
A Meta-Model to Support Regression Testing of Web Applications

Yanelis Hernandez, Tariq M. King, Jairo Pava and Peter J. Clarke
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

email: {yhern004, tking003, jpava001, clarkep}@cis.fiu.edu

Abstract

As businesses strive to keep pace with the rapid evo-
lution of web technologies, their efforts to maintain au-
tomated regression testing strategies are being hindered.
Technological migration of a web application can lead
to test scripts becoming incapable of validating the mi-
grated application due to differences in the testing plat-
form. Regression tests that are still applicable to the
application would therefore have to be re-written to be
compatible with the new technologies.

In this paper, we apply a model-driven approach to
the development of automated testing scripts for vali-
dating web applications from the client-side. We define
a meta-model using UML 2.0 profiles, and describe the
model transformations needed to automatically port re-
gression tests to various platforms. A prototype of the
test implementation for an e-commerce application is
also presented.

Keywords: Regression Testing, MDSD, UML

1 Introduction

The many advances in web technologies has led to
the development of web applications that compete in
solution areas that traditional software previously ad-
dressed. Web applications are no longer simple streams
of static web pages, but instead provide a collection of
interactive services with the added flexibility, mobility,
and connectivity of the Internet. These characteris-
tics have made web-based solutions highly attractive
to businesses, and this has led to the creation of many
development and testing tools to support web program-
ming [5, 13, 17, 18, 19]. However, a negative conse-
quence of these advancements is the persistent growth
in the complexity of web applications, and the rapid
evolution of their supporting technologies.

Software testing is a very costly and time-consuming
endeavor. Some studies indicate that the cost of soft-
ware testing may account for between fifty to seventy-
five percent of total development costs [7, 8]. In addi-
tion, testing costs tend to exceed those of design and
implementation, and therefore the methodologies and
tools employed at these stages are pertinent to the de-
velopment of affordable quality software.

Automation is an effective way to reduce time and
costs of software testing, and so many businesses con-
duct their testing process with some degree of automa-
tion. The level of automation of software testing typi-
cally exists at the test script level. Software testers en-
code a set of test cases for the application in a scripting
language, and use the script as input to an automated
testing tool which executes the tests. If subsequent
changes are made to the system, the test script pro-
vides a means for automatically performing regression
testing to determine whether new errors were intro-
duced into previously tested components [6].

Script-level test automation becomes problematic
when an application migrates to include technologies
that are not supported by the testing tool currently
being utilized. Regression tests that are still applica-
ble to the migrated application therefore have to be
re-written in the scripting language of a new testing
tool, thereby defeating the purpose of test automation.

The model-driven software development (MDSD)
paradigm emphasizes the use of models and model
transformations to generate executable code for a spe-
cific platform. In this paper, we apply MDSD to the
generation of an automated testing script for validat-
ing the client-side of a web application. To address the
aforementioned problem of script-level automation, we
propose that the test set for the web application be
designed as a platform independent model which can
be automatically transformed into a platform specific
automated testing script.

The main contributions of this work are that it: (1)



presents a model-driven approach to the design and
development of automated testing scripts to validate a
web application; (2) provides meta-models for a subset
of web-based development and testing technologies us-
ing UML 2.0 [12] profiles; and (3) elaborates on a case
study developed using the proposed modeling approach
to support testing.

This paper is organized as follows: the next section
contains background information on web-based tech-
nologies, regression testing, and meta-modeling. Sec-
tion 3 presents the proposed approach to support test-
ing a migrated web application. Section 4 contains the
meta-models used in our approach and describes the
generation of the testing script. Section 5 provides the
details of the case study. Section 6 presents related
work, and in Section 7 we give concluding remarks and
discuss future work.

2 Background

In this section we provide background information
on the technologies commonly used to develop web ap-
plications. We then discuss the technique of regression
testing, including tool support for automatically vali-
dating web applications. Approaches to meta-modeling
are also described in this section.

2.1 Web-Based Technologies

There are two broad categories of web programming
technologies used to develop web applications – client-
side and server-side [4]. Client-side scripting technolo-
gies involve the use of a web-browser on the client ma-
chine to perform operations without having to commu-
nicate with the server. This type of scripting is gener-
ally used to dynamically modify the behaviors within a
specific web page in response to user input [4]. Popular
examples of client-side scripting technologies include
[17, 19]: HTML and Javascript.

