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Abstract

In a geometric bottleneck shortest path problem, we are givenSacdet points in the plane, and want to answer
queries of the following type: given two poingsandg of S and a real numbek, compute (or approximate)
a shortest path betwegnandg in the subgraph of the complete graph$®nonsisting of all edges whose lengths
are less than or equal fo. We present efficient algorithms for answering several query problems of this type. Our
solutions are based on Euclidean minimum spanning trees, spanners, and the Delaunay triangulation. A result of
independent interest is the following. For any two poiptandg of S, there is a path betweem andg in the
Delaunay triangulation, whose length is less than or equaki@@cos/6)) times the Euclidean distan¢gq |
betweenp andg, and all of whose edges have length at mpst.
0 2004 Elsevier B.V. All rights reserved.

1. Introduction

We considebottleneck shortest pafiroblems in geometric graphs. For a Setf n points in the plane,
we consider queries of the following type: given any two pointandg of S and any real numbet,
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compute or approximate a shortest path betweemdq in the subgraph of the complete graph $n
consisting of all edges whose lengths are less than or equal to

To define these problems more precisely, giver R, let KSP be the graph with vertex se,
in which any two distinct verticep and g are connected by an edge if and only if their Euclidean
distance|pq| is less than or equal th. Furthermore, we denote BY<")(p, g) the Euclidean length of
a shortest path betwegnandg in the graphk (S2)_ (If there is no path betweem andg in K(SP), then
§SB(p, q) = 00.) In this paper, we will consider the following three query problems:

(1) In abottleneck connectedness queme are given two pointp andg of S and a real numbet, and
have to decide if there exists a path betwgeandq in K (<P,

(2) In abottleneck shortest path length quene are given two pointp andg of S and a real numbek,
and have to compu<? (p, ¢) or anes-approximation tas‘S?(p, q).

(3) In abottleneck shortest path querwe are given two pointp andg of S and a real number.,
and have to compute a path betwgeandgq in K ‘S whose length is equal to, arapproximates,

8P (p, q).

The motivation for studying these problems comes from several applications. For example, consider
a scenario where there are a number of wireless devices each with a specified radius of trangmission
Two devicesp andg can communicate with each other if their distance is at most their distance is
more thanl, then they can still communicate provided that there is a sequence of wireless devices each
of whose distance is at mostfrom its neighbor in the sequence. This is precisely a pati‘® (p, q).

Such a wireless network is referred to asaaihhoc wireless netword.5].

One can imagine another scenario where the points are airports. Then we would like to answer
queries in which we are given two airpogisandg and an airplane that can fly a distancd.dfilometers
without refueling, and have to compute, or approximate, shortest path information for this airplane to fly
from p togq.

Observe that there ar@) pairs of points inS and (;) graphsk <2, This implies that the number
of possible queries i® (n*). As a result, both bottleneck connectedness queries and bottleneck shortest
path length queries can trivially be solveddnlogn) time usingO (n*) space. Similarly, using (n°)
space, bottleneck shortest path queries can trivially be solvei(én time, wheref is the number of
edges on the reported path.

1.1. Our results

Throughout the rest of this paper, we denotely< L, < --- < L the sorted sequence of distances
determined by any two distinct points 8f (We assume for S|mpI|C|ty that all these distances are distinct.)
For anyi with 1 <i < (), we write K instead ofK (<%, ands ) (p, ¢) instead ofs <L) (p, q).

In Section 2, we show that, after @&\(n logn)-time preprocessing, bottleneck connectedness queries
can be answered i@ (1) time. The data structure is a binary tree that reflects the way in which Kruskal's
algorithm computes the minimum spanning tree of

In Section 3, we consider bottleneck shortest path length queries. By using the fagpghat
§D(p,q) < (n — 1)|pq| for anyi for which §©(p, ¢) is finite, we present a simple data structure of
size O(n?logn) that supports-approximate bottleneck shortest path length querie® (logn) time,
wheree is any fixed positive real constant. A simple extension of this data structure alapgroximate
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bottleneck shortest path queries to be answere@(ingn + ¢) time, wherel is the number of edges on
the reported path. This data structure uegs®logn) space.
In Section 4, we give a general approach for solving the approximate bottleneck shortest path query
problem. Our approach is to approximate the sequekitg 1 <i < (’;) of graphs by a collection
of O(n) sparse graphs. (A precise definition of this notion is given in Section 4.) Examples of such
collections are given in Section 5. In Section 5.1, we show that the bottleneck version of the Yao-
graph [16] is an example of such a collection of sparse graphs. Using the single-sink spanners of Arya
et al. [1], we even obtain such a collection consisting of graphs of bounded degree (which are, in general,
not planar). In Section 5.2, we prove that the bottleneck version of the Delaunay triangulation gives
such a collection, consisting of at most 3 6 planar graphs. The latter claim is obtained by extending
the proof of Keil and Gutwin [10] that the Delaunay triangulation has stretch factor less than or equal
to 27 /(3cogn/6)). To be more precise, we prove that for any two poiptand g of a given point
set S, there exists a path betweenandg in the Delaunay triangulation of whose length is at most
2 /(3coqn/6)) ~ 2.42 times the Euclidean distangey | betweenp andg, and all of whose edges have
length at mostpq|. (In [10], there is no guarantee on the lengths of the individual edges on the path.)
Finally, in Section 6, we give a data structure of s2é:>2) that can be used to answer bottleneck
shortest path queries in planar graph®i/n + ¢) time, wheref is the number of edges on the reported
path. This data structure uses a result of Djidjev [7] to obtain a recursive separator decomposition of the
planar graph. By applying this result to the graphs of Section 5.2, we obtain an efficient solution for the
approximate bottleneck shortest path query problem.

