 26 through 38 and (4)
process init used to initialize global variables and start each process. The complete listing of the Promela program
is shown in Appendix I.

The global declarations section contain the constant N that holds the number of philosophers and chopsticks,
the type declaration tokenE for tokens in the eating predicate, and arrays for the predicates thinking, chopstick
and eating. There are also two arrays for the transitions and the states used by the monitor during test coverage
criteria analysis. The process DP consists of two atomic statements, which are used to model the transitions
pickup and putdown. Each atomic statement consist of a guard condition, statements representing the execution
of the transition, and statements used to update the global variables used during test coverage analysis. When the
transitions fire according to PrT net firing rules the variables representing the predicate are updated to reflect the

8

1 #define N 5
2 typedef tokenE{ byte ph; byte ch1; byte ch2;}
3 /* token type used in Eating predicate */
4
5 byte thinking[N]; byte chopstick[N]; tokenE eating[N];
6 /* PrT net predicates - philosophers , chopsticks , eating */
7 byte trans [2]; /* Monitor - transitions */
8 byte states [3]; /* Monitor - states */
9

10 proctype DP(){
11
12 do
13 /* transition pickup */
14 :: atomic { /* guard for transition pickup is enabled */
15 -> /* execute transition pickup */
16 /* update global variables used in Monitor */
17 }
18 /* transition putdown */
19 :: atomic { /* guard for transition putdown is enabled */
20 -> /* execute transition putdown */
21 /* update global variables used in Monitor */
22 }
23 od
24 }
25
26 proctype Monitor (){
27 /* Monitor checks transition and state coverage criteria */
28 do
29 :: atomic { /* guard for transition coverage criteria */
30 /*if guard condition fails then skip */
31 }
32 :: atomic { /* guard to check state coverage criteria */
33 /* if guard condition fails then skip */
34 }
35 :: else -> break
36 od;
37 assert(false) /* Stops simulation */
38 }
39 init {
40 /* Initialize global variables */
41 /* Initialize initial marking */
42 /* Run processes DP and Monitor */
43 }

Figure 3. An outline of Promela program used to analyze test coverage criteria.

behavior of the tokens. If multiple transitions are enabled at the same time, the statement selected to be executed
in the Promela program is chosen non-deterministically.

The approach shown in Figure 3 is an internal evaluation method (see Figure 2(b)). During the simulation of
the PrT net, events are recorded in the global variables trans and states for the transitions and states respectively.
Initially the contents of the arrays trans and states are set to 0. When the transition pickup is fired trans[0] is
assigned 1 and state[1] (one-eating) is assigned 1. When the transition putdown is fired trans[1] is assigned 1 and
the value of state[0] is assigned to 1 if there are no philosophers eating, i.e., all the philosopher fields in the variable
eating are zero. If we are one-eating state and a the transition pickup fires then state[2] is assigned to 1, signifying
that we have entered the two-eating state. We have implemented several variations of the monitor we discuss
further in Section 6, including the external evaluation approach shown in Figure 2(a).

5 Case Study

In this section, we use our approach to evaluate the testing coverage criteria of the PrT net model for the
Alternating Bit Protocol (ABP). The ABP is a protocol that consists of a sender, a receiver, and two channels,
for reliable transmission over channels that may corrupt, but not duplicate, messages. The channels can detect
a corrupted message or acknowledgment, and then a message or acknowledgment is resent when the corrupted
message or acknowledgment is detected. The protocol guarantees that (1) an accepted message will eventually be
delivered, (2) an accepted message is delivered only once, and (3) the accepted messages are delivered in order.

9

5.1 Specifying ABP

Accept

f1 <m>

Sender Channel Receiver

<d’>

f3 <d’>

sendData

<d’>
f2

AckIn

DataOut <d’> <d’>

atransmitted

acorrupted

corrupted

transmittedf9 f13

f10
<d’>

f11

f12 f16

f14

<b’>

f21

AckOut

DataIn

Deliver

deliverDataf15

<d>

f17

f23

f4 <d>

f24<ack>
f5

f6
<d’>

DataBuf
<ack>

f7

f8

f20

<d>
f18

resendAck
resendData

f19

<b’>

<m>

f22 <b’>AckBuf

Figure 4. A PrT net model of ABP protcol.

The PrT net for the Alternation Bit Protocol (ABP) is shown in Figure 4. The net model has three components,
the Sender, the Channel and the Receiver. The Sender component of the net accepts messages from the environment
via the Accept predicate, shown on the upper left of Figure 4, and send them to the Channel component via the
DataOut predicate, shown on the dotted lines between the Sender and Channel. These messages are passed from
the Channel component via the DataIn predicate to the Receiver component and delivered to the environment via
the Deliver predicate shown in the upper right of Figure 4.