In contrast, server-side technologies perform opera-
tions on the web server instead of on the client machine.
They are preferable when operations utilize informa-
tion that is not available on the client, or when data
storage from the client to the server is needed [4]. Dy-
namic operations on the server-side may involve chang-
ing the web page supplied to the client, or providing
a new sequence of web pages to the browser. Active
Server Pages (ASP) [4] and Hypertext Preprocessor
(PHP) [18] are two examples of server-side scripting
languages commonly used to develop web applications.

Many web technologies can be integrated with oth-
ers and hence web applications usually employ a myr-
iad of technologies on both the client and the server.

In essence, the classification of a scripting language de-
pends on its implementation within the web applica-
tion. For example, Flash [1] technologies may be im-
plemented on the client using companion technologies
such as HTML [19], or on the server by providing syn-
chronized updates to the client.

2.2 Regression Testing

Software testing is the process of operating a soft-
ware system under specified conditions, recording the
results, and making an evaluation of some aspect of the
software [10]. Testing is particularly useful for validat-
ing changes made to a system during software main-
tenance or evolution. Regression testing refers to re-
running test cases to determine whether or not new er-
rors have been introduced into previously tested code
[3]. In an effort to reduce costs, many testing strategies
employ automated tools to support the performance of
regression tests on modified software systems.

There has been a rapid growth of tools to support
testing web applications on both the client and server
sides. HTMLUnit [5] simulates the behavior of a web
browser by providing an API to interact with web
pages. Functional testing tools such as TestSmith [13]
provide facilities for simulating mouse and keyboard
events and hence can be used on the client-side to test
Flash applications. On the server-side, PHPUnit [14],
a member of the xUnit family of testing frameworks, is
a unit testing solution for PHP [18].

2.3 Meta-Modeling

Model-driven software development (MDSD) fo-
cuses on the combined use of software models and asso-
ciated transformations to build complete software sys-
tems. This typically involves the use of a source model
or Platform Independent Model (PIM), and a target
model or Platform Specific Model (PSM) [16]. The
PIM does not rely on any specific technological plat-
form that could be used to implement the software,
and therefore represents the essence of the solution.
A model transformation language can then be used to
transform the PIM into a PSM that is executable on
the target platform [16].

A technique known as meta-modeling is used to en-
sure the consistency of models during transformation.
This involves defining the abstract syntax of models
and the interrelationships between the model elements
[15]. Meta-modeling should consist of orthogonal di-
mensions that support two forms of instantiation [2]:
linguistic – relates to the language definition, and onto-
logical – relates to the domain definition. In this paper



the ontological meta-modeling will be implemented us-
ing UML 2.0 [12] profiles.

3 MDSD Approach to Support Testing

In this section we define the scope of the problem
being addressed in this paper. We then present our
approach which applies MDSD to the generation of an
automated testing script for validating a web applica-
tion.

3.1 Problem Definition

Automating the process of testing a web application
involves developing a script that can be recognized by
a testing tool, which then applies predefined test cases
to the application under test. This is depicted in the
left-hand portion of Figure 1, where a test script TS1
validates an application under test AUT1; both of which
can be thought of as targeting the same set of web
technologies WT1.

The migration from AUT1 to AUT2 in Figure 1 repre-
sents when a business updates their application to in-
clude a new set of web technologies, labeled WT2. How-
ever, this migration usually leads to the test script TS1
becoming incapable of validating the application AUT2.
Therefore, regression tests that are still applicable to
AUT2 would have to be re-written in a new test script
TS2 to be compatible with the testing tool for WT2.

TS 1 AUT 1 migrates

Web Technology 1 (WT1)

validates TS 2AUT 2

Web Technology 2 (WT2)

validates

Figure 1. Testing a migrated web application.

3.2 Model-Driven Solution

Our approach harnesses the power of MDSD to au-
tomatically generate the testing script for a web appli-
cation that has migrated to new technologies. Figure
2 shows the models and transformation processes used
in our approach. A key aspect of our methodology is
the use of a test script generator, shown at the center
of Figure 2, to produce platform specific tests for the
migrant web applications. Inputs to the generator are
represented by dotted lines, while solid lines are used
to represent the output.

First, a platform independent model, representing
the essence of the test set for the web application, is in-
put to the generator. This PIM is then combined with
a model of the constructs used for testing a particular
set of web technologies. For example, in Figure 2, PI

WT Model 1
(HTML, Javascript)

PI Test Set

Test Script Generator

PS Test Set 1
(HTMLUnit Tests)

WT Model 2
(Flash, Actionscript)

PS Test Set 2
(TestSmith Tests)

Figure 2. Model-driven test script generation.

