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Abstract

In a geometric bottleneck shortest path problem, we are given a setS of n points in the plane, and want to answ
queries of the following type: given two pointsp andq of S and a real numberL, compute (or approximate
a shortest path betweenp andq in the subgraph of the complete graph onS consisting of all edges whose lengt
are less than or equal toL. We present efficient algorithms for answering several query problems of this type
solutions are based on Euclidean minimum spanning trees, spanners, and the Delaunay triangulation. A
independent interest is the following. For any two pointsp andq of S, there is a path betweenp andq in the
Delaunay triangulation, whose length is less than or equal to 2π/(3 cos(π/6)) times the Euclidean distance|pq|
betweenp andq, and all of whose edges have length at most|pq|.
 2004 Elsevier B.V. All rights reserved.

1. Introduction

We considerbottleneck shortest pathproblems in geometric graphs. For a setS of n points in the plane
we consider queries of the following type: given any two pointsp andq of S and any real numberL,
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compute or approximate a shortest path betweenp andq in the subgraph of the complete graph onS

consisting of all edges whose lengths are less than or equal toL.
To define these problems more precisely, givenL ∈ R, let K(�L) be the graph with vertex setS,
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in which any two distinct verticesp and q are connected by an edge if and only if their Euclide
distance|pq| is less than or equal toL. Furthermore, we denote byδ(�L)(p, q) the Euclidean length o
a shortest path betweenp andq in the graphK(�L). (If there is no path betweenp andq in K(�L), then
δ(�L)(p, q) = ∞.) In this paper, we will consider the following three query problems:

(1) In abottleneck connectedness query, we are given two pointsp andq of S and a real numberL, and
have to decide if there exists a path betweenp andq in K(�L).

(2) In abottleneck shortest path length query, we are given two pointsp andq of S and a real numberL,
and have to computeδ(�L)(p, q) or anε-approximation toδ(�L)(p, q).

(3) In a bottleneck shortest path query, we are given two pointsp and q of S and a real numberL,
and have to compute a path betweenp andq in K(�L) whose length is equal to, orε-approximates
δ(�L)(p, q).

The motivation for studying these problems comes from several applications. For example, c
a scenario where there are a number of wireless devices each with a specified radius of transmL.
Two devicesp andq can communicate with each other if their distance is at mostL. If their distance is
more thanL, then they can still communicate provided that there is a sequence of wireless device
of whose distance is at mostL from its neighbor in the sequence. This is precisely a path inK(�L)(p, q).
Such a wireless network is referred to as anad-hoc wireless network[15].

One can imagine another scenario where the points ofS are airports. Then we would like to answ
queries in which we are given two airportsp andq and an airplane that can fly a distance ofL kilometers
without refueling, and have to compute, or approximate, shortest path information for this airplan
from p to q.

Observe that there are
(
n

2

)
pairs of points inS and

(
n

2

)
graphsK(�L). This implies that the numbe

of possible queries isΘ(n4). As a result, both bottleneck connectedness queries and bottleneck s
path length queries can trivially be solved inO(logn) time usingO(n4) space. Similarly, usingO(n5)

space, bottleneck shortest path queries can trivially be solved inO(�) time, where� is the number of
edges on the reported path.

1.1. Our results

Throughout the rest of this paper, we denote byL1 < L2 < · · · < L(n
2)

the sorted sequence of distanc
determined by any two distinct points ofS. (We assume for simplicity that all these distances are disti
For anyi with 1� i �

(
n

2

)
, we writeK(i) instead ofK(�Li), andδ(i)(p, q) instead ofδ(�Li)(p, q).

In Section 2, we show that, after anO(n logn)-time preprocessing, bottleneck connectedness qu
can be answered inO(1) time. The data structure is a binary tree that reflects the way in which Krus
algorithm computes the minimum spanning tree ofS.

In Section 3, we consider bottleneck shortest path length queries. By using the fact that|pq| �
δ(i)(p, q) � (n − 1)|pq| for any i for which δ(i)(p, q) is finite, we present a simple data structure
sizeO(n2 logn) that supportsε-approximate bottleneck shortest path length queries inO(logn) time,
whereε is any fixed positive real constant. A simple extension of this data structure allowsε-approximate
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bottleneck shortest path queries to be answered inO(logn + �) time, where� is the number of edges on
the reported path. This data structure usesO(n3 logn) space.

In Section 4, we give a general approach for solving the approximate bottleneck shortest path query( )
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problem. Our approach is to approximate the sequenceK(i), 1 � i � n

2 , of graphs by a collection
of O(n) sparse graphs. (A precise definition of this notion is given in Section 4.) Examples o
collections are given in Section 5. In Section 5.1, we show that the bottleneck version of the
graph [16] is an example of such a collection of sparse graphs. Using the single-sink spanners
et al. [1], we even obtain such a collection consisting of graphs of bounded degree (which are, in g
not planar). In Section 5.2, we prove that the bottleneck version of the Delaunay triangulation
such a collection, consisting of at most 3n − 6 planar graphs. The latter claim is obtained by extend
the proof of Keil and Gutwin [10] that the Delaunay triangulation has stretch factor less than or
to 2π/(3cos(π/6)). To be more precise, we prove that for any two pointsp and q of a given point
setS, there exists a path betweenp andq in the Delaunay triangulation ofS whose length is at mos
2π/(3cos(π/6)) ≈ 2.42 times the Euclidean distance|pq| betweenp andq, and all of whose edges hav
length at most|pq|. (In [10], there is no guarantee on the lengths of the individual edges on the pa

Finally, in Section 6, we give a data structure of sizeO(n5/2) that can be used to answer bottlene
shortest path queries in planar graphs inO(

√
n+ �) time, where� is the number of edges on the report

path. This data structure uses a result of Djidjev [7] to obtain a recursive separator decompositio
planar graph. By applying this result to the graphs of Section 5.2, we obtain an efficient solution
approximate bottleneck shortest path query problem.