The Sender component of the net has four predicates (Accept, DataBuf, DataOut, Ackin), two transitions
(sendData, resendData) and eight arcs (f1, f2, f3, f4, f5, f6, f7, f8). Two of the predicates (DataOut, AckIn) are
shared with the Channel component of the net. The arcs in the Sender component of the net are annotated based
on the tokens consumed or created. These annotations include: <m> - original message, <d>, <d′> - representing
the message and a bit value, and <ack> a bit acknowledgment. The Channel component of the net contains four
predicates (DataOut, Ackin, DataIn, AckOut), four transitions (transmitted, corrupted, acorrupted, atransmitted),
and eight arcs (f9, f10, f11, f12, f13, f14, f15, f16). The predicates DataIn and AckOut are shared with the Receiver
component of the net. The a prefixing the transitions represents the acknowledgment e.g., acorrupted - corrupted
acknowledgment. The annotations on the arcs are similar to those in the Sender component except that b is used
to represent corrupted or acknowledgment tokens. The Receiver component of the net is similar to the Sender
component, except that the message is delivered to the environment, and the acknowledgment generated in that
Receiver component.

The inscriptions for the ABP net shown in Figure 4 are given below.

1. Net inscription of the Sender model:
ϕ(Accept) = ℘(MESSAGE), where MESSAGE is the type of string
ϕ(AckIn) = BIT ∪ corrupted, where BIT = {0, 1}
ϕ(DataOut) = ϕ(DataBuf) = BIT ×MESSAGE
R(sendData) =

(ack ∈ BIT ∧ ack = d[1] ∧ d′[1] = 1− ack ∧ d′[2] = m)
R(resendData) = (ack = corrupted)

2. The net inscription of the Receiver model is as follows:
ϕ(Deliver) = ℘(MESSAGE)
ϕ(AckOut) = ϕ(AckBuf) = BIT
ϕ(DataIn) = (BIT ×MESSAGE) ∪ corrupted
R(deliverData) =

10

(d ∈ BIT ×MESSAGE ∧ d[1] = 1− b ∧ b′ = d[1] ∧ m = d[2])
R(resendAck) = (d = corrupted)

3. The net inscription of the Channel model is as follows:
R(corrupted) = (b = corrupted)
R(acorrupted) = (b′ = corrupted)

We provide a Promela implementation of the ABP in Appendix II. Using the guidelines in Section 4.1 we identify
the ABP model as consisting of four PrT nets. These are the Sender, Receiver, Mchannel and the Achannel. The
Channel component of the net in Figure 4 is partitioned into the Mchannel - message channel and the Achannel
- acknowledgment channel. This view of the ABP net results in four Promela proctype constructs for each of the
sub-nets Sender, Receiver, Mchannel and Achannel. Each transition is represented as an atomic statement in the
proctype representing their sub-nets. In the next section we describe how the test criteria were applied to the ABP
net.

5.2 Evaluating Test Coverage of ABP Net

In order to adequately perform transition and state test coverage on the ABP, specified by the PrT net in Figure
4, we need to model the transitions of the ABP net model, as well as identify and model the appropriate abstract
states in Promela. Recall we use the definition of the an execution e as the basis for or definition of transition
coverage. In Section 2.1 we defined an execution e of a PrT net as e : m0

n0−→ m1
n1−→ m2

n2−→ ...
nk−1−→ mk

nk−→ ...
where ni is a set of transitions, m0 ∈ M0 is an initial marking, mi, i = 1, 2, ..., are markings such that mi is obtained
from mi−1 by firing transition set ni. Since we are using flat execution sequences in our simulation ni...nk are all
single transitions.

The transitions in the ABP net shown in Figure 4 consists of sendData, resendData, transmitted, corrupted,
acorrupted, atransimitted, resendAck and deliverData. In the Promela program for the ABP, shown in Appendix
II, we use a byte array of size 8 to store the information for transition coverage. Each element in the array is
initialize to a value of 0. As the transitions are fired the corresponding array elements are assigned a value of 1
by invoking the inline function set trans covered(idx) with the appropriate parameter value (see line 94 of the ABP
Promela program in Appendix II).

In Section 2.2 we defined abstract states of a PrT net as a set of finite states where each state in this set is
reachable from the initial marking of the net. In addition there is the relation, StateN : Mark(N) → ASN , that
defines how markings are associated with states. In the version of the ABP Promela program shown in Appendix
II we use three abstract states. These states include ready to send, sending and received. The information for
the abstract states are stored in a byte array of size 3. Whenever a transition is fired we call the inline function
set state covered to update the variable holding the abstract state information (see line 94 of the ABP Promela
program in Appendix II).

Using the Promela program for the ABP model in Appendix II all the transitions and states were adequately
covered during the simulation. We ran the simulation for 939 execution steps before all the transitions were covered
and 2246 steps before all the abstract states were covered. There was no need to use different values for the initial
markings since the monitor terminated the program after complete coverage of the criteria. Figure 5 shows a screen
shot of the bar chart generated by XSpin [13] when the ABP Promela program is executed in simulation mode.
This simulation was performed with a random seed value of 1. Each bar in the bar chart represents a process, from
left to right they are: init (line 200 in the ABP Promela program in Appendix II), sende represents sender (line 58),
mchan represents mchannel (line 99), achan represents achannel (line 119), recei represents receiver (line 135), and
monit represents monitor (line 167). From Figure 5 the monitor executed 11% of the total number of steps. Note
that they are additional execution steps in the other processes used to update the global variables for monitoring.

In Section 6 we discuss some of the major issues on using simulation to test coverage criteria of PrT nets. In
particular we look at some of the issues we faced when we use simulation to investigate test coverage of the ABP
model.

