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Abstract. Our research focuses on Chinese online ink matching that tries to 
match handwritten annotations with handwritten queries without attempting to 
recognize them. Previously, we proposed a semantic matching scheme that uses 
elastic matching with a dynamic programming approach based on the radical 
model of Chinese characters. By means of semantic matching, a handwritten 
annotation may also be retrieved independently of writers via typed text query, 
or stored texts can be retrieved by handwritten queries. This work concerns 
with the behavior of the previously proposed radical model in several aspects 
including character normalization, stroke segmentation, structural information, 
dynamic programming costs and schemes. Based on our study, a new radical 
model is proposed. As a result, the recall of retrieval by handwritten query 
reaches 90% for the first hit (an improvement of 20% over previous results) and 
the recall by text query reaches 80% when top 20 matches are returned. 

1 Introduction and Motivation 

In language computing, both on-line and off-line handwritten Chinese character 
recognition (HCCR) have been existing for several decades. Although online 
recognition has the advantage over offline because the temporal order of the input 
points and strokes is provided, it still has proved to be a more difficult problem than 
most people anticipated because of the variations of the way people write and a 
complex training process involved [1]. In addition, a large lexicon is to be 
incorporated due to the large number of characters (3,000 – 5,000) that are daily used. 

Instead of handwriting recognition, some research work has been conducted on 
online ink matching that tries to match a handwritten query against raw ink data 
without attempting to recognize them [4]. This technique can be used in a document 
annotating and browsing system, which enables users to search their personal notes by 
a handwritten query. Similar work and various applications also appear elsewhere 
[6,7]. 

Recently, a semantic matching method was proposed by Ma et al. [5]. By 
extending Wang’s Learning by Knowledge paradigm [8], this method focuses on the 
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semantic approach that a human learns and recognizes things and realizes such 
approach in the matching of Chinese handwritten annotations via a radical model. The 
semantic matching has several advantages over previous ink matching methods [4]. 
First, it speeds up the existing ink matching by reducing the size of the problem. For 
each query, it returns only top candidates based on the matching of radicals that are 
extracted from handwritten annotations. The traditional raw ink matching is therefore 
applied only to these top candidates instead of the entire database. Secondly, only a 
few radicals are used thus the training process is minimized. Third, it enables the user 
independent retrieval without handwriting recognition. After radicals have been 
obtained from the raw data strings of one user, another user can type in the query by 
keyboard, which can be converted to radical codes immediately.  

As reported in [5], the incorporation of a semantic model speeds up the matching 
process significantly. This is done by returning top 30 (out of 200) candidates in our 
experiments, consequently yielding a reduction of 80% in computation time. The 
drawback of semantic matching, however, is that its recall decreased from that of the 
original raw ink matching due to the low accuracy in radical extraction. The 
performance of radical extraction also affects the overall recall of retrieving 
handwritten annotations by typed text queries.  

This work is to further study the behavior of semantic model and to improve the 
online Chinese ink matching results. The proposed study resulted in a new radical 
model for the matching of Chinese handwritten annotations. The organization of this 
paper is as follows.  Section 2 describes several aspects of structural information in 
the radical model and the incorporation of such new model in radical extraction. 
Experiments using our new radical model on the handwritten annotation retrieval are 
described in Section 3. Finally, conclusions are given in Section 4.  

2 Studies on Radical Model 

The radical model for Chinese language is used to identify known radicals from each 
handwritten character and utilize these extracted radicals in the retrieval of 
handwritten annotations. This is called radical extraction. The drawback of the 
previous radical extraction is its performance. Particularly, the traditional dynamic 
programming was used without taking into account characteristics of Chinese 
language. In this section, some new aspects of Chinese radical model will be 
presented in order to improve the radical extraction performance.  

2.1   Character Normalization and Segmentation 

In this work, we employed some normalization and segmentation techniques, and 
experiments show they are adequate. 1) Character size normalization maybe possible 
once characters are successfully segmented. For simplicity, a linear normalization is 
used. 2) The incoming points, which are usually grouped into strokes based on the 
online “pen-down” and “pen-up” information, can further be segmented at local 
minima and maxima of the y values and local minima of the x values.  We call these 
breaking points “internal breaking point”. 3) Internal breaking points are further 



determined whether they are “obscure” or “obvious” depending on the degree of 
stroke change near it. If the change of strokes is relatively smooth around the internal 
breaking point, this breaking point will be considered “obscure” thus eliminated. 4) In 
cursive handwriting, sometimes two separate strokes are connected by an extra stroke, 
i.e. a connection stroke. These extra connections are not random, they are limited only 
to several types. In reality, the connection stroke  “!” may not appear in a 
handwritten character consistently. The extra connection stroke is more likely to be 
affected by the speed and direction of the stylus when the character was formed. 
Therefore, removing this extra connection stroke may reduce the effect on matching 
between two characters, one with connection strokes and the other without [3]. 