1.2. Related results

After we wrote a preliminary version of this paper, we learned that the bottleneck connectedness query
problem has been solved before, see Neto [12]. In fact, Neto’s solution is identical to ours.

To the best of our knowledge, the other types of bottleneck shortest path problems considered in this
paper have not been studied before. There is related work by Narasimhan and Smid [11], who consider
the following problem: given a real numbgr approximate thetretch factorof the graphk (S%, which
is defined as the maximum value®") (p, q)/| pq| over all distinct pointg andqg of S. They present a
data structure of siz& (logn), that can be built in roughly (»*/3) time, and that can be used to answer
approximate stretch factor queries (with an approximation factor of about 38jlag logn) time.

Our results are based erspannerswhich are sparse graphs having stretch factor less than or equal
to . A good overview of results on the problem of constructirgpanners for a given point set can be
found in the surveys by Eppstein [8] and Smid [14].

2. Bottleneck connectedness queries

As mentioned above, our solution for answering bottleneck connectedness queries appears already ir
Neto [12]. In order to be self-contained, however, we present this solution in this section.
Let MST(S) be the Euclidean minimum spanning tree of the point$setVe define a binary tree
T(S) as follows. If|S| =1, thenT (S) consists of one node storing the only pointSfAssume that
|S] > 2, and lete be the longest edge iMST(S). Removinge partitions MST(S) into two trees. Let
S1 and S, be the vertex sets of these trees. TH&w) consists of a root that stores the edgend
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pointers to its two children, which are roots of recursively defined te€%) and T'(S,). Observe

that the leaves of'(S) are in one-to-one correspondence with the point§,cdind the internal nodes

are in one-to-one correspondence with the edgdd®T(S). Computing7 (S) according to the above
definition corresponds to tracing back the execution of Kruskal’s minimum spanning tree algorithm [5].
It is not difficult to see that'(S) can in fact be computed directly while running Kruskal’s algorithm.
The following lemma shows how the tr@&S) can be used to answer bottleneck connectedness queries.

Lemma 1. Let p and g be two distinct points of, and letZ be a real number. Let be the edge stored
at the lowest common ancestor of the leave® @) storing p andg. Thenp andgq are connected by a
path in the graphk (P if and only if the length oé is less than or equal td..

Proof. Assume that the length efis less than or equal tb. Let u be the node off'(S) that stores.

We may assume without loss of generality tpat stored in the left subtree af (and, hence, that is
stored in the right subtree af). Let S, and S, be the sets of points that are stored at the leaves of the
left and right subtrees of, respectively. Lek andy be the endpoints af, wherex € S, andy € S,. By

the recursive definition of (S), the edges of the subtree RIST(S) induced by the points 5, form

a subtree oMST(S). All edges in this subtree are of length at most that¢.dflence, there is a path,

in MST(S) betweenp andx whose edges have length at most tha¢.dbimilarly, there is a patl®; in
MST(S) betweeny andg whose edges have length at most that.of hus, the concatenation &%, e,

and P, is a path betweep andg whose edges have length at mastn particular, this path is contained

in K(sD,

To prove the converse, assume that the lengthisfarger thari.. Let S; and S, be the partition ofS
obtained by deleting from MST(S). Since the unique path MST(S) betweenp andg containse, we
have (i)p € S1 andg € Sy, or (i) p € S, andg € S;. By a well-known property of minimum spanning
trees, the length of is equal to the minimum distance between any poin§,0énd any point ofS,. If
there is a path ik (SY) betweenp andg, then this path must contain an edge between some point of
S1 and some point of,. Since the length of any such edge is larger thait follows that such a path
cannot exist. O

Lemma 1 implies that a bottleneck connectedness query can be answered by answering a lowest
common ancestor query in the trées). This tree can be computed @(» logn) time, by first computing
the Delaunay triangulatio®T(S) of S (see [6]), and then running Kruskal's algorithm @ (S)
(see [5]). GivenT (S), we preprocess it irD (n) time, so that lowest common ancestor queries can be
answered in0 (1) time. (See Harel and Tarjan [9], Schieber and Vishkin [13], or Bender and Farach-
Colton [2].) We have proved the following result.

Theorem 2. We can preprocess a setmofpoints in the plane irO (nlogn) time into a data structure of
size O (n), such that bottleneck connectedness queries can be answepgd)itime.
3. Bottleneck shortest path length queries

Recall the sequenck; < Ly < -+ < L of distances determined by any two distinct points of the
point setS. Also, recall that, for ki < (5), K denotes the grapk (<™, i.e., the graph with vertex
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setS in which any two distinct pointg andg are connected by an edge if and onlyply| < L;. We
defineK © to be the graplis, ¢). Finally, recall that we writé @ (p, ¢) instead of8(SL) (p, q).