PagePart

Static

CheckBox TextBox ComboBox RadioGrp

+hasFocus() : bool

Interactive

Button

Text Image

+getValue()

FillableControl

WebObject
-id : string

WebPage
-url : string

+loadWebPage()

WebBrowser

+getControl()

Form

Link

1*

1*

Container

*1

+press()

ButtonControl

Figure 3. Conceptual model of a web interface.

Test Set would be combined with WT Model 1, which
models constructs for testing HTML and Javascript, to
automatically generate an HTMLUnit script PS Test
Set 1. If the application later migrates to a new set
of web technologies (e.g., Flash and Actionscript), the
test set can also migrate automatically by combining
PI Test Set and WT Model 2.

4 Meta-Models

In this section we provide a conceptual model de-
picting abstractions for a subset of the visual elements
of a web application. We then present a UML 2.0 pro-
file of a meta-model to support testing web applications
based on the conceptual model.

4.1 Conceptual Model of a Web Interface

Figure 3 shows a conceptual model for the user in-
terface of a web application. The purpose of the model
is to provide abstractions for the visual elements of the
web application that are relevant to testing. At the
top of the hierarchy of object types is the WebObject
(top-left of Figure 3), which is a general representa-
tion for any element of the web interface. These object
types include web pages and the elements contained
within them, which are classified as follows: (1) inter-
active – allows for dynamic user interaction, e.g., forms,



Stereotype Base Class Tagged Value Constraints
<<TestSet>> Class id: String May only declare instances of classes stereotyped TestCase. id is

unique.
<<TestCase>> Class id: String May only declare instances of classes stereotyped TestSection, and

be associated with at most one instance each of classes stereotyped
Setup, Precondition, Input, Postcondition, and Rollback. id is
unique.

<<TestSection>> Class id: String id is unique.
<<TestCommand>> Class id: String May be associated with at most one instance of a class stereotyped

TestSubject. id is unique.
<<WebObject>> Class id: String id is unique.

<<TestSubject>> WebObject

<<Setup>> TestSection May only declare instances of classes stereotyped CreateCommand.
<<Precondition>> TestSection May only declare instances of classes stereotyped InputCommand.

<<Input>> TestSection May only declare instances of classes stereotyped InputCommand.
<<Postcondition>> TestSection May only declare instances of classes stereotyped AssertCommand.

<<Rollback>> TestSection May only declare instances of classes stereotyped DestroyCommand.
<<CreateCommand>> TestCommand

<<InputCommand>> TestCommand

<<AssertCommand>> TestCommand

<<DestroyCommand>> TestCommand

<<contains>> Association Connects instances of TestSet with instances of TestCase, and in-
stances of TestCase with instances of TestSection

<<manipulates>> Association Connects instances of Command with instances of TestSubject.

Table 1. UML profile of the test model for a web application.

textboxes, buttons; and (2) static – remains fixed re-
gardless of external stimuli, e.g., text, images, tables.

An interesting aspect of the model is that the type
WebBrowser is also derived from WebObject. This is
because the browser allows users to break the normal
flow of control of the application, and testing should
address such scenarios. For example, a user may press
the Back button of the browser during the execution of
the application causing unexpected results [20]. In ad-
dition, the WebBrowser type facilitates changes to the
browser configuration, and allows testing to simulate
the use of a specific browser; both of which can affect
the behavior of the web application.

4.2 Meta-Model to Support Testing

The UML 2.0 profile for the test model of a web
application is shown in Table 1. It consists of four
kinds of artifacts indicated by the column headings
(from left to right): (1) stereotype – represents spe-
cific meta-classes; (2) base class – denotes an exten-
sion relationship from a UML meta-class or inheritance
from another stereotype; (3) tagged value – defines at-
tributes of the stereotype; and (4) constraints – enforce
restrictions on how the meta-model may be used. For
example, in Row 1 of Table 1 the stereotype TestSet
extends of the UML meta-class named Class; contains
the tagged value id of type String; and may only con-
tain variables of a class whose stereotype is TestCase.
The constraints for this table entry also specify that

the tagged value id should only hold unique values.
It should be noted that the stereotype TestSubject in
Row 5 extends WebObject, which is the base class from
the conceptual model of a web interface presented in
Subsection 4.1.

5 Case Study

In this section we present a case study developed as
an initial proof of concept realization of our method-
ology. We first outline the features of the applica-
tion, and describe the technologies and test support
tools required to setup the experiment. We then pro-
vide details on a test set implementation that uses the
proposed approach, including the generation of test
scripts. The findings and limitations of the study are
also discussed in this section.