2.2   Shape Measurement 

Consider a dynamic programming at stroke level. Let C = c1c2…cm and R = r1r2…rm 
be stroke sequences for a character and a radical, respectively. The problem of radical 
extraction is to take a series of operations on sequence R, from left to right, and 
transforms it to a subsequence of C. This can be realized by a dynamic programming 
procedure, in which three basic operations on strokes are defined: (a) insert a stroke, 
(b) delete a stroke, and (c) substitute a stroke for another. Each operation is associated 
with a cost. The details of dynamic programming are described elsewhere [4]. 
    In previous implementation, stroke insertion cost and stroke deletion cost are 
simply in direct proportion to the length of the strokes. As for stroke substitution cost, 
corresponding points between two strokes are located using a separate dynamic 
programming procedure on point level, and Euclidean distance between each pair of 
two points is measured and summed. This method has two disadvantages. First, the 
dynamic programming on point level is time consuming. Secondly, the Euclidean 
distances between points can be cumulative.  

    Ideally, the stroke substitution measures the difference of two strokes, more 
precisely, the difference of their shapes. However, discrepancies exist in the current 
computation scheme. For example, as illustrated in Fig. 1, s2 is the reference stroke, 
while s1 is the stroke to be compared to s2. In the original algorithm, before the 
substitution cost is computed, each stroke is temporarily shifted so that the top-left 
corners of the bounding boxes of the strokes are aligned (Fig. 1c). Although s1 and s2 

s1

s2

(a) Stroke s1 (b) Stroke s2

(c) Stroke substitution

Fig. 1. Discrepancies of substitution cost based on Euclidean distance. 



are overall similar in shape except the beginning part, they will still yield a large 
Euclidean distance due to the deviation of the beginning part. Therefore, another 
method for measuring the shape similarity of two strokes based on tangent vectors is 
proposed.  

    Tangent vector at a point of a stroke is defined as the vector from the current point 
to its next point along the stroke. Referring to Fig. 2, we define the corresponding 
points of two strokes as follows. Let s1 be a stroke with l1 points, and s2 be a stroke 
with l2  points. Pi is the ith point within s1, the corresponding point of  Pi  on  stroke s2 
is Pj, where j = (i/l1)l2. We calculate the substitution cost of two corresponding points 
Pi  and Pj  as follows: 

where vi is the tangent vector at point Pi  and vj is the tangent vector at Pj ; θ(vi,vj) is 
the angle between the two vectors, and θ∈ [0,π ]. By summing up the point 
substitution costs for all the points along the stroke s1, we can obtain 
stroke_sub_cost(s1,s2), the substitution cost between stroke s1 and s2 as: 

where l1 is the length of stroke s1. By further normalizing, we have 

Therefore, we should approximately have 

 
    As can be seen, the new stroke substitution cost can overcome the two 
disadvantages mentioned earlier. First, by finding the corresponding points, we can 
eliminate the dynamic programming procedure in finding the pairs of corresponding 
points.  Secondly, the calculation of substitution cost using tangent vectors does not 
have cumulative effects; therefore, it is a more accurate shape measurement.  
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Fig. 2. Illustration of stroke measurement. 
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2.3   Structural Information 

To form a Chinese character, strokes within a character are arranged with some 
structural relationships (i.e. spatial relationship among strokes). Given a stroke 
sequence of a character alone without spatial relationships between the strokes, the 
character can not be determined. In this section, the stroke structural relationships 
embedded in Chinese language will be studied. 

2.3.1 Center Relationships 

 
The weighted center of a stroke can be used to indicate the position of a stroke. The 
structural information can be reflected by the spatial relationship between the two 
stroke centers. Referring to Fig. 3, let the last two matched (substituted) strokes be ri 
(the ith stroke of the reference radical) and cj (the jth  stroke of the character). The 
strokes currently under consideration for matching are rm and cn. Let pi, pj, pm, pn be 

the weighted centers for ri , cj , rm and cn, respectively. The vector mi p p  reflects the 

spatial relationship between the two strokes ri and rm. Similarly, the vector nj p p  

reflects the spatial relationship between cj and cn. Before two strokes rm and cn are 
considered for matching, their spatial relationship with the last two matched strokes 
are examined: 

where θT is a threshold, currently set to π/2.  