Lete be any fixed real constant with®¢ < 3. In this section, we show how to preprocess the points of
S into a data structure of siz@ (n?logn), such that-approximate bottleneck shortest path length queries
can be answered i@ (logn) time. First we show that a query of the following type can be answered in
O (loglogn) time using a data structure of siz&n?logn): given two pointsp andg of S and an index
with0<i < (’2’) compute ar-approximation to the lengthi”’ (p, ¢) of a shortest path betwegnandg
in the graphk @, i.e., a real numben, such thas” (p, ) < A < (1+¢)-89(p, g). Using an additional
amount ofO (n?) space, we will extend this solution to solve generalpproximate bottleneck shortest
path length queries (in which an arbitrary real numbas part of the query, rather than the distarigg
in O(logn) time. Our solution is based on an approach by Narasimhan and Smid [11].

We fix two distinct pointsp andg of S, and observe that

1pgl=8(@)(p,g) < <8P (p.q) <5V(p.q) <5 (p.g) =00
Letk :=min{i > 0: §V(p, q) < oo}. Sincep andg are not connected by a path in the grapti—Y, we
have|pqg| > L;_1 and, hence|pg| > L. On the other hand, singe andgq are connected by a path in
K® and since any such path contains at most1 edges, we have

8% (p,q) < (n - 1>Lk (n = Dlpgl.

Hence, for alli with k <i < (}), we have

Ipgl <8V(p,q) < (n — Dpql.

Based on this observation, we patrtition the{get + 1, ..., (’;)} into O (logn) subsets, in the following
way. For any integey, let

Iy = {i: k<i< (’;) and(1+¢/3)/|pql <87 (p.q) < (1+e/3>f+1|pq|}.
Clearly, I,iq can only be non-empty if & j < log, . 3(n —1). We store for each integg‘nNhereI,{q 0,

(1) avaluet},, which is the smallest element of the ¢, and
(2) avalueaY)(p, ¢) which is equal tal + /3) - 8¢ (p, q).

Let us see how we can use this information to answee-approximate bottleneck shortest path
length query forp andgq. Leti be an integer with & i < (). We start by showing how the value of
8§D (p, q) can be approximated. First compute the integdor which Z{,q <i< Zﬁ,ql Then return the
valueA := AV (p, q). '

To prove the correctness of this query algorithm, first observe ithat/;,. This implies that
5D(p,q) < (1 + &/3)/*Y pq|. Similarly, sincet), € I}, we haves“)(p,q) > (1 + &/3)/|pq|. By
combining these two inequalities, it follows thét'(p, ¢) < A. In a completely symmetric way, we
obtain

A=(1+e/3) 8 (p.q) < A+2/3) 2| pgl < A+2/3)%- 5D (p. q).

Since 0< ¢ < 3, we have(l + ¢/3)?> < 1+ ¢. Therefore,A < (1+¢) - 89 (p, ¢). This proves that is
aneg-approximation to the length of a shortest path betwe@mdg in the graphx ©.
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By storing the values,,, in sorted order in an array, thkeapproximation té (p, ¢) can be computed
in O(loglogn) time.

We store this information for each pair of points. Additionally, we store the sequepeelL, <
o< Ly of distances. Given two query poingsandg of S and an arbitrary query value € R, we first

use binary search to find the indeXor which L; < L < L, 1. Sinces'SP(p, q) =89 (p, q), we then
answer the query as described above.

The amount of space used by this solutiorDig:? logn), because we stor@ (logn) values for each
pair of points ofS. Furthermore, the query time @(logn). Let us consider the preprocessing time. It
clearly suffices to solve the all-pairs-shortest-path problem for each dféph0 <i < (’;) Using the
Floyd-Warshall algorithm, one such problem can be solve@in®) time; see [5]. Hence, the overall
preprocessing time i® (n%).

If we store with each value\)(p, g) a path ink ¢ of length §¢)(p, ¢), then we can use this
additional information to answer approximate bottleneck shortest path querigs; lednd j be as
above. Then the patl® stored withAY)(p, g) has lengths := 8¢ (p, ¢) satisfyings?(p, q) <8 <
(1+¢/3)87(p, q). (Observe thaP is a path ink ")) We have proved the following result.

Theorem 3. For any real constant > 0, we can preprocess a setmopoints in the plane iro (n®) time
into

(1) a data structure of siz& (n?logn), such that-approximate bottleneck shortest path length queries
can be answered i® (logn) time,

(2) adata structure of siz& (n°logn), such that-approximate bottleneck shortest path queries can be
answered in0O (logn + £) time, where! is the number of edges on the reported path.

4. Thebottleneck shortest path problem

In this section, we introduce a general approach for the approximate bottleneck shortest path problem.
The idea is to approximate the sequert®, 1 <i < (’2’) of graphs by a “small” collection of sparse
graphs, i.e., with “few” edges. This notion is formalized in the definition below. For any graguid any
two verticesp andg, we denote the length of a shortest patiGiletweenp andg by 6 (p, q).