1.2. Related results

After we wrote a preliminary version of this paper, we learned that the bottleneck connectednes
problem has been solved before, see Neto [12]. In fact, Neto’s solution is identical to ours.

To the best of our knowledge, the other types of bottleneck shortest path problems considere
paper have not been studied before. There is related work by Narasimhan and Smid [11], who c
the following problem: given a real numberL, approximate thestretch factorof the graphK(�L), which
is defined as the maximum value ofδ(�L)(p, q)/|pq| over all distinct pointsp andq of S. They present a
data structure of sizeO(logn), that can be built in roughlyO(n4/3) time, and that can be used to answ
approximate stretch factor queries (with an approximation factor of about 36) inO(log logn) time.

Our results are based ont-spanners, which are sparse graphs having stretch factor less than or
to t . A good overview of results on the problem of constructingt-spanners for a given point set can
found in the surveys by Eppstein [8] and Smid [14].

2. Bottleneck connectedness queries

As mentioned above, our solution for answering bottleneck connectedness queries appears a
Neto [12]. In order to be self-contained, however, we present this solution in this section.

Let MST(S) be the Euclidean minimum spanning tree of the point setS. We define a binary tre
T (S) as follows. If |S| = 1, thenT (S) consists of one node storing the only point ofS. Assume tha
|S| � 2, and lete be the longest edge inMST(S). Removinge partitionsMST(S) into two trees. Let
S1 and S2 be the vertex sets of these trees. ThenT (S) consists of a root that stores the edgee and
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pointers to its two children, which are roots of recursively defined treesT (S1) and T (S2). Observe
that the leaves ofT (S) are in one-to-one correspondence with the points ofS, and the internal nodes
are in one-to-one correspondence with the edges ofMST(S). ComputingT (S) according to the above
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definition corresponds to tracing back the execution of Kruskal’s minimum spanning tree algorith
It is not difficult to see thatT (S) can in fact be computed directly while running Kruskal’s algorith
The following lemma shows how the treeT (S) can be used to answer bottleneck connectedness qu

Lemma 1. Let p andq be two distinct points ofS, and letL be a real number. Lete be the edge store
at the lowest common ancestor of the leaves ofT (S) storingp andq. Thenp andq are connected by a
path in the graphK(�L) if and only if the length ofe is less than or equal toL.

Proof. Assume that the length ofe is less than or equal toL. Let u be the node ofT (S) that storese.
We may assume without loss of generality thatp is stored in the left subtree ofu (and, hence, thatq is
stored in the right subtree ofu). Let Sp andSq be the sets of points that are stored at the leaves o
left and right subtrees ofu, respectively. Letx andy be the endpoints ofe, wherex ∈ Sp andy ∈ Sq . By
the recursive definition ofT (S), the edges of the subtree ofMST(S) induced by the points inSp form
a subtree ofMST(S). All edges in this subtree are of length at most that ofe. Hence, there is a pathP1

in MST(S) betweenp andx whose edges have length at most that ofe. Similarly, there is a pathP2 in
MST(S) betweeny andq whose edges have length at most that ofe. Thus, the concatenation ofP1, e,
andP2 is a path betweenp andq whose edges have length at mostL. In particular, this path is containe
in K(�L).

To prove the converse, assume that the length ofe is larger thanL. Let S1 andS2 be the partition ofS
obtained by deletinge from MST(S). Since the unique path inMST(S) betweenp andq containse, we
have (i)p ∈ S1 andq ∈ S2, or (ii) p ∈ S2 andq ∈ S1. By a well-known property of minimum spannin
trees, the length ofe is equal to the minimum distance between any point ofS1 and any point ofS2. If
there is a path inK(�L) betweenp andq, then this path must contain an edge between some poi
S1 and some point ofS2. Since the length of any such edge is larger thanL, it follows that such a path
cannot exist. �

Lemma 1 implies that a bottleneck connectedness query can be answered by answering
common ancestor query in the treeT (S). This tree can be computed inO(n logn) time, by first computing
the Delaunay triangulationDT(S) of S (see [6]), and then running Kruskal’s algorithm onDT(S)

(see [5]). GivenT (S), we preprocess it inO(n) time, so that lowest common ancestor queries ca
answered inO(1) time. (See Harel and Tarjan [9], Schieber and Vishkin [13], or Bender and Fa
Colton [2].) We have proved the following result.

Theorem 2. We can preprocess a set ofn points in the plane inO(n logn) time into a data structure o
sizeO(n), such that bottleneck connectedness queries can be answered inO(1) time.

3. Bottleneck shortest path length queries

Recall the sequenceL1 < L2 < · · · < L(n
2)

of distances determined by any two distinct points of

point setS. Also, recall that, for 1� i �
(
n

2

)
, K(i) denotes the graphK(�Li), i.e., the graph with verte
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setS in which any two distinct pointsp andq are connected by an edge if and only if|pq| � Li . We
defineK(0) to be the graph(S,∅). Finally, recall that we writeδ(i)(p, q) instead ofδ(�Li)(p, q).

