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Abstract

We use methods from Data Mining and Knowledge Discovery to design an algorithm for

detecting motifs in protein sequences. The algorithm assumes that a motif is constituted by the

presence of a “good” combination of residues in appropriate locations of the motif. The algorithm

attempts to compile such good combinations into a “pattern dictionary” by processing an aligned

training set of protein sequences. The dictionary is subsequently used to detect motifs in new

protein sequences. Statistical significance of the detection results are ensured by statistically

determining the various parameters of the algorithm.

Based on this approach, we have implemented a program called GYM. The Helix-Turn-Helix

Motif was used as a model system on which to test our program. The program was also extended

to detect Homeodomain motifs. The detection results for the two motifs compare favorably with

existing programs. In addition, the GYM program provides a lot of useful information about a

given protein sequence.
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1 Introduction

A Motif is a region or portion of a protein sequence that has a specific structure and is functionally

significant. Protein families are often characterized by one or more such motifs. Detection of motifs

in proteins is an important problem since motifs carry out and regulate various functions, and the

presence of specific motifs may help classify a protein.

We describe a new approach to the problem of automatic motif detection. We use methods from

Data Mining and Knowledge Discovery to design an algorithm that displays increased sensitivity

as compared to existing algorithms, while maintaining good accuracy and also providing additional

information about a given protein sequence. Unlike previous approaches, our algorithm is not based

on statistical methods. However, our algorithm does need a “training set” of aligned sample motifs.

The basic assumption is that specific combinations (of which there could be many) of residues in

specific locations within the motif are responsible for imparting the structure and the functionality

to the motif. With this in mind, our algorithm searches for patterns from the sample training set

that are present in a new protein sequence. Our approach has similarities to a recent independently

developed method (Rigoutsos & Floratos 1998), which does arbitrary motif detection on unaligned

protein sequences. This paper describes how our algorithm can be implemented efficiently. The

resulting program is called GYM. Finally, we describe our experiments with the Helix-Turn-Helix

Motif, which was used as a model system on which to test our program. Results of tests on

Homeodomain motifs are also reported.

2 Motifs in Protein Sequences

As mentioned above, motifs share a common structure and function. We describe the structural

and functional properties of the two motifs used in this study.

Helix-turn-helix Motifs The helix-turn-helix motif was the first protein motif to be discov-

ered for site-specific DNA recognition. This motif has been widely investigated and there exists

substantial knowledge of the chemical interactions of specific residues. Crystal structures of many

of the proteins containing these motifs are also available. Limited information is also available

from mutational analysis of the motif and the effect of specific amino-acid substitutions on motif

structure. This motif is common to many DNA-binding proteins and plays a crucial role in their

binding to DNA. Thus studying these motifs provides an excellent model system for the study of

protein motifs that are used in site-specific recognition.

Features of the helix-turn-helix motif have been reviewed extensively (Pabo & Sauer 1992;

Brennan & Matthews 1989; Harrison & Aggarwal 1990; Nelson 1995). Briefly, it consists of two

α-helical structures separated by a turn. The motif is about 20 to 22 residues in length. The

turn consists of three to four amino acids, and the two helices make an angle of approximately

120◦ (Nelson 1995). One of the two helices is responsible for binding to DNA in a sequence-specific
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manner, and is referred to as the “recognition helix”. In most proteins, the second of the two

helices is the “recognition helix”. Residues of the recognition helix interact directly with bases in

the major groove of the DNA. A combination of residues in both the helices are believed to be

responsible for maintaining the appropriate angle between the two helices. Proteins with helix-

turn-helix motifs share only limited sequence homology in the motif region; the dissimilarity is

attributed to the sequence-specific interactions with the bases in the DNA. Most proteins have at

most one helix-turn-helix motif; however, we will discuss a family of proteins that have more than

one such motif. All the properties mentioned above make automatic recognition of helix-turn-helix

motifs a non-trivial algorithmic problem.