Definition 1. Let S be a set ofr points in the plane, let > 1 be a real number, lef be a subset of
{1,2,...,(5)} and, for eachj € J, let GY) be a graph with vertex set all of whose edges have length
at mostL ;. We say that the collectiod = {G"/): j € J} is acollective bottleneck-spannerof S, if the
following holds: for anyi with 1 <i < (3), there is an indey € J, such thatj <i and

5 (p,q) <1-59(p, )
holds for all pairs of pointp andg in S.

The purpose of this definition should be clear: in order to approximate a bottleneck shortest path
betweenp andg in the possibly dense grapti®?, we compute a shortest path betweenp andg in
the graphG. Observe that, sincg< i, P is a path ink @ ands? (p, ¢) <8¢ (p, ¢). Hence,P is a
t-approximate shortest path betwegeandq in K@
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The goal is to define the collectighin such a way that shortest path queries on them can be answered

efficiently. Further goals are to minimize (i) the valuerofii) the size of the index sef, and (iii) the
number of edges in the graphsdgn The following lemma gives a lower bound on the size/of

Lemma 4. The size of the index sétin Definition 1 is greater than or equal te — 1.

Proof. Let (p,q) be any edge of the Euclidean minimum spanning t&T(S) of S, and leti be
the index such thatpg| = L;. Observe thas”(p, q) = |pg| < oo. We claim thati € J. To prove
this, assume that¢ J. By Definition 1, there is an indey € J such thatj < i and 8" (p,q) <
t-89(p, q) < oo. In particular, we havé'’) (p, q) < oo. By well-known properties of minimum spanning
trees (see also the proof of Lemma 1), however, we 6&V€p, g) = oo, contradicting our assumption
thati ¢ J. Hence, each of the — 1 edges oMST(S) contributes an index td. O

In the next section, we discuss several constructions of collective bottleneck sp@rofefs

5. Examples of collective bottleneck spanners
5.1. The Yao-graph

In this section, we consider théao-graph[16], which is also known as thgeographic neighborhood
graph Let S be a set ofz points in the plane, and let @ 6 < 7/4 be an angle such thatr26 is an
integer. We patrtition the plane into a collecti6rof 2 /6 cones of angl®, all having their apex at the
origin. For any pointp € § and any coneC € C, let C,, be the cone obtained by translatiggby the
vector p. (Hence,C, hasp as its apex.)

The Yao-graply (S, ) hassS as its vertex set. Lt be any point of5, let C be any cone of such that
C,N(S\{p})) #9, and letg, be the point ofC, N (S '\ {p}) whose Euclidean distance tois minimum.
The edge set of (S, 6) consists of all edgeép, ¢,,) obtained in this way. Chang et al. [4] have shown
how to construct the grapfi(S, 8) in O(nlogn) time.

Given two pointsp andg, we construct a path betwegnandgq in Y (S, #0) in the following way.

If p =g, then there is nothing to do. Assume that4 q. Let C be the cone irC such thatg € C,,.
The graphY (S, #) contains an edgép,r), wherer € C,, and |pr| < |pg|. We follow this edge, and
recursively construct a path betweerandg. In the following two lemmas, we will analyze the path
constructed by this algorithm.

Lemmab. Let p, g andr be as above. We have
Irgl < |pql — (cosd —sind)|pr|.
Proof. Leta be the angle between the line segmegnjsand pr, and letr’ be the orthogonal projection of

r onto pq; see Fig. 1. Observe that< 6. We haverr’| = | pr|sinae < | pr|sing and|pr’'| = | pr| cose >
|pr|cosp. It follows that

Irql <rr'| +1r'ql = rr'I + Ipq| — |pr'| < |pr|siné + |pq| — | pr| cosd,
proving the lemma. O
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Fig. 1. lllustrating the proof of Lemma 5.

Lemma 6. Lett = 1/(cosd — sind), and letp andg be any two points of. There is a path betweem
andgq in the Yao-graplt¥ (S, ) whose length is less than or equaliigg|, and all of whose edges have
length at mostpg]|.

Proof. The proof is by induction on the rank ¢pg| in the sequence of a(r;) distances determined
by pairs of points inS. If p andg form a closest pair ir§, then the lemma holds becaugeandq are
connected by an edge (S, ).

We now assume thgt andg do not form a closest pair. Furthermore, we assume that the lemma
holds for all pairs of points whose distance is less than. Let C be the cone i€ such thalg € C,,
and let(p,r) be the edge irY (S,0) with r € C,. If r =g, then(p, ¢) is an edge in¥ (S, ¢) and the
lemma holds. So assume thag g. Observe thatpr| < |pg|. Since O< 6 < /4, Lemma 5 implies that
lrq| < |pg|. Therefore, by the induction hypothesis, there is a gattetween- andg in Y (S, 8) whose
length is less than or equal tp-¢g|, and all of whose edges have length at njegt. Let P’ be the path
obtained by concatenating, r) and P. Then the length of each edge Bf is less than or equal ipq|.
By Lemma 5, we have

|P'| = Ipr|+|P|<|prl+tlrql < |prl+tlipql — Iprl =t|pql.
This completes the proof. O

Lete > 0 be a real constant. We choose a constantO< 7 /4 such that 1(cosf —sind) < 1+ ¢ and
consider the grapli (S, 0). Letm denote the number of edges in this graph. Thed (27/6)n = O (n).
Let j, < j» <--- < ju, be the indices such thdt;, <L, <--- < L;, are the edge lengths 0f(S, ).
For anyk with 1 < k < m, we denote byy U¥ the graph with vertex sef consisting of all edges of
Y (S, 0) whose lengths are at mobt, .