5.3 Observations of the Case Study

Suppose the system accepts 8 different messages from the environment to be delivered and each message is rep-
resented as a number. Then the initial marking is as follows: M0(Accept) = {128, 129, 130, 131, 132, 133, 134, 135},

11

0

:init

70

1

sende

603

2

mchan

387

3

achan

374

4

recei

562

5

monit

250

Percentage of 2246 System Steps

Executed Per Process (6 total)

0

:init

70

1

sende

603

2

mchan

387

3

achan

374

4

recei

562

5

monit

250

Percentage of 2246 System Steps

Executed Per Process (6 total)

Figure 5. A screen shot showing a bar chart representing the number of system steps executed per
process.

M0(Deliver) ={},
M0(DataBuf) = {< 1, emp >},
M0(AckIn) = {1},
M0(DataOut) = {< 0, emp >},
M0(DataIn) = {< 0, emp >},
M0(AckOut) = {1},
M0(AckBuf) = {1}

where (emp represent the absence of a message, 0 and 1 are the alternating sequence numbers.
We ran the Promela program until all messages were transmitted from place Accept to place Deliver under

simulation mode. During the simulation, transition events and state events are logged in global variables. The
Monitor periodically checks the values of the global variables to determine the coverage criteria. For this initial
input, we found that both the transition and state coverage criteria were covered. However, if there is only one
message in the test case such as M0(Accept) = 128, we found that some transitions such as resendACK are not
covered by this input. Note however, that all the abstract states will eventually be covered if the system accepts
one message for the environment.

Varying the random seed value in simulation mode produces different numbers of execution steps before all
transitions and abstract states are covered. For example, using a seed of 5 all transitions were covered after two
messages are sent requiring 359 execution steps. In Section 5.2 the number of execution steps required to cover
all transitions were 939. There was also a slight change in the number of execution steps required to cover all the
abstract states. We discuss other related issues to testing the ABP using our approach in Section 6.

6 Discussion

In this section we present a discussion of our approach using the Spin simulation mode to perform test coverage
on PrT nets. We discuss our approach on both of the PrT nets presented in this paper, the net for the dining
philosopher’s problem and the ABP problem.

6.1 Translation from PrT Net to Promela

Handling Infinite State spaces: In Section 2.2 we stated that a marking defines a state in a PrT net. The
state space for a PrT net can be infinite, and even it is finite, it can be very large; thus making it hard to cover all

12

the states in the state space. Bounding all places of a PrT net is necessary but not sufficient to limit the number
of states; we also need to limit the possible values a token in each place can take. In our translation from a PrT
net to Promela we perform the following. Each place is translated to a fixed-length array (bounding the place),
and the types defined for the PrT net are mapped to bounded integers and structured types (bounding the values
for tokens). For example, in our case study we encode strings as integers.

In testing PrT nets, we use abstract states, where each abstract state represents some configuration of interest
to be observed in the execution of the net. The set of abstract states is finite, and we map a set of possibly infinite
markings (concrete states) to an abstract state. If we want to observe the occurrence of an abstract state, i.e. that
the net is at a given abstract state, then we need to observe one or more of the concrete states that maps to that
abstract state. In online monitoring we provide a means for tracking both the concrete states and the abstract
states. The abstract state space is mapped to a fixed-length array in Promela, and we use that array to record the
states covered during simulation. Testing PrT nets using abstract states provides useful information. For example,
in the five-dining philosopher problem, we defined three states: one for the situation in which no philosopher is
eating (s0), one philosopher is eating (s1), and two philosophers are eating (s2). If during the testing process, we
never reach s1 or s2, we don’t need to ask further questions such as whether every philosopher or a specific one
gets the chance to eat or not.

Alternative Translation Approaches: We performed additional experiments using two variations on how PrT
net transitions are translated to Promela. One in which each PrT maps to a unique process (see Sections 4 and 5)
and another in which each transition is mapped to a process. Similar results in terms of coverage were obtained
in both cases. However, for the first case, we had to add an extra variable for controlling the enabling of each
transition, we discuss this below.

Handling Dynamic Semantics: In Spin simulation mode, the execution sequence of the translated PrT net can
be very large, and we may have to stop the simulation at some point in the execution of the program. In the case
that we comply with the coverage criteria (e.g. the state coverage criteria metric yields 1 or 100% coverage) then
the simulation is terminated using an assert statement. Otherwise, after executing the simulation for a number of
steps, the states and the transitions covered during the simulation can help in the refinement of the Prt net model.

One challenge regarding the “one Promela process per net” implementation used, was how to decide which
transition to fire and which substitution to use for testing the enabling of a transition given the tokens at the input
places. The Promela program non-deterministically chooses both a transition and the substitution to be used for
checking its enabling condition. To realize this behavior each transition has the form:

:: atomic{ test_to_pick_transition && test_substitution
-> fire_transition }

The condition test_to_pick_transition contains a variable whose value randomly changes. If a transition
(the atomic construct) is chosen to be evaluated by Spin and it is enabled, its firing depends on whether
test_to_pick_transition is true or not. This decision was particularly important for testing the transition
coverage for the ABP model. The initial approach used to implement the mchannel process in the ABP model
consisted of two transitions (trasmitted and corrupted). An outline of the implementation is shown below:

proctype mchannel() {
do
::atomic{guard_transmitted -> fire_transmitted}
::atomic{guard_corrupted -> fire_corrupted}
::else -> skip

od
}

Using this approach only the first transition (transmitted) would fire during the simulation (the second one
would always be tested when it was not enabled). A similar implementation was defined for the achannel process
(the one acknowledging the reception of a message) and in that case both transitions would fire. To avoid this
situation, we defined a variable (tran) that changed its value randomly and was part of the guard for each transition
(this is the variable in test_to_pick_transition), resulting in the modified code shown below:

13

Monitor Type PrT Net to Promela Communication Monitor -
PrT Net Promela Process

Online Multiple Processes Global Variables
Channels

Single Process Global Variables
Channels

Offline Multiple Processes printf Promela function
Single Process printf Promela function

Table 2. Summary of the approaches used to monitor PrT nets using Promela+.

proctype mchannel() {
byte tran=0;
do
::atomic{guard_transmitted && tran==0 -> fire_transmitted}
::atomic{guard_corrupted && tran==1 -> fire_corrupted}
::else -> tran=(tran+1)%2

od
}

6.2 Monitor Code in Promela

Effects of Monitor Code: It’s important to study how the monitoring code affects the execution of the Promela
program. For offline monitoring there is no effect, since the only thing we do is to pipe the events out to a file.
Whereas, for online monitoring, besides logging events, the monitor process added to the Spin process set, affecting
the execution sequence of the Promela code. Spin includes the monitor process in the choice it makes at every step
on which process to execute. Since Spin guarantees execution fairness, the only effect the selection of the monitor
process has, is to postpone the election of some other process (and the possibility of firing one of its transitions).

The monitor code introduced after each transition has no effect on the way Spin selects process and transitions
since that code is enclosed within the “atomic” construct. See outline of code below:

::atomic {test_transition -> fire_transition; monitor_code}

Alternative Monitoring Approaches: We studied two approaches to evaluating test coverage criteria for
PrT nets, online and offline. In terms of online evaluation, we implemented two different procedures for the
communication between the PrT net processes in Promela and the monitor process. The approaches include one
that usses channels and the other that uses global variables. In Table 2 we summarize the monitoring approaches
from the perspectives of: (1) the translation from PrT nets to Promela, and (2) the communication between the
monitor and the PrT net processes. We applied these approaches to the five-dining philosopher problem only.

For the communication using global variables, we define two arrays variables, one for the abstract states and
the other to log the transitions covered. It is possible to automatically generate the transition coverage code in
Promela, whereas the abstract state coverage code needs to be tailored to the specifics of the application.

7 Related Work

In this section we compare our work to other structural testing techniques that use the specification, program,
or a combination (specification and program) to generate test information. There are several program based
testing techniques for concurrent programs that use reachability analysis to create graphs form the source code.
These techniques try to minimize the effects of the state explosion. Taylor et al. [14] describe a testing approach
that extends structural testing criteria for sequential programs to concurrent programs, and propose a hierarchy
of supporting structural testing techniques. These criteria are defined in terms of the features of a concurrency

14

graph. Koppol et al. [10] use annotated labeled transition systems (ALTSs) to select test sequences for concurrent
programs. ALTSs reduce the impact of the state explosion problem by performing incremental reachability analysis.
ALTSs are similar to concurrency graphs and the criteria by Taylor et al. can be applied to ALTSs. Koppol et
al. define additional test criteria that focus on synchronization events. Unlike the approaches in [14] and [10], our
approach uses a higher level of abstraction thereby removing some implementation details and the dependence of
certain language features.

Several researchers have used model checking to analyze and/or verify Petri nets. Gannod and Gupta [4] describe
a tool that supports the use of the Spin model checker to analyze and verify Petri nets constructed using the DOME
tool. The tool by Gannod and Gupta focuses on integrating a modeling environment (DOME) with an analysis
environment (Spin). Gannod and Gupta do not consider the analysis of PrT nets in their work. Grahlmann and
Pohl [6] integrate the Spin verifier into the PEP tool (Programming Environment based on Petri nets). Several
examples were presented in [6] highlighting the advantages of the integration between Spin and PEP, the major
one being the speedup of using Spin based analysis versus prefix based analysis. We use an approach similar to the
ones presented by Grahlmann and Pohl when converting PrT nets into Promela [6]. None of the above approaches
that use Spin to analyze and/or verify Petri nets consider analyzing the net with respect to test coverage criteria
for a given initial marking. Using test coverage criteria during analysis provides a measure of the adequacy of the
initial marking used in the verification process. In addition our approach uses a monitor written in Promela to
record and/or evaluate net events against the test criteria during the analysis process.