Rule 1: If θ( mi p p , nj p p ) ≥ θT ,  rm  and cn will not be considered for matching.  

pi pj

pm pn

ri rm cj cn

ri and cj have been matched
rm and cn are under consideration for  matching.

Fig. 3. Illustration of center relationships. 



2.3.2   Starting Point and Ending Point  

 
Another important feature that reflects the structure of strokes is the relationship 
between ending point of a stroke and starting point of the next stroke. As illustrated in 
Fig. 4, let ei and ej be the ending points of the stroke ri and cj , respectively. Let sm and 

sn be the starting points of the stroke rm and cn, respectively. Our criteria is: 

where θT is a threshold, currently set to π/2. Sometimes when two consecutive strokes 
are connected, the ending point of the first stroke happens to be the starting point of 
the second stroke, i.e. ei = sm or ej = sn. In this case, the above criteria will be ignored 
and substitution cost for matching shall be calculated. 

2.4   Categorization of Radicals 

In Chinese language, the arrangement of radicals within a character is not random. 
For example, Cheng et al [1] classified the radical combinations into seven categories 
such as up-down (UD), left-right (LR) etc. According to the analysis of Lin et al. [2], 
over 88% of frequently used Chinese characters belong to the LR and UD types. 
Based on this, we categorize radicals into two main categories. In the first category, 
radicals start the first several strokes of a character, while in the second category, 
radicals end the last several strokes.  
    The category that a radical belongs is usually known. This category information 
can be reinforced into our matching process thus a wrong matching will be given a 
higher cost to prevent it from happening. When a reference radical is matched to a 
character, penalty will be added if the matched strokes within the character do not fall 
into the expected category. This is implemented by adjusting the cost in dynamic 
programming procedure. 
    If a first category radical is matched to a character, but substitution does not start 
from the first stroke of the character, all operation cost till the first substitution occurs 
will also be added to the total cost. Similarly, if a second category radical is not 
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rm and cn  are under consideration for matching 

Fig. 4. Illustration of starting and ending point relationships. 

Rule 2: If θ( mi s e , nj s e ) ≥ θT ,  then rm  and cn will not be considered for matching. 



matched to the last few strokes of a character, all operation cost from the last 
substitution occurs till last stroke of the character will be added as penalty.  

2.5   Location Similarity 

By extending from the concept of radical categorization, Ma et al. defined radical 
profile and location similarity to mathematically represent the location of a radical 
within a character. In radical extraction scheme, location similarity gives a non-
precise information, or, it can only coarsely confines the location of the radicals [5]. 
The dynamic programming, however, provides more accurate information of how 
well radical strokes are matched. We propose to use coarse information (location 
similarity) to sift out radicals and then use the accurate information (dynamic 
programming cost) to select and extract the radicals. Once radical candidates with 
negative location similarity are removed, the remaining radicals are ranked, according 
to the costs of dynamic programming, and the top two radicals with least costs are 
chosen as the extracted radicals.  
    In the previous algorithm, the total dynamic programming cost for matching a 
reference radical to a part of a character is the sum of all operational costs (insertion, 
deletion and substitution). Therefore, for each character, when all reference radicals 
are attempted to match to it, the radicals with fewer strokes tend to yield smaller 
dynamic programming costs. To solve this, we normalize the total dynamic 
programming cost by the length of reference radical. 

2.6   Radical Code Evaluation 

After radicals are extracted for each character, a character can be represented by a 
sequence of radical codes, i.e. radical IDs. When two characters are compared, the 
matching is performed using dynamic programming on a level of radical codes. Three 
basic operations are defined: radical insertion, radical deletion and radical 
substitution, each associated with an operation cost. When evaluating extracted 
radicals, we propose utilizing the radical extraction cost, which reflects the level of 
trust for extracted radicals. In implementation, extracted radicals with higher 
confidence (lower cost) will yield lower radical substitution cost.  