Let ε be any fixed real constant with 0< ε � 3. In this section, we show how to preprocess the points of
ries
d in

l
st

in

th
of

e

S into a data structure of sizeO(n2 logn), such thatε-approximate bottleneck shortest path length que
can be answered inO(logn) time. First we show that a query of the following type can be answere
O(log logn) time using a data structure of sizeO(n2 logn): given two pointsp andq of S and an indexi
with 0� i �

(
n

2

)
, compute anε-approximation to the lengthδ(i)(p, q) of a shortest path betweenp andq

in the graphK(i), i.e., a real number∆, such thatδ(i)(p, q) � ∆ � (1+ε) ·δ(i)(p, q). Using an additiona
amount ofO(n2) space, we will extend this solution to solve generalε-approximate bottleneck shorte
path length queries (in which an arbitrary real numberL is part of the query, rather than the distanceLi)
in O(logn) time. Our solution is based on an approach by Narasimhan and Smid [11].

We fix two distinct pointsp andq of S, and observe that

|pq| = δ
(
(n

2)
)
(p, q) � · · · � δ(2)(p, q) � δ(1)(p, q) � δ(0)(p, q) = ∞.

Let k := min{i � 0: δ(i)(p, q) < ∞}. Sincep andq are not connected by a path in the graphK(k−1), we
have|pq| > Lk−1 and, hence,|pq| � Lk. On the other hand, sincep andq are connected by a path
K(k), and since any such path contains at mostn − 1 edges, we have

δ(k)(p, q) � (n − 1)Lk � (n − 1)|pq|.
Hence, for alli with k � i �

(
n

2

)
, we have

|pq| � δ(i)(p, q) � (n − 1)|pq|.
Based on this observation, we partition the set{k, k + 1, . . . ,

(
n

2

)} into O(logn) subsets, in the following
way. For any integerj , let

I j
pq :=

{
i: k � i �

(
n

2

)
and(1+ ε/3)j |pq| � δ(i)(p, q) < (1+ ε/3)j+1|pq|

}
.

Clearly,I j
pq can only be non-empty if 0� j � log1+ε/3(n−1). We store for each integerj whereI

j
pq �= ∅,

(1) a value�j
pq , which is the smallest element of the setI

j
pq , and

(2) a value∆(j)(p, q) which is equal to(1+ ε/3) · δ(�
j
pq)(p, q).

Let us see how we can use this information to answer anε-approximate bottleneck shortest pa
length query forp andq. Let i be an integer with 0� i �

(
n

2

)
. We start by showing how the value

δ(i)(p, q) can be approximated. First compute the integerj for which �
j
pq � i < �

j−1
pq . Then return the

value∆ := ∆(j)(p, q).
To prove the correctness of this query algorithm, first observe thati ∈ I

j
pq . This implies that

δ(i)(p, q) < (1 + ε/3)j+1|pq|. Similarly, since�
j
pq ∈ I

j
pq , we haveδ(�

j
pq)(p, q) � (1 + ε/3)j |pq|. By

combining these two inequalities, it follows thatδ(i)(p, q) < ∆. In a completely symmetric way, w
obtain

∆ = (1+ ε/3) · δ(�
j
pq)(p, q) < (1+ ε/3)j+2|pq| � (1+ ε/3)2 · δ(i)(p, q).

Since 0< ε � 3, we have(1+ ε/3)2 � 1+ ε. Therefore,∆ < (1+ ε) · δ(i)(p, q). This proves that∆ is
anε-approximation to the length of a shortest path betweenp andq in the graphK(i).
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By storing the values�j
pq in sorted order in an array, theε-approximation toδ(i)(p, q) can be computed

in O(log logn) time.
We store this information for each pair of points. Additionally, we store the sequenceL1 < L2 <

. It

ll
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ries
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roblem.
e

f
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st path
· · · < L(n
2)

of distances. Given two query pointsp andq of S and an arbitrary query valueL ∈ R, we first

use binary search to find the indexi for which Li � L < Li+1. Sinceδ(�L)(p, q) = δ(i)(p, q), we then
answer the query as described above.

The amount of space used by this solution isO(n2 logn), because we storeO(logn) values for each
pair of points ofS. Furthermore, the query time isO(logn). Let us consider the preprocessing time
clearly suffices to solve the all-pairs-shortest-path problem for each graphK(i), 0 � i �

(
n

2

)
. Using the

Floyd-Warshall algorithm, one such problem can be solved inO(n3) time; see [5]. Hence, the overa
preprocessing time isO(n5).

If we store with each value∆(j)(p, q) a path inK(�
j
pq) of length δ(�

j
pq)(p, q), then we can use thi

additional information to answer approximate bottleneck shortest path queries: letL, i and j be as

above. Then the pathP stored with∆(j)(p, q) has lengthδ := δ(�
j
pq)(p, q) satisfyingδ(i)(p, q) � δ �

(1+ ε/3)δ(i)(p, q). (Observe thatP is a path inK(i).) We have proved the following result.

Theorem 3. For any real constantε > 0, we can preprocess a set ofn points in the plane inO(n5) time
into

(1) a data structure of sizeO(n2 logn), such thatε-approximate bottleneck shortest path length que
can be answered inO(logn) time,

(2) a data structure of sizeO(n3 logn), such thatε-approximate bottleneck shortest path queries can
answered inO(logn + �) time, where� is the number of edges on the reported path.

4. The bottleneck shortest path problem

In this section, we introduce a general approach for the approximate bottleneck shortest path p
The idea is to approximate the sequenceK(i), 1 � i �

(
n

2

)
, of graphs by a “small” collection of spars

graphs, i.e., with “few” edges. This notion is formalized in the definition below. For any graphG and any
two verticesp andq, we denote the length of a shortest path inG betweenp andq by δ(G)(p, q).