In our work we do not use the model checking facility in Spin, however, several researchers have investigated using
model checking to support the testing of software. Ammann et al. [1] explores the role of model checkers in software
testing by investigating how the powerful computation engines in model checkers are used to generate and evaluate
test sets for a variety of test coverage criteria. The model Ammann et al. use is an FSM with constraints over states
and execution represented as temporal logic constraints. The main contribution by Ammann et al. is using the
model checker SMV to generate test sets using specification-based mutation analysis. Other test criteria described
in [1] include: uncorrelated full predicate coverage, transition pair, coverage and branch coverage. Gargantini and
Heitmeyer [5] use a model checker to produce counterexamples that are then used to generate test sequences. The
model checker generates these counter examples by verifying negated premises (trap properties) taken from the
specification. They show how a model checker can be used to automatically generate test cases to satisfy certain
structural coverage criteria. Their approach claims to generate test cases from any development artifact that can
be represented as an FSM. The structural coverage criteria by Rayadurgam and Heimdahl [12] are defined in terms
of the transition relation of the FSM, each transition is thought of as a triple (pre-state, post-state, guard). A
guard is a condition that must be satisfied for a change from a pre-state to a post-state. We do not focus on
generating test cases but on evaluating the structural coverage criteria for a PrT net given a test case (initial
marking). We also evaluate if the test criteria are satisfied using the simulation facility in the Spin model checker.

Zhu and He [16] formally define the test coverage criteria of PrT nets. Our work extends their work by providing
a practical implementation for measuring the test coverage criteria associated with PrT nets. We use the model
checker Spin to simulate the execution of the PrT net, log the net events generated and evaluate the coverage
criteria.

8 Summary and Future Work

In this paper we presented a unique approach of applying the simulation capability of the model checker Spin for
evaluating the test coverage adequacy of PrT nets, which provides an effective and practical technique to analyze
high level Petri net specifications for finite and infinite state systems. Furthermore, our results on high level Petri
nets can be easily adapted to other formal specification methods in which the corresponding coverage criteria can
be defined. We also described several optional approaches to translating PrT net models into Promela code and
performing the evaluation of test coverage criteria.

Our future work includes (1) extending our approach to handle other test coverage criteria used in flow-oriented
testing ans specification-oriented testing (2) how to associate specific system properties and various testing coverage
criteria, (3) how to use coverage information to select test cases, and (4) how to use the design level coverage
information to derive specification-based test cases at the implementation level.

15

Appendix I: A Promela Program for Dinning Philosophers
1 #define N 5
2
3 typedef tokenE{
4 byte ph ;
5 byte ch1 ;
6 byte ch2
7 } ; /∗ type used in Eating pred ica te ∗/
8
9 byte th ink ing [N] , chops t i ck [N] ; tokenE eat ing [N] ;

10
11 byte t rans [2] ;
12 /∗ Monitor t r an s i t i on s − trans [0] : pickup , trans [1] : putdown ∗/
13 byte s t a t e s [3] ;
14 /∗ Monitor s t a t e s − s t a t e s [0] : a l l ph i losophers thinking ,
15 s t a t e s [1] : 1 phi losopher eating , s t a t e s [2] :
16 2 phi losophers eat ing ∗/
17
18 i n l i n e transUp (cnt , r i ght , l e f t) {
19 ea t ing [cnt] . ph = th ink ing [r i g h t] ;
20 ea t ing [cnt] . ch1 = chops t i ck [r i g h t] ;
21 ea t ing [cnt] . ch2 = chops t i ck [l e f t] ;
22 th ink ing [r i g h t] = 0 ;
23 chops t i ck [r i g h t] = 0 ;
24 chops t i ck [l e f t] = 0 ;
25 }
26
27 i n l i n e transDown (idx) {
28 th ink ing [idx] = idx +1;
29 chops t i ck [idx] = idx +1;
30 chops t i ck [(idx+1)%N] = ((idx+1) % N) + 1 ;
31 ea t ing [idx] . ph = 0 ;
32 ea t ing [idx] . ch1 = 0 ;
33 ea t ing [idx] . ch2 = 0 ;
34 }
35
36 /∗Transit ions covered∗/
37 i n l i n e s e t t r a n s c o v e r e d (idx){
38 t rans [idx]=1;
39 }
40 /∗This keeps track of which s t a t e i s being covered . ∗/
41 i n l i n e s e t s t a t e s c o v e r e d (){
42 byte cnt ;
43 cnt = 0 ;
44 byte idx ;
45 idx = 0 ; /∗No phi losopher eat ing ∗/
46 do
47 : : (cnt<N) −>
48 i f
49 : : (ea t ing [cnt] . ph != 0) −> idx++
50 : : else −> sk ip
51 f i ;
52 cnt++
53 : : else −> break
54 od ;
55 s t a t e s [idx] = 1
56 /∗we assume that 0<=idx <3, otherwise i t ’ s an s p e c i f i c a t i on
57 error ∗/
58 }
59
60 proctype DP() {
61 byte count = 0 ;
62 byte tran = 0 ;
63 do
64 /∗Pickup∗/
65 /∗ guard pickup −> exec pickup ∗/
66 : : atomic { (tran ==0 && th ink ing [count] > 0
67 && chops t i ck [count] > 0
68 && chops t i ck [(count+1)%N] > 0)
69 −> transUp (count , count , (count+1)%N) ;
70 s e t t r an s c o v e r e d (0) ;
71 s e t s t a t e s c o v e r e d () }
72 /∗Putdown∗/
73 /∗guard putdown −> exec putdown∗/
74 : : atomic { (tran ==1 && eat ing [count] . ph > 0)
75 −> transDown (count) ;
76 s e t t r an s c o v e r e d (1) ;
77 s e t s t a t e s c o v e r e d () }
78 /∗ s t a t e s [0] i s s e t to 1 when none i s eat ing ∗/