3 Experiments 

Our experimental data consist of three sets: 800 handwritten annotations as reference 
database (Set I) from four subjects, each writing 200 entries, 800 same handwritten 
annotations as query database (Set II) from same four subjects (written the second 
time), and 800 typed text as query database (Set III) corresponding to each of the 800 
handwritten annotations. The experiments are conducted in three areas: the radical 
extraction, which is the core of semantic matching, the overall recall of searching 
handwritten annotations via handwritten queries and the overall recall of searching by 



typed text. Three methods are tested and compared with the traditional raw ink elastic 
matching algorithm [4]. A0 represents the original semantic matching algorithm [5]. 
A7 incorporates the new radical model in our study. A7’ is almost the same as A7, 
except that the selection of top candidates returns top 15 matches, instead of top 30 
matches.  
    Table 1 shows the total number of radicals correctly extracted from the query 
strings and database strings for algorithm A0 and A7 based on the same reference 
radical set. As can be seen, as a result of enhanced algorithm A7, the number of 
correctly extracted radicals has increased significantly in compare to the original 
algorithm. And the performance gain is approximately 2 to 3 times. 

Table 1. Comparison of radical extraction rate for algorithm A0 and A7. 

 A0 A7 
User1 data 67 142 

User1 query 58 137 
User2 data 68 131 
User2 query 51 121 
User3 data 78 148 
User3 query 61 144 
User4 data 39 109 
User4 query 44 122 

 
    Table 2 lists the recall of the first hits for searching handwriting (Set I) with 
handwritten queries (Set II). As can be seen, the recall of our new algorithm A7 has 
improved by 20% for first three users, and 8% for the 4th user. Moreover, the 
performance achieved by the new algorithm is very close to that of the traditional 
elastic matching. To compare A7 with traditional elastic matching, because A7 returns 
only top 30 candidates for final matching, it can achieve almost the same performance 
of original elastic matching while saves computation time by 80%.  In algorithm A7’, 
we further reduce the computation time in half by returning only 15 top candidates. 
As a result, the computation time is reduced by more than 90% of the original elastic 
matching while achieving comparable results. In fact, it is very interesting to see that 
for User2, the matching rate of A7 is even higher than that of the traditional elastic 
matching algorithm. The reason is that some interfering candidates for the traditional 
elastic matching algorithm has been removed from the top candidate selection 
process. 

Table 2. Comparison of recall for first hits (searching handwriting with handwritten queries). 

 A0 A7 A7’ Traditional 
Elastic matching 

User1 0.725 0.885 0.845 0.895 

User2 0.755 0.92 0.91 0.88 

User3 0.77 0.96 0.94 0.98 

User4 0.805 0.865 0.855 0.88 



Figure 5 shows the recall of searching by typed text queries. In this experiment, 
each handwritten annotation (consisting of a sequence of characters) is converted to a 
sequence of radical codes using radical extraction. When a text query is entered, it is 
immediately converted to a radical code sequence, then compared with the 
handwritten annotation database based on radical codes. In Fig. 5, bottom curves in 
each plot indicate the previous semantic matching results while the top curves stand 
for A7 results. As can be seen, the matching rate for the first hit is increased by above 
100%. Overall, the retrieval rate can reach 60% with 10 top matches returned and 
80% with 20 top matches returned. 

4 Conclusions 

Radical extraction plays an important role in semantic matching, in which semantics 
in Chinese language are incorporated early into the segmentation of handwritten 
annotations, and later being used to the matching of handwriting or retrieval of 
handwriting by typed text queries.  In this work, we carefully studied and modified 
the radical model, based on which the radical extraction rate has increased by 100% - 
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Fig. 5. The recall of searching by typed text queries. The bottom curves in each 
plot represent the result of Ao and the top curves represent the result of A7. 



200%. Several other schemes in the semantic matching network are enhanced. As a 
result, the recall of searching handwriting by handwritten queries has increased by 
20% and reached 90% for first hits, while the computation time can be reduced by 
50%. Moreover, the recall of searching by typed text queries has increased by 100% 
for the first hit and reached about 80% for top 20 matches returned.  
    The results of this work have shown great potential of semantics in the matching of 
Chinese handwritten annotations without full bloom handwritten recognition, in 
which large scale training is usually desired. To conclude, Table 3 illustrates the 
comparisons between various methods in the searching of Chinese annotations. It is 
noted that the radical model study in this work may well be extended to other 
languages or symbols and it is our future work. 

Table 3. Comparison of handwriting matching methods. 

 Speed Performance 
Handwriting 
Searchable 

Text 
Searchable 
(user independent) 

Traditional 
Elastic 
Matching 

Very slow Good Yes No 

Previous 
Semantic 
Matching 

Fast Fair Yes Promising 

New Semantic 
Matching 

Very fast Nearly good Yes Yes 
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