Definition 1. Let S be a set ofn points in the plane, lett � 1 be a real number, letJ be a subset o
{1,2, . . . ,

(
n

2

)} and, for eachj ∈ J , let G(j) be a graph with vertex setS all of whose edges have leng
at mostLj . We say that the collectionG = {G(j): j ∈ J } is acollective bottleneckt-spannerof S, if the
following holds: for anyi with 1� i �

(
n

2

)
, there is an indexj ∈ J , such thatj � i and

δ(G(j))(p, q) � t · δ(i)(p, q)

holds for all pairs of pointsp andq in S.

The purpose of this definition should be clear: in order to approximate a bottleneck shorte
betweenp andq in the possibly dense graphK(i), we compute a shortest pathP betweenp andq in
the graphG(j). Observe that, sincej � i, P is a path inK(i) andδ(i)(p, q) � δ(G(j))(p, q). Hence,P is a
t-approximate shortest path betweenp andq in K(i).
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The goal is to define the collectionG in such a way that shortest path queries on them can be answered
efficiently. Further goals are to minimize (i) the value oft , (ii) the size of the index setJ , and (iii) the
number of edges in the graphs inG. The following lemma gives a lower bound on the size ofJ .

g
n

e

wn

th

f

Lemma 4. The size of the index setJ in Definition1 is greater than or equal ton − 1.

Proof. Let (p, q) be any edge of the Euclidean minimum spanning treeMST(S) of S, and let i be
the index such that|pq| = Li . Observe thatδ(i)(p, q) = |pq| < ∞. We claim thati ∈ J . To prove
this, assume thati /∈ J . By Definition 1, there is an indexj ∈ J such thatj < i and δ(G(j))(p, q) �
t ·δ(i)(p, q) < ∞. In particular, we haveδ(j)(p, q) < ∞. By well-known properties of minimum spannin
trees (see also the proof of Lemma 1), however, we haveδ(j)(p, q) = ∞, contradicting our assumptio
that i /∈ J . Hence, each of then − 1 edges ofMST(S) contributes an index toJ . �

In the next section, we discuss several constructions of collective bottleneck spannersG of S.

5. Examples of collective bottleneck spanners

5.1. The Yao-graph

In this section, we consider theYao-graph[16], which is also known as thegeographic neighborhood
graph. Let S be a set ofn points in the plane, and let 0< θ < π/4 be an angle such that 2π/θ is an
integer. We partition the plane into a collectionC of 2π/θ cones of angleθ , all having their apex at th
origin. For any pointp ∈ S and any coneC ∈ C, let Cp be the cone obtained by translatingC by the
vector �p. (Hence,Cp hasp as its apex.)

The Yao-graphY (S, θ) hasS as its vertex set. Letp be any point ofS, letC be any cone ofC such that
Cp ∩ (S \ {p}) �= ∅, and letqp be the point ofCp ∩ (S \ {p}) whose Euclidean distance top is minimum.
The edge set ofY (S, θ) consists of all edges(p, qp) obtained in this way. Chang et al. [4] have sho
how to construct the graphY (S, θ) in O(n logn) time.

Given two pointsp andq, we construct a path betweenp andq in Y (S, θ) in the following way.
If p = q, then there is nothing to do. Assume thatp �= q. Let C be the cone inC such thatq ∈ Cp.
The graphY (S, θ) contains an edge(p, r), wherer ∈ Cp and |pr| � |pq|. We follow this edge, and
recursively construct a path betweenr andq. In the following two lemmas, we will analyze the pa
constructed by this algorithm.

Lemma 5. Letp, q andr be as above. We have

|rq| � |pq| − (cosθ − sinθ)|pr|.
Proof. Letα be the angle between the line segmentspq andpr , and letr ′ be the orthogonal projection o
r ontopq; see Fig. 1. Observe thatα � θ . We have|rr ′| = |pr|sinα � |pr|sinθ and|pr ′| = |pr|cosα �
|pr|cosθ . It follows that

|rq| � |rr ′| + |r ′q| = |rr ′| + |pq| − |pr ′| � |pr|sinθ + |pq| − |pr|cosθ,

proving the lemma. �
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Fig. 1. Illustrating the proof of Lemma 5.

Lemma 6. Let t = 1/(cosθ − sinθ), and letp andq be any two points ofS. There is a path betweenp
andq in the Yao-graphY (S, θ) whose length is less than or equal tot|pq|, and all of whose edges hav
length at most|pq|.

Proof. The proof is by induction on the rank of|pq| in the sequence of all
(
n

2

)
distances determine

by pairs of points inS. If p andq form a closest pair inS, then the lemma holds becausep andq are
connected by an edge inY (S, θ).