16

79 : : else −> atomic{ /∗ Se l e c t a t r ans i t i on and a sub s t i t u t i on ∗/
80 do
81 : : count=(count+1)%N
82 : : count>0 −> count=count−1
83 : : tran=(tran+1)%2
84 : : tran >0 −> tran=tran−1
85 : : break
86 od } ;
87 od
88 }
89
90 proctype monitor (byte monitor type){
91 /∗monitor type==0 : t r an s i t i on s and p laces
92 monitor type==1 : t r an s i t i on s only
93 monitor type==2 : p laces only ∗/
94 i f
95 : : monitor type==0 −>
96 do
97 : : atomic {(s t a t e s [0]==0 | | s t a t e s [1]==0 | | s t a t e s [2]==0)
98 −> sk ip }
99 : : atomic {(t rans [0]==0 | | t rans [1]==0) −> sk ip }

100 : : else −> break
101 od ;
102 : : monitor type==1 −>
103 do
104 : : atomic {(t rans [0]==0 | | t rans [1]==0) −> sk ip }
105 : : else −> break
106 od ;
107 : : monitor type==2 −>
108 do
109 : : atomic {(s t a t e s [0]==0 | | s t a t e s [1]==0 | | s t a t e s [2]==0)
110 −> sk ip }
111 : : else −> break
112 od ;
113 f i ;
114 a s s e r t (f a l s e) /∗Stop the simulat ion ∗/
115 }
116
117 i n i t {
118 byte count = 0 ;
119 /∗ I n i t i a l Marking ∗/
120 atomic {
121 do
122 : : (count < N) −> th ink ing [count] = count + 1 ;
123 chops t i ck [count] = count + 1 ;
124 count++
125 : : else −> break
126 od
127 }
128 count = 0 ;
129 atomic{
130 do
131 : : (count < N) −> ea t ing [count] . ph = 0 ;
132 ea t ing [count] . ch1 = 0 ;
133 ea t ing [count] . ch2 = 0 ;
134 count++
135 : : else −> break
136 od
137 }
138 /∗ End i n i t i a l marking ∗/
139
140 /∗Monitoring i n i t i l i z a t i o n ∗/
141 t rans [0]=0 ;
142 t rans [1]=0 ;
143 s t a t e s [0]=0 ; /∗This should be 1 , but even tua l l y the net
144 w i l l have to reach the i n i t i a l marking∗/
145 s t a t e s [1]=0 ;
146 s t a t e s [2]=0 ;
147
148 /∗ Execute net ∗/
149 atomic{
150 run DP() ;
151 run monitor (0) /∗0 means keep track of both c r i t e r i a : s t a t e
152 and t rans i t i on . ∗/
153 }
154 }
155
156 }

17

Appendix II: A Promela Program for ABP
1
2 #define N 8
3
4 mtype = {EmptyP , corrupted , one , zero }
5 /∗EmptyP−>4,corrupted−>3,one−>2,zero−>1∗/
6
7 typedef frameType {
8 mtype ack ;
9 byte msg

10 } ;
11
12 typedef dataType {
13 byte token ;
14 byte msg [N]
15 } ;
16
17 dataType accept , d e l i v e r ;
18 frameType dataOut , dataIn , dataBuf ;
19 mtype ackIn , ackOut , ackBuf ;
20
21 /∗Monitoring code∗/
22 #define N TRANS 8
23 #define N STATES 3
24 byte t rans [N TRANS] ;
25 /∗ t r an s i t i on s ∗/
26 /∗ trans [0] : sendData , trans [1] : resendData
27 trans [2] : transmitted , trans [3] : corrupted
28 trans [4] : acorrupted , trans [5] : atransmitted
29 trans [6] : resendAck , trans [7] : de l iverData ∗/
30
31 byte s t a t e s [N STATES] ;
32 /∗ s t a t e s ∗/
33 /∗ s t a t e s [0] : ready to send ,
34 s t a t e s [1] : sending ,
35 s t a t e s [2] : rece ived ∗/
36
37 /∗Transit ions covered∗/
38 i n l i n e s e t t r a n s c o v e r e d (idx){
39 t rans [idx]=1
40 }
41 /∗This keeps track of which s t a t e i s being covered . ∗/
42 i n l i n e s e t s t a t e s c o v e r e d (){
43 /∗Check for the three s t a t e s ∗/
44 i f
45 : : accept . token==N−>s t a t e s [0]=1
46 : : else−>sk ip
47 f i ;
48 i f
49 : : (accept . token !=N | | d e l i v e r . token !=N)−> s t a t e s [1]=1
50 : : else−>sk ip
51 f i ;
52 i f
53 : : d e l i v e r . token==N−>s t a t e s [2]=1
54 : : else−>sk ip
55 f i
56 }
57
58 proctype sender () {
59 byte tran =0;
60 byte i = 0 ;
61 do
62 /∗ t r ans i t i on : sendData∗/
63 : : atomic {(accept . token > 0) && (ackIn == one | |
64 ackIn == zero) &&
65 /∗ (dataBuf . ack == zero | | dataBuf . ack == one) &&∗/
66 (dataBuf . ack == ackIn) && tran==0
67 −> dataOut . ack = (1 − (ackIn −1)+1); /∗3−ackIn∗/
68 /∗ We have ackIn−1 because ackIn at t h i s point
69 can be 2 (meaning one) or 1 (meaning zero) ∗/
70 i = 0 ;
71 do
72 : : (i < N) −>
73 i f
74 : : accept . msg [i] > 0 −>
75 dataOut . msg = accept . msg [i] ;
76 dataBuf . msg = accept . msg [i] ;
77 dataBuf . ack = dataOut . ack ;
78 accept . token−−;