Homeodomain Motifs Proteins containing the homeodomain motif play an important role

in plant and animal development. These proteins are also DNA binding proteins. The home-

odomain (Scott, Tamkun & Hartzell 1989) motif is made up of three α-helices and an extended

N-terminal arm. The first and second α-helices pack against each other in an anti-parallel ar-

rangement, while the third α-helix lies perpendicular to them. The third helix is the recognition

helix; like its counterpart in the helix-turn-helix motif, it interacts with DNA in the major groove

and provides the DNA-binding specificity. However, unlike the helix-turn-helix unit, the 60-residue

homeodomain forms an independent folded structure and can independently bind to DNA. It is

interesting to note that the homeodomain motif contains a canonical helix-turn-helix structure.

Mutational and evolutionary analyses and crystal structures of these domains are also available.

The homeodomain motifs were chosen for testing because they are almost thrice as long as the

helix-turn-helix motifs, giving us the opportunity to test the GYM program on a different motif.

3 Motif Detection

3.1 Existing Methods

To aid in the detection of motifs in protein sequences, classical methods involved carefully crafting a

“consensus” sequence to reflect highly conserved residues in the motif. Pabo and Sauer (1992) con-

structed a consensus sequence for helix-turn-helix motifs based on a multiple alignment of known

motif sequences. One simple method to detect helix-turn-helix motifs is to look for the occurrence

of such a consensus sequence. More general “consensus” sequences are also possible (as the ones

maintained by PROSITE (Bairoch 1992)). Inspired by the concept of regular expressions, such gen-

eralized consensus sequences consist of a sequence of sets of amino acids where amino acids within

the same set could substitute each other in that position. Nevill-Manning et al. (Nevill-Manning,

Wu & Brutlag 1998) presented another method for discovering motifs from families of aligned pro-

tein sequences based on automatically constructing such generalized consensus sequences. Earlier,

Wu and Brutlag (1996) had showed a way of constructing substitution sets in a statistically sig-

nificant manner. Another feature of the algorithm due to Nevill-Manning et al. (1998) involved
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constructing a set of such consensus sequences with the assumption that any one of the sequences

in the set could describe the motif. Additionally, the software based on their method (emotif) pro-

vided the user with parameters to tradeoff sensitivity to specificity. These parameters are claimed

to control the number of false positives.

Other sophisticated detection schemes are all statistically motivated. These are typified by the

Profile method described by Gribskov et al. (1990). The first step, once again, involved making

a multiple alignment of known motifs. The next step typically involved computing a probability

matrix or a Score Matrix, which assigns a different score to each possible residue at each position

in the motif. Intuitively, the entries of this matrix represent a measure of the probability that a

certain residue occurs in that location, normalized by the background frequencies for that residue.

Minor variants exist in the methods employed to compute the position-specific scoring matrix as

well as in scoring a match (see, for example, (Gusfield 1997)). Given a score matrix, the detector,

when given an input protein sequence, computes a weighted score for every subsequence of the

input sequence, and reports the subsequence with the highest score as the detected motif, as long

as this score is above a certain threshold.
Dodd and Egan (1990) showed how to compute such a matrix in a simple manner. The proba-

bility values they used were simply the frequency of a residue normalized against the background

frequencies for that residue. Enhancements on the method were used to detect coiled-coil mo-

tifs (Berger, Wilson, Wolf, Tonchev, Milla & Kim 1995; Berger 1995; Wolf, Kim & Berger 1997).

Variants of the profile method where a randomized learning algorithm iteratively improves the gen-

erated profiles were also used in detecting coiled-coil motifs (Berger & Singh 1997; Singh, Berger

& Kim 1998). Other (substantially different) statistically-based methods for detecting motifs in-

clude that of using a Hidden Markov Model (Grundy, Bailey, Elkan & Baker 1997) and Gibbs

Sampling (Lawrence, Altschul, Boguski, Liu, Neuwald & Wootton 1993).