We now assume thatp and q do not form a closest pair. Furthermore, we assume that the le
holds for all pairs of points whose distance is less than|pq|. Let C be the cone inC such thatq ∈ Cp,
and let(p, r) be the edge inY (S, θ) with r ∈ Cp. If r = q, then(p, q) is an edge inY (S, θ) and the
lemma holds. So assume thatr �= q. Observe that|pr| � |pq|. Since 0< θ < π/4, Lemma 5 implies tha
|rq| < |pq|. Therefore, by the induction hypothesis, there is a pathP betweenr andq in Y (S, θ) whose
length is less than or equal tot|rq|, and all of whose edges have length at most|rq|. Let P ′ be the path
obtained by concatenating(p, r) andP . Then the length of each edge ofP ′ is less than or equal to|pq|.
By Lemma 5, we have

|P ′| = |pr| + |P | � |pr| + t|rq| � |pr| + t|pq| − |pr| = t|pq|.
This completes the proof.�

Let ε > 0 be a real constant. We choose a constant 0< θ < π/4 such that 1/(cosθ −sinθ) � 1+ε and
consider the graphY (S, θ). Letm denote the number of edges in this graph. Thenm � (2π/θ)n = O(n).
Let j1 < j2 < · · · < jm be the indices such thatLj1 < Lj2 < · · · < Ljm

are the edge lengths ofY (S, θ).
For anyk with 1 � k � m, we denote byY (jk) the graph with vertex setS consisting of all edges o
Y (S, θ) whose lengths are at mostLjk

.
Let J := {jk: 1 � k � m}. We claim thatG := {Y (jk): 1 � k � m} is a collective bottleneck(1 + ε)-

spanner ofS. To prove this claim, consider any two pointsp andq of S and any integeri with 1� i �
(
n

2

)
.

We may assume thatp andq are connected by a path in the graphK(i). Let k be the integer such tha
Ljk

� Li < Ljk+1, and letδ be the length of a shortest path betweenp andq in the graphY (jk). It is clear
thatjk � i. It remains to show that

δ � (1+ ε) · δ(i)(p, q). (1)

Consider a shortest pathP betweenp andq in K(i). Hence, the length ofP is equal toδ(i)(p, q). Consider
an arbitrary edge(x, y) on P . Observe that|xy| � Li . By Lemma 6, there is a pathPxy betweenx and
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y in the graphY (S, θ) whose length is at most(1+ ε)|xy| and all of whose edges are of length at most
|xy|. SincePxy is a path inY (S, θ), each of its edges has in fact length at mostLjk

. That is,Pxy is a path
in the graphY (jk). By concatenating the pathsPxy , over all edges(x, y) of P , we obtain a path between
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p andq in Y (jk) having length at most(1+ ε) times the length ofP . This proves (1). We have shown th
following theorem.

Theorem 7. LetS be a set ofn points in the plane, and letε > 0 be a constant. There exists a collecti
bottleneck(1 + ε)-spanner ofS, consisting ofO(n) graphs. Each graph in this collection hasO(n)

edges.

If the setS consists of the centerp of a circle andn − 1 points on the boundary of this circle, then t
degree ofp in Y (S, θ) is n − 1. Therefore, the bottleneck graphs in the collectionG are not of bounded
degree.

Arya et al. [1] have shown how to combine the Yao-graph with so-calledsingle-sink spannersto obtain
a (1+ ε)-spanner of bounded degree for any point setS. In the same way as in Lemma 6, it can be sho
that this spanner has the property that any two pointsp andq of S are connected by a path whose len
is less than or equal to(1 + ε)|pq|, and all of whose edges have length at most|pq|. This implies the
following result.

Theorem 8. LetS be a set ofn points in the plane, and letε > 0 be a constant. There exists a collecti
bottleneck(1+ ε)-spanner ofS, consisting ofO(n) graphs. The maximum degree of each graph in
collection is bounded by a constant.

Even though the bottleneck graphs in Theorems 7 and 8 are small in size, they are diffi
preprocess for shortest path queries. In the next section, we will see how to obtain a collective bo
spanner consisting ofO(n) planar graphs. As we will show in Section 6, planar graphs have the adva
that shortest path queries can be answered efficiently.

5.2. The Delaunay triangulation

Let S be a set ofn points in the plane. We assume for simplicity that these points are in ge
position, i.e., no three points ofS are collinear, and no four points ofS are cocircular. LetDT(S) be
the Delaunay triangulation ofS, see [6]. We will show that for any two pointsp and q of S, there
exists a pathP betweenp and q in DT(S) such that (i) the length|P | of P is less than or equal t
2π/(3cos(π/6)) · |pq|, and (ii) no edge onP has length more than|pq|. We will prove this claim by
modifying Keil and Gutwin’s proof of the fact thatDT(S) is a(2π/(3cos(π/6))-spanner ofS; see [10].
(The proof in [10] may produce a path betweenp andq that contains an edge whose length is gre
than|pq|.)

We start by stating the main lemma that is needed for our proof. We remark that this lemma is
to [10, Lemma 1].

Before we can state the main lemma, we have to define the notion of upper angle. Letp andq be two
distinct points ofS, and letL be the line throughp andq. Assume thatL is not vertical and thatp is to
the left ofq. Let L+ andL− be the open halfplanes consisting of all points that are above and belL,
respectively. LetC be any circle that hasp andq on its perimeter, and letm be the center ofC.
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Fig. 2. Illustrating the assumptions in Lemma 9. There are two cases depending on whether 0< θ � π or π < θ < 2π . There
are no points ofS in the part of the interior ofC that is below the lineL.

Assume that no point ofS is in the intersection ofL− and the interior ofC. Then theupper angleof p

andq is defined as the angle by which we have to rotate the line segmentmp in clockwise order so tha
it coincides withmq. See Fig. 2 for an illustration.

Now assume that no point ofS is in the intersection ofL+ and the interior ofC. Then theupper angle
of p andq is defined as the angle by which we have to rotate the line segmentmp in counterclockwise
order so that it coincides withmq.