18

79 accept . msg [i] = 0 ;
80 ackIn = EmptyP ;
81 break
82 : : else −> i++
83 f i
84 : : (i == N) −> break
85 od ;
86 s e t t r an s c o v e r e d (0) ; s e t s t a t e s c o v e r e d () }
87 /∗ t r ans i t i on : resendData∗/
88 : : atomic{ (ackIn == corrupted) &&
89 (dataBuf . ack == one | | dataBuf . ack == zero) &&
90 (dataBuf . msg > 0) && tran==1
91 −> dataOut . ack = dataBuf . ack ;
92 dataOut . msg = dataBuf . msg ;
93 ackIn = EmptyP ;
94 s e t t r a n s c o v e r e d (1) ; s e t s t a t e s c o v e r e d () }
95 : : else −> tran=(tran+1)%2
96 od
97 }
98
99 proctype mchannel () {

100 byte tran =0;
101 do
102 /∗ t r ans i t i on : transmit ted ∗/
103 : : atomic{ (dataOut . ack == zero | | dataOut . ack == one)&&
104 (dataOut . msg > 0) && tran==0
105 −> dataIn . ack = dataOut . ack ;
106 dataIn . msg = dataOut . msg ;
107 dataOut . ack = EmptyP ; dataOut . msg = 0 ;
108 s e t t r a n s c o v e r e d (2) ; s e t s t a t e s c o v e r e d () }
109 /∗ t r ans i t i on : corrupted ∗/
110 : : atomic{ (dataOut . ack == zero | | dataOut . ack == one) &&
111 (dataOut . msg > 0) && tran==1
112 −> ackIn = corrupted ;
113 dataOut . ack = EmptyP ; dataOut . msg = 0 ;
114 s e t t r a n s c o v e r e d (3) ; s e t s t a t e s c o v e r e d () }
115 : : else −> tran=(tran+1)%2
116 od
117 }
118
119 proctype achannel () {
120 byte tran =0;
121 do
122 /∗ t r ans i t i on : atransmitted ∗/
123 : : atomic{ (ackOut == zero) | | (ackOut == one) && tran==0
124 −> ackIn = ackOut ; ackOut = EmptyP ;
125 s e t t r a n s c o v e r e d (5) ; s e t s t a t e s c o v e r e d () }
126 /∗ t r ans i t i on : acorrupted ∗/
127 : : atomic{ (ackOut == zero) | | (ackOut == one) && tran==1
128 −> dataIn . ack = corrupted ;
129 dataIn . msg = 0 ; ackOut = EmptyP ;
130 s e t t r a n s c o v e r e d (4) ; s e t s t a t e s c o v e r e d () }
131 : : else −> tran=(tran+1)%2
132 od
133 }
134
135 proctype r e c e i v e r () {
136 byte tran =0;
137 byte k = 0 ;
138 do
139 /∗ t r ans i t i on : resendAck∗/
140 : : atomic{ (dataIn . ack == corrupted) &&
141 (ackBuf == zero | | ackBuf == one) && tran==0
142 −> ackOut = ackBuf ; dataIn . ack = EmptyP ;
143 s e t t r a n s c o v e r e d (6) ; s e t s t a t e s c o v e r e d () }
144 /∗ t r ans i t i on : de l iverData ∗/
145 : : atomic{ (dataIn . ack == zero | | dataIn . ack == one) &&
146 (dataIn . ack == 3−ackBuf/∗1 − ackBuf∗/) &&
147 (dataIn . msg > 0) && tran==1
148 −> ackBuf = dataIn . ack ; ackOut = dataIn . ack ;
149 k = 0 ;
150 do
151 : : (k < N) −>
152 i f
153 : : (d e l i v e r . msg [k] == 0) −>
154 d e l i v e r . token++;
155 d e l i v e r . msg [k]= dataIn . msg ;
156 break
157 : : else −> k++