Let J := {ji: 1<k <m). We claim thatG := {YUY: 1 <k < m} is a collective bottleneckl + ¢)-
spanner of. To prove this claim, consider any two pointsandg of S and any integer with 1 <i < (5).
We may assume that andg are connected by a path in the grafh’. Let k be the integer such that
L; <L;<Lj,,, and lets be the length of a shortest path betwgeandg in the graphy V). It is clear

Jk+17

that j, <i. It remains to show that
< (A+e)-87p.q). (@

Consider a shortest pathbetweerp andg in K. Hence, the length a? is equal tas'” (p, ¢). Consider
an arbitrary edgéx, y) on P. Observe thatxy| < L;. By Lemma 6, there is a path,, betweenx and
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y in the graphy (S, 8) whose length is at mostL + ¢)|xy| and all of whose edges are of length at most
lxy|. SincePy, is a path inY (S, 6), each of its edges has in fact length at mbgt That is, P,, is a path

in the graphy U»). By concatenating the patti,, over all edgesx, y) of P, we obtain a path between
p andg in YU having length at mogtl + ¢) times the length of. This proves (1). We have shown the
following theorem.

Theorem 7. Let S be a set of: points in the plane, and let > 0 be a constant. There exists a collective
bottleneck(1 + ¢)-spanner ofS, consisting ofO (n) graphs. Each graph in this collection hag(n)
edges.

If the setS consists of the centgr of a circle and: — 1 points on the boundary of this circle, then the
degree ofp in Y (S, 0) isn — 1. Therefore, the bottleneck graphs in the collectivare not of bounded
degree.

Arya et al. [1] have shown how to combine the Yao-graph with so-callegle-sink spannett® obtain
a(1+ s)-spanner of bounded degree for any point&dh the same way as in Lemma 6, it can be shown
that this spanner has the property that any two pgmasdg of S are connected by a path whose length
is less than or equal tdl + ¢)|pg|, and all of whose edges have length at mest|. This implies the
following result.

Theorem 8. Let S be a set ofi points in the plane, and let > 0 be a constant. There exists a collective
bottleneck(1 + ¢)-spanner ofS, consisting ofO (n) graphs. The maximum degree of each graph in this
collection is bounded by a constant.

Even though the bottleneck graphs in Theorems 7 and 8 are small in size, they are difficult to
preprocess for shortest path queries. In the next section, we will see how to obtain a collective bottleneck
spanner consisting @ (n) planar graphs. As we will show in Section 6, planar graphs have the advantage
that shortest path queries can be answered efficiently.

5.2. The Delaunay triangulation

Let S be a set ofz points in the plane. We assume for simplicity that these points are in general
position, i.e., no three points &f are collinear, and no four points ¢fare cocircular. LeDT(S) be
the Delaunay triangulation aof, see [6]. We will show that for any two poinigs and ¢ of S, there
exists a pathP betweenp andg in DT(S) such that (i) the lengthP| of P is less than or equal to
2m/(3cogm/6)) - |pgl, and (i) no edge orP has length more thajpg|. We will prove this claim by
modifying Keil and Gutwin’s proof of the fact th&T(S) is a (27 /(3 cogx/6))-spanner ofS; see [10].
(The proof in [10] may produce a path betwegrmandg that contains an edge whose length is greater
than|pq|.)

We start by stating the main lemma that is needed for our proof. We remark that this lemma is similar
to [10, Lemma 1].

Before we can state the main lemma, we have to define the notion of upper angleahey be two
distinct points ofS, and letL be the line througlp andg. Assume that. is not vertical and thap is to
the left ofg. Let L, andL_ be the open halfplanes consisting of all points that are above and iglow
respectively. LeC be any circle that hag andq on its perimeter, and le& be the center of .
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Fig. 2. lllustrating the assumptions in Lemma 9. There are two cases depending on whethet 8 or 7 <6 < 2. There
are no points of in the part of the interior o€ that is below the lind..

Assume that no point of is in the intersection of. _ and the interior ofC. Then theupper angleof p
andgq is defined as the angle by which we have to rotate the line segmeirt clockwise order so that
it coincides withmg. See Fig. 2 for an illustration.

Now assume that no point &fis in the intersection of. . and the interior of”. Then theupper angle
of p andgq is defined as the angle by which we have to rotate the line segment counterclockwise
order so that it coincides wittg.