5.1 FastBooks Application

FastBooks is a small e-commerce application for pur-
chasing college textbooks on-line. Users may choose
to purchase their textbooks in three different formats
(Print, Audio, or Electronic), and then submit their
billing and shipping information for validation. Two
versions of the FastBooks application were developed
to set up the scenario of a business migrating from one
web platform to another that uses technologies unsup-
ported by the current testing tool.



edu.fiu.strg.mdsd.webtest

WTModel
[from technology]

HTMLUnitModel
[from technology]

PITestSet
[from independent]

FastBooksTestSet
[from independent]

ScriptGen
[from generator]

MetaDictionary
[from metalevel]

Figure 4. Minimal class diagram of the prototype.

The first version of the application was developed
using HTML 4.01 and Javascript on the client-side,
and implemented its automated testing using HTM-
LUnit 1.4. The second version of the application was
developed using Flash 9 and Actionscript 3.0 on the
client-side. Both versions used PHP 5.25 on the server-
side for transferring data to and from persistent stor-
age, while Apache HTTP Server 2.2 provided the web
server functionality.

5.2 Test Implementation

We developed a prototype in Java 5.0 to implement
the model-driven testing solution presented in SubSec-
tion 3.2. First, test cases for the FastBooks applica-
tion were designed using boundary value analysis and
equivalence partitioning techniques. The initial test
set, consisting of 12 test cases, was then encoded us-
ing the constructs and rules of the testing meta-model
proposed in this paper.

The package labeled edu.fiu.strg.mdsd.webtest
in Figure 4 shows the main communicating classes from
various sub-packages of the prototype. The types from
the conceptual model of a web interface were stored
in the class MetaDictionary, which was used to de-
sign generalized classes for modeling the web testing
technology WTModel and platform independent test set
PITestSet. These two classes were then specialized
to create objects for holding the HTML and Javascript
testing constructs, as well as the test cases designed for
the FastBooks application; represented by the classes
HTMLUnitModel and FastBooksTestSet respectively.

5.3 Generation of Test Scripts

The class ScriptGen in Figure 4 is responsible for
iterating through FastBooksTestSet, and generating
a test script using the platform specific constructs in
HTMLUnitModel. This is achieved by retrieving the
test case definitions that are represented as abstract
test commands, along with variable names and their
associated values. These abstract test commands are

then mapped to the HTMLUnit constructs that also
contain placeholders for the variable names and val-
ues. The generator then overwrites the placeholders
with the actual variable names and values stored in
FastBooksTestSet, and appends the completed in-
struction to the output file FastBooks.htmlUnit.

5.4 Discussion

The purpose of the case study was to demonstrate
the feasibility of applying a model-driven approach to
the design and development of testing scripts for a
web application. Implementing the prototype gives cre-
dence to the claim that the strategy can be used to de-
fine platform independent tests, and convert them into
scripts for an automated testing tool. All of the base
test cases developed for the case study were success-
fully transformed into syntactically correct HTMLUnit
tests. This suggests that the abstract constructs used
in the current prototype were therefore sufficient for
representing the platform specific constructs required
to validate the FastBooks application. Although the
current version of the prototype does not implement
the technology model for Flash, this could be easily
incorporated by extending the generalized classes pro-
vided by the infrastructure.

Conducting the study also provided us with insight
into the intricacies of developing a framework for the
proposed approach. Although the FastBooks test set
only required the prototype to address a limited num-
ber of test scenarios, designing the framework to main-
tain independence among the test model, technology
model, and script generator was very challenging. Lim-
itations of the current prototype include coverage of
only a subset of web controls and widgets, and man-
ual detection of model constraint violations. However,
the latter could be solved through the use of model-
driven architecture tools such as the Eclipse Modeling
Framework.

6 Related Work

There has been great effort in the research commu-
nity to assure the quality of web applications through
effective testing methodologies. However, most of the
work that focuses on the use of models for testing web
applications relies heavily on specific platforms for the
creation of their models. In contrast, our approach
uses a platform independent test model to facilitate
the generation of test scripts.

The work presented by Li et al. [11] is most closely
related to our work. It proposes a model-driven test-
ing methodology for web applications. A model of the



web application is built to describe the system under
test, and test cases are developed based on that model.
Test scripts are generated from the test cases and exe-
cuted by a test engine. Our approach differs from [11]
in that we consider the negative impact that migration
has on the ability to automatically validate web ap-
plications. Therefore, the technique proposed in this
paper for modeling the technological constructs could
be used in [11] to provide a more extensible solution.