Lemma 9. Let p andq be two distinct points ofS, and letL be the line throughp andq. LetC be any
circle that hasp and q on its perimeter, and letr and m be the radius and center ofC, respectively.
Assume that no point ofS is in the intersection ofL− and the interior ofC, or no point ofS is in the
intersection ofL+ and the interior ofC. Letθ be the upper angle ofp andq. Then there exists a pathP
in DT(S) betweenp andq such that

(1) the length ofP is less than or equal torθ , and
(2) the length of each edge onP is less than or equal to|pq|.

5.2.1. Proof of Lemma 9
We will assume, for ease of presentation, thatp andq are both on thex-axis,p is to the left ofq, and

no point ofS is in the part of the interior ofC that is below thex-axis.
If (p, q) is an edge of the convex hull ofS, then it is also an edge ofDT(S). In this case, Lemma

clearly holds. So we assume from now on that(p, q) is not a convex hull edge.
Our goal is to prove Lemma 9 by induction on the angleθ . In order to do this, we will normalize th

circleC so that, over all possible pairsp andq of points inS, there are only a finite number of normaliz
circles.

To normalizeC, we move the centerm of C downwards along the bisector ofp andq; during this
movement, we changeC so that it always contains the pointsp andq. We stop this process at the mome
when the part ofC below thex-axis hits a point, sayz, of S. Observe thatz exists, because otherwis
(p, q) would be an edge of the convex hull ofS. Observe that during the movement, the radiusr and the
upper angleθ of C change. It is easy to see, however, that the productrθ decreases. Hence, it suffices
prove Lemma 9 for the new circleC, which we will refer to as anormalizedcircle.
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Fig. 3. Illustrating the base case. The upper angle� pm1t is equal toθ1.

Hence, from now on,C is a normalized circle through the pointsp, q andz, wherez is below the
x-axis. This circle has centerm and radiusr . There are no points ofS in the part of the interior ofC that
is below thex-axis.

Each pair of points defines at most two normalized circles (depending on whether the circle is
above or below the line through the two points). Therefore, there areO(n2) normalized circles. We
proceed by induction on the rank of the upper anglesθ of these circles.

For the base case, assume that the angleθ of C is minimum over all normalized circles. We claim th
(p, q) is an edge ofDT(S), which will prove that Lemma 9 holds for the pointsp andq. To prove the
claim, assume that(p, q) is not an edge ofDT(S). Then, by the definition of the Delaunay triangulatio
the part of the interior ofC that is above thex-axis contains at least one point ofS.

For any pointt of S that is in the interior ofC, let Dt be the circle throughp, q and t . Choose the
point t such that no point ofS lies in the part of the interior ofDt that is above thex-axis. (Observe tha
such at must exist.) We will writeD instead ofDt . By symmetry, we may assume thatt is to the left
of m; see Fig. 3.

Let C1 be the circle throughp and t whose center lies on the segmentpm. We denote the center o
C1 by m1. By the definition ofD, no point ofS lies in the part of the interior ofC1 that is below the
line throughp andt . Let θ1 be the upper angle� pm1t . Observe that (i) the ray fromm1 in direction−−→mq

intersects thex-axis in a point ofC1, and (ii) t is above this ray. This implies thatθ1 < θ .
If C1 is a normalized circle, then we have obtained a contradiction to our assumption thatθ is the

smallest angle. In general, however,C1 will not be a normalized circle. Therefore, we proceed as follo
We move the centerm1 of C1 down along the bisector ofp andt ; during this movement, we changeC1

so that it always containsp and t . We stop at the moment when the part ofC1 that is belowpt hits a
point, sayx, of S. (Observe thatx exists: it is equal toz or a point ofS that is hit upon earlier.) The ne
circle C ′

1 is a normalized circle, and its upper angleθ ′
1 is less than or equal to the upper angleθ1 of the

initial circle C1. Hence,θ ′
1 < θ , which is a contradiction. This completes the base case.

For the inductive step, we again consider the normalized circleC with upper angleθ = � pmq. We
assume thatθ is not the minimum angle. Furthermore, we assume that Lemma 9 holds for all norm
circles whose upper angles are less thanθ . If (p, q) is an edge ofDT(S), then Lemma 9 holds for th
circle C. So we may assume that(p, q) is not an edge ofDT(S). We define the pointt and the circle
D as in the base case. We may assume without loss of generality thatt is to the left ofm. Observe tha
θ ∈ (0,2π). We will treat the cases 0< θ � π andπ < θ < 2π separately. Before proceeding, we g
some constructions that will be used in the sequel. (Refer to Figs. 4 and 5.)
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Let C1 be the circle throughp andt whose center lies on the segmentpm. We denote the center and
radius ofC1 by m1 andr1, respectively. Similarly, letC2 be the circle throught andq whose center lies
on the segmentqm. We denote the center and radius ofC2 by m2 andr2, respectively. By our choice of

l base

re
at
D, no point ofS lies in the part of the interior ofC1 that is below the line throughp andt , and no point
of S lies in the part of the interior ofC2 that is below the line throughq andt .

Consider the two intersection points betweenC1 and thex-axis. One of these intersection points isp;
we denote the other one bya1. Similarly, leta2 be the intersection point betweenC2 and thex-axis that
is not equal toq.