Lemma9. Let p andg be two distinct points af, and letL be the line throughp andg. LetC be any
circle that hasp and g on its perimeter, and let and m be the radius and center a@f, respectively.
Assume that no point df is in the intersection of. _ and the interior ofC, or no point ofS is in the
intersection ofZ., and the interior ofC. Let6 be the upper angle gf andg. Then there exists a path

in DT(S) betweerp andg such that

(1) the length ofP is less than or equal te9, and
(2) the length of each edge dhis less than or equal tgpg|.

5.2.1. Proof of Lemma 9

We will assume, for ease of presentation, thandg are both on the-axis, p is to the left ofg, and
no point ofS is in the part of the interior of that is below thec-axis.

If (p,q) is an edge of the convex hull ¢f, then it is also an edge ®&T(S). In this case, Lemma 9
clearly holds. So we assume from now on th@atg) is not a convex hull edge.

Our goal is to prove Lemma 9 by induction on the angjlén order to do this, we will normalize the
circle C so that, over all possible paigsandg of points insS, there are only a finite number of normalized
circles.

To normalizeC, we move the centern of C downwards along the bisector pfandg; during this
movement, we change so that it always contains the poinisandg. We stop this process at the moment
when the part ofC below thex-axis hits a point, say, of S. Observe that exists, because otherwise
(p, ¢) would be an edge of the convex hull 8f Observe that during the movement, the radiasmd the
upper angle of C change. It is easy to see, however, that the prociictecreases. Hence, it suffices to
prove Lemma 9 for the new circlé, which we will refer to as amormalizedcircle.
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Fig. 3. lllustrating the base case. The upper arghe:1¢ is equal tod;.

Hence, from now onC is a normalized circle through the poings ¢ andz, wherez is below the
x-axis. This circle has center and radius-. There are no points df in the part of the interior o€ that
is below thex-axis.

Each pair of points defines at most two normalized circles (depending on whether the circle is empty
above or below the line through the two points). Therefore, thereodre?) normalized circles. We
proceed by induction on the rank of the upper angles these circles.

For the base case, assume that the afiglieC is minimum over all normalized circles. We claim that
(p,q) is an edge oDT(S), which will prove that Lemma 9 holds for the poingsandg. To prove the
claim, assume thdlp, ¢) is not an edge oDT(S). Then, by the definition of the Delaunay triangulation,
the part of the interior o€ that is above the-axis contains at least one point ®f

For any pointr of S that is in the interior ofC, let D, be the circle througtp, ¢ andz. Choose the
point ¢ such that no point of lies in the part of the interior oD, that is above the-axis. (Observe that
such ar must exist.) We will writeD instead ofD,. By symmetry, we may assume thais to the left
of m; see Fig. 3.

Let C; be the circle througlp andr whose center lies on the segment. We denote the center of
C1 by m1. By the definition of D, no point of S lies in the part of the interior of’; that is below the
line throughp and:. Let9; be the upper anglepmiz. Observe that (i) the ray from in directionnig
intersects the-axis in a point ofC1, and (ii) ¢ is above this ray. This implies that < 6.

If C,is a normalized circle, then we have obtained a contradiction to our assumptioh ihéte
smallest angle. In general, howev€g, will not be a normalized circle. Therefore, we proceed as follows.
We move the center; of C; down along the bisector gf and¢; during this movement, we chang&
so that it always containg and:. We stop at the moment when the part@f that is belowp: hits a
point, sayx, of S. (Observe that exists: it is equal ta@ or a point ofS that is hit upon earlier.) The new
circle C; is a normalized circle, and its upper angleis less than or equal to the upper an@jeof the
initial circle C1. Hencep; < 6, which is a contradiction. This completes the base case.

For the inductive step, we again consider the normalized cifckeith upper angled = /pmq. We
assume that is not the minimum angle. Furthermore, we assume that Lemma 9 holds for all normalized
circles whose upper angles are less thalf (p, ¢) is an edge oDT(S), then Lemma 9 holds for the
circle C. So we may assume thgp, ¢) is not an edge oDT(S). We define the point and the circle
D as in the base case. We may assume without loss of generalityightat the left ofm. Observe that
0 € (0, 2m). We will treat the cases @ 6 < 7 andr < 6 < 2 separately. Before proceeding, we give
some constructions that will be used in the sequel. (Refer to Figs. 4 and 5.)
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Let C; be the circle througlp andr whose center lies on the segmeni. We denote the center and
radius ofC; by m1 andry, respectively. Similarly, le€, be the circle through andg whose center lies
on the segmenjm. We denote the center and radius(@fby m, andr,, respectively. By our choice of
D, no point of S lies in the part of the interior of’; that is below the line througp and¢, and no point
of S lies in the part of the interior of'; that is below the line through andz.

Consider the two intersection points betwe&gnand thex-axis. One of these intersection pointpis
we denote the other one lay. Similarly, leta, be the intersection point betwe€h and thex-axis that
is not equal tay.

Let C3 be the circle througla; anda, whose center is the intersection between the line throeugh
anda; and the line througlm, anda,. We denote the center and radius@fby m3 andrs, respectively.

We observe that the following four triangles are all similar isosceles triangles with two equal base
angles, which we will denote by: A(p,m, q), A(p, my, a1), Alaz, m2, q), andA(az, ms, az).