The Object Management Group (OMG) [12] ex-
tended UML with testing concepts such as test ar-
chitecture, test data, and test behavior. Similar to
the profile presented in this paper, the UML Testing
Profile 1.0 is based on the UML 2.0 specification and
provides a modeling language that can be used to de-
sign, visualize, and specify the artifacts of a test sys-
tem. The meta-models presented by [12] encapsulate
a broad view of testing as a process. However, in this
paper we focus on defining a profile for the structure of
a test set for the client-side of a web application, and
leverage the resulting models to generate test scripts.

Heckel et al. [9] present an approach for testing web
applications designed with a model-driven approach.
Design patterns such as Bridge and Proxy are used to
execute the same test cases in a local and distributed
testing environment, respectively. Their methodology
takes advantage of the separation of PIMs and PSMs
on both the model-level and implementation-level. Al-
though the scope of our work does not include test
execution, the strategies in [9] could be used to design
a test harness for scripts generated by our approach.

7 Concluding Remarks

In this paper we presented a model-driven technique
for designing platform independent tests for validat-
ing web applications. Our approach leverages these
test case models for the generation of automated test
scripts, thereby addressing the problems associated
with technological migration of the web application.
An e-commerce application was used as the basis of
our study and a prototype was implemented.

Future work calls for deeper investigation into the
problem by: (1) extending the prototype to include
the technology model for Flash and Actionscript; (2)
formulating additional test scenarios for the applica-
tion used in the case study, and (3) developing a plat-
form independent model for tests that target server-
side scripting languages.

References

[1] Adobe Systems Inc. Flash 9, April 2007. http://www.

adobe.com/products/flash/ (Mar. 2008).
[2] C. Atkinson and T. Kühne. Model-driven develop-

ment: A metamodeling foundation. IEEE Softw.,
20(5):36–41, 2003.

[3] B. Beizer. Software Testing Techniques. Van Nostrand
Reinhold, New York, second edition, 1990.

[4] D. Buser, C. Ullman, J. Duckett, J. Kauffman, J. T.
Llibre, and D. Sussman. Beginning Active Server
Pages 3.0. Wrox Press Ltd., Birmingham, UK, UK,
2000.

[5] Gargoyle Software Inc. HTMLUnit 1.14, Jan 2008.
http://htmlunit.sourceforge.net/ (Mar. 2008).

[6] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter,
and G. Rothermel. An empirical study of regression
test selection techniques. ACM Trans. Softw. Eng.
Methodol., 10(2):184–208, 2001.

[7] B. Hailpern and P. Santhanam. Software debug-
ging, testing, and verification. IBM Systems Journal,
41(1):4–12, 2002.

[8] M. J. Harrold. Testing: a roadmap. In ICSE - Future
of SE Track, pages 61–72, 2000.

[9] R. Heckel and M. Lohmann. Towards model-driven
testing. Electr. Notes Theor. Comput. Sci., 82(6),
2003.

[10] IEEE Computer Society. Std 610.12-1990(r2002):
Standard glossary of software engineering terminology.
Technical report, 2002.

[11] N. Li, Q. qin Ma, J. Wu, M. zhong Jin, and C. Liu.
A framework of model-driven web application testing.
In COMPSAC (2), pages 157–162, 2006.

[12] Object Management Group. Unified modeling lan-
guage. http://www.uml.org/ (Mar. 2008).

[13] Quality Forge. TestSmith 1.40, Sept 2005. http:

//agilethinking.net/qualityforge/testsmith/

(Mar. 2008).
[14] Sebastian Bergmann. PHPUnit 3.2.15, Feb. 2008.

http://www.phpunit.de/ (Mar. 2008).
[15] S. Sendall and W. Kozaczynski. Model transforma-

tion: The heart and soul of model-driven software de-
velopment. IEEE Softw., 20(5):42–45, 2003.

[16] T. Stahl, M. Voelter, and K. Czarnecki. Model-
Driven Software Development: Technology, Engineer-
ing, Management. John Wiley & Sons, 2006.

[17] Sun Microsystems, Inc. JavaScript, December 1995.
http://java.sun.com/javascript/ (Mar. 2008).

[18] The PHP Group. PHP 5, Nov. 2007. http://www.

php.net/ (Mar. 2008).
[19] W3C. HyperText Markup Language 4, December

1999. http://www.w3.org/TR/REC-html40/ (Mar.
2008).

[20] Y. Wu and J. Offutt. Modeling and testing web ap-
plications. Technical report, GMU ISE Technical ISE-
TR-02-08, November 2002.