Let C3 be the circle througha1 anda2 whose center is the intersection between the line throughm1

anda1 and the line throughm2 anda2. We denote the center and radius ofC3 by m3 andr3, respectively.
We observe that the following four triangles are all similar isosceles triangles with two equa

angles, which we will denote byφ: �(p,m,q), �(p,m1, a1), �(a2,m2, q), and�(a2,m3, a1).
As in the base case, both upper anglesθ1 := � pm1t and θ2 := � tm2q are less thanθ . We use the

same construction as in the base case to movem1 down along the bisector ofp andt (changingC1 such
that it always containsp and t) until the part ofC1 that is belowpt hits a point ofS. Let C ′

1 be the
resulting circle, and letθ ′

1 and r ′
1 be its upper angle and radius, respectively. ThenC ′

1 is a normalized
circle, r ′

1θ
′
1 � r1θ1, and no point ofS is in the part of the interior ofC ′

1 that is below the line throughp
and t . Hence, by the induction hypothesis, there is a pathP1 betweenp and t in DT(S), having length
|P1| � r ′

1θ
′
1 � r1θ1, and all of whose edges have length at most|pt|. In a completely symmetric way, the

is a pathP2 betweent andq in DT(S), having length|P2| � r2θ2, and all of whose edges have length
most|tq|.

Fig. 4. Illustrating Case 1.
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Case 1. 0< θ � π ; see Fig. 4.
Let P be the concatenation ofP1 andP2. Then

|P | = |P | + |P | � r θ + r θ = r θ + r θ − (
r (θ − θ ) + r (θ − θ )

)
.

t

1 2 1 1 2 2 1 2 1 1 2 2

Since 0< θ � π , a2 is to the left ofa1. Observe that

(1) the length of the upper arc ofC3 betweena2 anda1 is equal tor3θ ,
(2) the length of the upper arc ofC1 betweent anda1 is equal tor1(θ − θ1), and
(3) the length of the upper arc ofC2 betweena2 andt is equal tor2(θ − θ2).

Since the part ofC3 above thex-axis is convex and contained in both parts of the interiors ofC1 andC2

that are above thex-axis, we have

r1(θ − θ1) + r2(θ − θ2) � r3θ.

Hence,

|P | � (r1 + r2 − r3)θ =
( |pa1|

2cosφ
+ |a2q|

2cosφ
− |a2a1|

2cosφ

)
θ = |pq|

2cosφ
θ = rθ.

Since 0< θ � π , we have|pt| � |pq| and|tq| � |pq|. Recall that all edges onP1 have length at mos
|pt| and all edges onP2 have length at most|tq|. Therefore, the length of each edge onP is less than or
equal to|pq|.
Case 2a. π < θ < 2π andt is inside the circle havingp andq as diameter; see Fig. 5.

Let P be the concatenation ofP1 andP2. Recall thatθ1 < θ andθ2 < θ . We have

|P | = |P1| + |P2| � r1θ1 + r2θ2 � (r1 + r2)θ.

If a2 is to the right ofa1, then

|P | � (r1 + r2)θ =
( |pa1|

2cosφ
+ |a2q|

2cosφ

)
θ � |pq|

2cosφ
θ = rθ.

If a2 is to the left ofa1, then|P | � rθ by the same argument as in Case 1.
Sincet is contained in the circle withp andq as diameter, we have|pt| � |pq| and|tq| � |pq|. As a

result, the length of each edge onP is less than or equal to|pq|.

Fig. 5. Illustrating Case 2a. The circleC3 hasm3 as its center.
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Fig. 6. Illustrating Case 2b. The upper angle� pm4z is equal toθ4; the upper angle� zm5q is equal toθ5.

Case 2b. π < θ < 2π andt is outside the circleR with p andq as diameter; see Fig. 6.
Let C4 be the circle throughp andz whose center is on thex-axis. We denote the center and rad

of C4 by m4 andr4, respectively. Letθ4 be the upper angle� pm4z. (Recall our definition of upper ang
given just before Lemma 9.) Similarly, letC5 be the circle throughq andz whose center is on thex-axis.
We denote the center and radius ofC5 by m5 andr5, respectively. Letθ5 be the upper angle� zm5q.

Observe that no point ofS is contained in the part of the interior ofR that is above thex-axis.
Therefore, there is no point ofS in the part of the interior ofC4 that is above the line throughp andz.
Similarly, there is no point ofS in the part of the interior ofC5 that is above the line throughq andz.
We also observe that bothθ4 andθ5 are less thanπ and, hence, less thanθ . After normalizingC4 andC5,
in the same way as we did before, we can apply the induction hypothesis. Hence, there exists aP4

betweenp andz in DT(S), having length|P4| � r4θ4, and all of whose edges have length at mostpz.
Similarly, there exists a pathP5 betweenz andq in DT(S), having length|P5| � r5θ5, and all of whose
edges have length at mostzq. Let P be the concatenation ofP4 andP5. Then

|P | = |P4| + |P5| � r4θ4 + r5θ5 � (r4 + r5)θ.

Sincez is contained inR, bothr4 andr5 are less than or equal to|pq|/2. Therefore, we have|P | � rθ .
Finally, since both|pz| and|zq| are less than|pq| (this again follows from the fact thatz is contained

in R), the length of each edge onP is less than or equal to|pq|. This concludes the proof of Lemma 9

5.2.2. A collective bottleneck planar spanner
Using Lemma 9, we obtain the theorem below. We omit the proof, because it is basically the s

the proof of [10, Theorem 1]. Replacing [10, Lemma 1] by Lemma 9 guarantees that the length o
edge on the path is less than or equal to|pq|.
Theorem 10. Let S be a set ofn points in the plane, let DT(S) be the Delaunay triangulation ofS, and
let p andq be two points ofS. There is a path betweenp andq in DT(S) whose length is less than o
equal to2π/(3cos(π/6)) · |pq| and all of whose edges have length at most|pq|.