As in the base case, both upper angles= /pm,t and 6, := /tm,q are less tha. We use the
same construction as in the base case to movdown along the bisector gf ands (changingC; such
that it always containg and¢) until the part ofC, that is belowps hits a point ofS. Let C; be the
resulting circle, and le@; andr; be its upper angle and radius, respectively. Thigns a normalized
circle, r16; < r161, and no point ofS is in the part of the interior o€'; that is below the line througp
andt. Hence, by the induction hypothesis, there is a fathetweenp andr in DT(S), having length
| P1| < r10; < r161, and all of whose edges have length at mps}. In a completely symmetric way, there
is a pathP, betweerr andg in DT(S), having length P,| < r»6,, and all of whose edges have length at
most|zq]|.

Fig. 4. lllustrating Case 1.
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Casel. 0< 6 <m;see Fig. 4.
Let P be the concatenation @, and P,. Then

|P| = P14 | P2l <1161+ rob2 =160 + 126 — (r1(6 — 61) + r2(6 — 6)).
Since 0< 6 < 7, ay is to the left ofa;. Observe that

(1) the length of the upper arc 6f; betweer, anda; is equal tors0,
(2) the length of the upper arc ¢f; betweers anda; is equal tor, (6 — 6,), and
(3) the length of the upper arc @f; betweeru, andr is equal tor,(6 — 6).

Since the part o3 above thex-axis is convex and contained in both parts of the interior6,04nd C,
that are above the-axis, we have

r1(0 — 601) +r2(0 — 62) > r3b.
Hence,

(Pl < (ry 4 ra— r9)0 = ( |pail lazq| laza | )9 _ lpr4l

2cCosp ' 2cosp 2cosp)  2cosp

Since 0< 6 < 7, we have|pt| < |pg| and|zg| < | pg|. Recall that all edges oB; have length at most
|pt| and all edges o, have length at mostq|. Therefore, the length of each edge Pris less than or
equal to| pq/|.

Case2a. m < 6 < 2 andt is inside the circle having andg as diameter; see Fig. 5.
Let P be the concatenation @f, and P,. Recall tha#; < 8 andd, < 0. We have

|P|=|P1| + | Po| <1101+ 1202 < (r1+12)0.
If ay is to the right ofa,, then

| pai lazq| lpq|
P| < 0= 0 < 0=r6
IPIS (ritr) (Zcos¢> + 2cosp 2cosp "

If a; is to the left ofay, then|P| < r6 by the same argument as in Case 1.
Sincet is contained in the circle witlkh andg as diameter, we have?| < |pg| and|tg| < |pg]|. As a
result, the length of each edge #nis less than or equal tpg]|.

D

Fig. 5. lllustrating Case 2a. The cirai®&; hasmg as its center.
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Fig. 6. lllustrating Case 2b. The upper andlpmyz is equal tady; the upper angle zmsgq is equal tds.

Case 2b. 7 < 6 < 27 andt is outside the circl&R with p andg as diameter; see Fig. 6.

Let C,4 be the circle throughy andz whose center is on the-axis. We denote the center and radius
of C4 by m4 andry, respectively. Leb, be the upper anglépm,z. (Recall our definition of upper angle
given just before Lemma 9.) Similarly, 1€ be the circle through andz whose center is on the-axis.
We denote the center and radius@fby ms andrs, respectively. Lebs be the upper anglézmsg.

Observe that no point of is contained in the part of the interior & that is above thec-axis.
Therefore, there is no point ¢f in the part of the interior of’4 that is above the line through andz.
Similarly, there is no point of in the part of the interior o5 that is above the line through andz.
We also observe that both andfs are less thamr and, hence, less than After normalizingC4 andCs,
in the same way as we did before, we can apply the induction hypothesis. Hence, there existB;a path
betweenp andz in DT(S), having length| P4| < r404, and all of whose edges have length at mast
Similarly, there exists a patRs between; andg in DT(S), having length| Ps| < rs6s, and all of whose
edges have length at magt. Let P be the concatenation @f, and Ps. Then

|P| =|Pa| + | Ps| <1464+ 1565 < (ra+1s5)0.

Sincez is contained inR, bothr, andrs are less than or equal tpg|/2. Therefore, we havgP| < r6.
Finally, since both pz| and|zq| are less thafpg| (this again follows from the fact thatis contained
in R), the length of each edge dhis less than or equal tpg|. This concludes the proof of Lemma 9.

5.2.2. A collective bottleneck planar spanner

Using Lemma 9, we obtain the theorem below. We omit the proof, because it is basically the same as
the proof of [10, Theorem 1]. Replacing [10, Lemma 1] by Lemma 9 guarantees that the length of each
edge on the path is less than or equdliig|.

Theorem 10. Let S be a set of: points in the plane, let DTS) be the Delaunay triangulation of, and
let p andg be two points of5. There is a path betweem and g in DT(S) whose length is less than or
equal to2r /(3cog/6)) - | pg| and all of whose edges have length at n@st].

We proceed as in Section 5.1. Letbe the number of edges &fT(S), and letj; < j, < -+ < j,
be the indices such thdt; <L;, <--- < L;, are the edge lengths &fT(S). SinceDT(S) is a planar
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graph, we have: < 3n — 6. For anyk with 1 < k < m, letDTY% be the graph with vertex sétconsisting
of all edges oDT(S) whose lengths are at maost, . As in Section 5.1, we obtain the following result.