19

158 f i
159 : : else −> break
160 od ;
161 s e t t r a n s c o v e r e d (7) ; s e t s t a t e s c o v e r e d () }
162 : : else −> tran=(tran+1)%2
163 od
164 }
165
166 /∗The monitor process ∗/
167 proctype monitor (byte monitor type){
168 /∗monitor type==0 : t r an s i t i on s and p laces
169 monitor type==1 : t r an s i t i on s only
170 monitor type==2 : p laces only ∗/
171 i f
172 : : monitor type==0 −>
173 do
174 : : atomic {(s t a t e s [0]==0 | | s t a t e s [1]==0 | |
175 s t a t e s [2]==0) −> sk ip }
176 : : atomic {(t rans [0]==0 | | t rans [1]==0 | |
177 t rans [2]==0 | | t rans [3]==0 | |
178 t rans [4]==0 | | t rans [5]==0 | |
179 t rans [6]==0 | | t rans [7]==0) −> sk ip }
180 : : else −> break
181 od ;
182 : : monitor type==1 −>
183 do
184 : : atomic {(t rans [0]==0 | | t rans [1]==0 | |
185 t rans [2]==0 | | t rans [3]==0 | |
186 t rans [4]==0 | | t rans [5]==0 | |
187 t rans [6]==0 | | t rans [7]==0) −> sk ip }
188 : : else −> break
189 od ;
190 : : monitor type==2 −>
191 do
192 : : atomic {(s t a t e s [0]==0 | | s t a t e s [1]==0 | | s t a t e s [2]==0)
193 −> sk ip }
194 : : else −> break
195 od ;
196 f i ;
197 a s s e r t (f a l s e) /∗Stop the simulat ion ∗/
198 }
199
200 i n i t {
201 byte count = 0 ;
202 atomic {
203 ackIn = one ; dataBuf . ack = one ; dataBuf . msg = one ;
204 ackBuf = one ; dataIn . ack = EmptyP ; dataIn . msg = one ;
205 ackOut = EmptyP ;
206 accept . token = N; d e l i v e r . token = 0 ;
207 do
208 : : (count < N) −>
209 accept . msg [count] = 128 + count ;
210 d e l i v e r . msg [count] = 0 ; count++
211 : : else −> break
212 od ;
213 }
214
215 /∗Monitoring i n i t i l i z a t i o n ∗/
216 t rans [0]=0 ; /∗sendData∗/
217 t rans [1]=0 ; /∗ resendData∗/
218 t rans [2]=0 ; /∗ transmit ted ∗/
219 t rans [3]=0 ; /∗ corrupted ∗/
220 t rans [4]=0 ; /∗acorrupted ∗/
221 t rans [5]=0 ; /∗ atransmitted ∗/
222 t rans [6]=0 ; /∗resendAck∗/
223 t rans [7]=0 ; /∗ de l iverData ∗/
224 s t a t e s [0]=1 ; /∗ i n i t i a l s t a t e i s a lready covered∗/
225 s t a t e s [1]=0 ;
226 s t a t e s [2]=0 ;
227
228 atomic{
229 run sender () ;
230 run mchannel () ;
231 run achannel () ;
232 run r e c e i v e r () ;
233 run monitor (0)
234 }
235 }

20

Acknowledgments: This research was supported in part by the National Science Foundation of the USA

under grant HRD-0317692, and by the National Aeronautics and Space Administration of the USA under grant
NAG2-1440.

References

[1] P. Ammann, P. E. Black, and W. Ding. Model checkers in software testing. Technical Report NIST-IR 6777,
National Institute of Standards and Technology, 2002.

[2] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York, NY, 1990.

[3] J. Ding. A Methodology for Formally Modeling and Analyzing Software Architecture of Mobile Agent Systems.
PhD thesis, Florida International University, 2004.

[4] G. C. Gannod and S. Gupta. An automated tool for analyzing petri nets using spin. In Proceedings of the
16th IEEE International Conference on Automated Software Engineering (ASE’01), pages 404–407. IEEE,
November 2001.

[5] A. Gargantini and C. Heitmeyer. Using model checking to generate tests from requirements specifications.
In Proceedings of the 7th European software engineering conference held jointly with the 7th ACM SIGSOFT
international symposium on Foundations of software engineering, pages 146–162. ACM, Oct. 1999.

[6] B. Grahlmann and C. Pohl. Profiting from spin in PEP. In Proceedings of the 4th International SPIN
Workshop (SPIN ’98), Nov. 1998.

[7] X. He and T. Murata. High-Level Petri Nets - Extensions, Analysis, and Applications. Electrical Engineering
Handbook (ed. Wai-Kai Chen). Elsevier Academic Press, 2005.

[8] X. He, H. Yu, T. Shi, J. Ding, and Y. Deng. Formally analyzing software architectural specifications using
sam. Journal of Systems and Software, 71(1-2):11–29, 2004.

[9] G. J. Holzmann. The Spin Model Checker: Primer and reference manual. Addison-Wesley, Boston, MA.,
2003.

[10] P. V. Koppol, R. H. Carver, and K. C. Tai. Incremental integration testing of concurrent programs. IEEE
Transactions on Software Engineering, 28(6):607–623, 2002.

[11] C. E. McDowell and D. P. Helmbold. Debugging concurrent programs. ACM Computing Surveys (CSUR),
21(4):593 – 622, 1989.

[12] S. Rayadurgam and M. P. Heimdahl. Coverage based test-case generation using model checkers. In Proceedings
of the 8th Annual IEEE International Conference and Workshop on the Engineering of Computer Based
Systems (ECBS 2001), pages 83–91. IEEE Computer Society, April 2001.

[13] Spin. On-The-Fly, LTL Model Checking with SPIN , Feb. 2006. http://spinroot.com/.

[14] R. Taylor, D. Levine, and C. Kelly. Structural testing of concurrent programs. IEEE Transactions on Software
Engineering, 18(3):206 – 215, 1992.

[15] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit testing coverage and adequacy. ACM Computing
Surveys, 29(4):366–427, December 1997.

[16] H. Zhu and X. He. A methodology of testing high-level petri nets. Information and Software Technology,
44:473–489, 2002.

21