We proceed as in Section 5.1. Letm be the number of edges ofDT(S), and letj1 < j2 < · · · < jm

be the indices such thatLj1 < Lj2 < · · · < Ljm
are the edge lengths ofDT(S). SinceDT(S) is a planar
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graph, we havem � 3n−6. For anyk with 1 � k � m, letDT(jk) be the graph with vertex setS consisting
of all edges ofDT(S) whose lengths are at mostLjk

. As in Section 5.1, we obtain the following result.
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Corollary 11. LetS be a set ofn points in the plane. The collectionG := {DT(jk): 1 � k � m} of planar
graphs constitutes a collective bottleneckt-spanner ofS, for t = 2π/(3cos(π/6)). The number of graph
in this collection is less than or equal to3n − 6.

6. Bottleneck shortest path queries in planar graphs

In this section, we address the following problem: given a setS of n points in the plane and a plan
graphG with vertex setS, build a data structure that can answer bottleneck queries of the following
given two pointsp andq of S and a real numberL, decide whether there is a path betweenp andq in G

all of whose edges are of length at mostL, and report the shortest such path if such a path exists.
Using the results of Section 2, existence queries can be answered inO(1) time. We will present a dat

structure of sizeO(n5/2) that allows the shortest path whose edges have lengths at mostL to be reported
in O(

√
n + �) time, where� is the number of edges on the reported path.

Our solution uses the following result, due to Djidjev [7], for answering general shortest path q
in the entire planar graphG.

Lemma 12 [7]. LetS be a set ofn points in the plane and letG be a planar graph with vertex setS. We
can preprocessG in O(n3/2) time into a data structure of sizeO(n3/2) such that the shortest path inG
between any two query points can be computed inO(

√
n + �) time, where� is the number of edges o

the reported path.

Consider again the planar graphG with vertex setS. Let e1, e2, . . . , em be them edges ofG, sorted by
their lengths. For anyi with 1� i � m, let |ei| denote the Euclidean length of edgeei , and letG(i) be the
graph consisting of all edges ofG having length at most|ei|.

In order to answer bottleneck shortest path queries inG, we build the shortest path data structure
Lemma 12 for each of the graphsG(i). We also compute a labeling of the vertices of eachG(i) so that
two vertices have the same label if and only if they are in the same connected component ofG(i). The
following observation is obvious.

Observation 1. Let p andq be two points ofS, let L be a real number, and leti be the integer such tha
|ei | � L < |ei+1|.

(1) There is a path betweenp andq in G all of whose edges have length at mostL if and only if p and
q are in the same connected component ofG(i).

(2) The shortest path betweenp andq in G(i) is the same as the shortest path betweenp andq in G all
of whose edges have length at mostL.

Thus, we build a binary search treeT over the sorted edge set ofG. In O(logn) time, we can find
the indexi such that|ei | � L < |ei+1|. Given that every node ofT stores a pointer to the correspondi
graphG(i) and the shortest path data structure forG(i), it now takes constant time to retrieve the tw
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labels of the verticesp andq in G(i), and compare them to decide whetherp andq are in the same
connected component ofG(i). If they are, we query the shortest path data structure to report the shortest
path. Using the data structure of Lemma 12, this takesO(

√
n + �) time, where� is the number of edges
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The binary search treeT has sizeO(n). SinceG is planar, the numberm of its edges is less tha

or equal to 3n − 6. Hence, we buildO(n) shortest path data structures of sizeO(n3/2) each, one pe
graphG(i). Each of these data structures can be constructed inO(n3/2) time. Hence, the total preproc
essing time and amount of space used by our data structure isO(n5/2). Thus, we obtain the following
theorem.

Theorem 13. Let S be a set ofn points in the plane and letG be a planar graph with vertex setS. We
can preprocessG in O(n5/2) time into a data structure of sizeO(n5/2) such that the following type o
bottleneck queries can be answered: given any two pointsp andq of S and any real numberL, decide
whether there is a path betweenp andq in G all of whose edges have length at mostL. If such a path
exists, report the shortest such path. The decision part of the query takesO(1) time, whereas reporting
the shortest path takesO(

√
n + �) time, where� is the number of edges on the reported path.

If we combine Theorems 10 and 13, then we obtain the following result.

Theorem 14. Let S be a set ofn points in the plane. We can preprocessS in O(n5/2) time into
a data structure of sizeO(n5/2) such that t-approximate bottleneck shortest path queries, fort =
2π/(3cos(π/6)), can be answered inO(

√
n + �) time, where� is the number of edges on the report

path.

7. Conclusion

We have presented efficient algorithms to solve a variety of geometric bottleneck problems.
case, we show how to preprocess the data so that (approximate or exact) shortest path querie
answered efficiently. In solving these problems, we use an array of tools such as minimum sp
trees, spanners, and the Delaunay triangulation.

The amount of preprocessing and space used in Theorems 3, 13 and 14, are very high. It is
problem whether these bounds can be improved.

The graphs in the collective bottleneck spanner of Theorem 8 are of bounded degree, but they
planar. On the other hand, the graphs in the collective bottleneck spanner of Corollary 11 are
but their degree may be unbounded. We leave it as an open problem to decide whether there
collective bottleneck spanner consisting of planar graphs, all having bounded degree. Observe t
et al. [3] have shown that a planar spanner of bounded degree can be computed for any point
spanner, however, does not have the property that each edge on a spanner path between two pop and
q has length at most|pq|. Therefore, it is not clear if this result can be used in our context.
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