Corollary 11. Let S be a set of: points in the plane. The collectigh:= {DTV¥: 1 < k < m} of planar
graphs constitutes a collective bottleneegpanner ofS, for r = 2t /(3 cogr /6)). The number of graphs
in this collection is less than or equal 8x — 6.

6. Bottleneck shortest path queriesin planar graphs

In this section, we address the following problem: given aSset » points in the plane and a planar
graphG with vertex setS, build a data structure that can answer bottleneck queries of the following type:
given two pointsp andg of S and a real numbek, decide whether there is a path betweeandq in G
all of whose edges are of length at méstand report the shortest such path if such a path exists.

Using the results of Section 2, existence queries can be answefgd)jrime. We will present a data
structure of sizeD (n%?) that allows the shortest path whose edges have lengths atnoste reported
in O(y/n + £) time, wheret is the number of edges on the reported path.

Our solution uses the following result, due to Djidjev [7], for answering general shortest path queries
in the entire planar grap&.

Lemma 12 [7]. Let S be a set of: points in the plane and leF be a planar graph with vertex sét We
can preprocesss in O (n®/?) time into a data structure of siz€ (n*?) such that the shortest path @
between any two query points can be compute@ ig/n + ¢) time, wheref is the number of edges on
the reported path.

Consider again the planar graphwith vertex setS. Letes, es, ..., e,, be them edges ofG, sorted by
their lengths. For anywith 1 <i < m, let|e;| denote the Euclidean length of edgeand letG® be the
graph consisting of all edges 6f having length at mogg; |.

In order to answer bottleneck shortest path querieS,imve build the shortest path data structure of
Lemma 12 for each of the graplis”. We also compute a labeling of the vertices of eatf so that
two vertices have the same label if and only if they are in the same connected compoGént Bhe
following observation is obvious.

Observation 1. Let p andg be two points ofS, let L be a real number, and Iebe the integer such that
leil < L < leiqal-

(1) There is a path betwegnandq in G all of whose edges have length at masif and only if p and
g are in the same connected componenG6f.

(2) The shortest path betwegnandg in G is the same as the shortest path betweemdg in G all
of whose edges have length at mast

Thus, we build a binary search tr@eover the sorted edge set 6f. In O(logn) time, we can find
the indexi such thate;| < L < |e;1]. Given that every node df stores a pointer to the corresponding
graphG® and the shortest path data structure P, it now takes constant time to retrieve the two
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labels of the verticep andgq in G, and compare them to decide whetheand g are in the same
connected component 6f). If they are, we query the shortest path data structure to report the shortest
path. Using the data structure of Lemma 12, this také€g/n + ¢) time, where? is the number of edges
in the reported path.

The binary search tre® has sizeO (n). SinceG is planar, the number: of its edges is less than
or equal to @ — 6. Hence, we buildO (n) shortest path data structures of si2¢n*?) each, one per
graphG™. Each of these data structures can be constructe?i(ir¥/?) time. Hence, the total preproc-
essing time and amount of space used by our data structd@€:i%?). Thus, we obtain the following
theorem.

Theorem 13. Let S be a set of: points in the plane and let be a planar graph with vertex sét We
can preprocess in O (n°?) time into a data structure of siz@ (n?) such that the following type of
bottleneck queries can be answergi’en any two pointg andg of S and any real numbef., decide
whether there is a path betwegnandgq in G all of whose edges have length at mastf such a path
exists, report the shortest such path. The decision part of the query €aidggime, whereas reporting
the shortest path take@(,/n + ¢) time, where? is the number of edges on the reported path.

If we combine Theorems 10 and 13, then we obtain the following result.

Theorem 14. Let S be a set ofn points in the plane. We can preproceSsin O (n*?) time into

a data structure of sized(n*?) such thatz-approximate bottleneck shortest path queries, fee

27 /(3cogm/6)), can be answered i (y/n + £) time, where! is the number of edges on the reported
path.

7. Conclusion

We have presented efficient algorithms to solve a variety of geometric bottleneck problems. In each
case, we show how to preprocess the data so that (approximate or exact) shortest path queries can b
answered efficiently. In solving these problems, we use an array of tools such as minimum spanning
trees, spanners, and the Delaunay triangulation.

The amount of preprocessing and space used in Theorems 3, 13 and 14, are very high. It is an oper
problem whether these bounds can be improved.

The graphs in the collective bottleneck spanner of Theorem 8 are of bounded degree, but they are not
planar. On the other hand, the graphs in the collective bottleneck spanner of Corollary 11 are planar,
but their degree may be unbounded. We leave it as an open problem to decide whether there exists &
collective bottleneck spanner consisting of planar graphs, all having bounded degree. Observe that Bose
et al. [3] have shown that a planar spanner of bounded degree can be computed for any point set. This
spanner, however, does not have the property that each edge on a spanner path between twarmbints
q has length at mospg|. Therefore, it is not clear if this result can be used in our context.
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