3.2 Motif Detection – New Method

Our method is not based on statistical methods. It discovers patterns in known motifs to compute

a pattern dictionary. Detection of a motif in a new protein sequence is then a function of which

patterns from the dictionary are present in the new protein sequence.

The first assumption that our algorithm makes is that an appropriate length of the motif is

known beforehand. This is a reasonable assumption to make since this is true for most of the

known motifs (as in the case of helix-turn-helix motifs and homeodomain motifs). For example,

there is ample evidence to show that a helix-turn-helix motif lies within a window of size at most

22. The second assumption is that a reasonably large number of motifs are known and have been

detected and verified by experiment in the standard way. The training set can be chosen from

these known motifs. The third assumption is that a combination of key residues are sufficient to

constitute the necessary physical structure and to give it the functionality; the rest of the parts of
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the motif may serve other purposes. Note that this is where we differ from the assumptions made

for the other methods. While many of the methods attach separate significance to the occurrence

of specific residues in specific locations in the motif, they do not account for the reinforcing effect

of a combination of specific residues. For instance, residue x in location lx may be very significant

only if residue y is in location ly and residue z in location lz simultaneously. Residue x in location

lx may not be very significant otherwise and may not occur frequently in that location in known

motifs and thus may not have a high score in the score matrix. It is likely that the patterns in the

pattern dictionary discovered by our method represent such “reinforcing” combinations, helping

in the detection of new motifs. Finally, we assume that a “good” combination of residues must

occur “frequently enough” to be called a valid pattern for the motif. To account for relatively

rare reinforcing combinations, we opted for setting an absolute threshold value to decide whether

a combination occurs “frequently enough”, as opposed to a requirement that a combination occurs

in a specified percentage of the sequences in the training set.

Rigoutsos and Floratos (1998) independently devised a method to discover unknown motifs

without doing alignment, i.e., the training set for their program is a set of unaligned protein

sequences. Their method is based on similar ideas of generating patterns, which in turn could be

used to perform detection. Other related methods are reviewed by Brāzma et al. (1995). While

the overall philosophy of these methods coincide with ours, our algorithm differs from them in that

it detects known motifs after being trained on a set of aligned sequences for the same motif, thus

making use of all available knowledge about the motif. Our methods also share some overlap with

that of Nevill-Manning et al. (1998). The fundamental differences lies in the way the threshold

(this concept is explained below in Section 4.1) is used; they require that their motifs “cover” some

percentage of the sequences in the training set. The idea of correlations between residues in specific

locations were also explored by Berger et al. (1995); while significant correlations were observed,

only pairwise correlations were considered.

4 The New Algorithm

Here we present our new algorithm for detecting known motifs in protein sequences. We will refer

to this algorithm as the “Pattern Dictionary” method. Based on this new algorithm, we have

implemented a program (called “GYM”) that detects helix-turn-helix motifs. A second version of

GYM (Version 2.0), incorporating various improvements was also implemented. Unless explicitly

specified, in the rest of the paper when we refer to the GYM program, we will be referring to

both the versions. GYM was also modified and retrained to detect homeodomain motifs in protein

sequences. Note that the program can be modified to detect other motifs.

The algorithm requires that an approximate length of the motif be known beforehand and that

a reasonably large number of motifs are known and have been detected and verified by experiment

in the standard way. The training set can be chosen from these known motifs. The algorithm
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consists of two parts. The first part is a preprocessing step that needs to be performed only once.

The second part is where the actual motif detection takes place.

The preprocessing phase can be called the Pattern Mining phase. The input to this phase

is the set of known and aligned motifs, or the Master Set. The output is a Pattern Dictionary

consisting of frequently occurring Patterns within the Master Set. The preprocessing phase is

described in detail in Section 4.1. The input to the second part, or the Detection phase, consists

of the pattern dictionary output from the preprocessing step and the input protein for which the

motif detection needs to be performed. The detection phase is described in Section 4.2.

The output of the detection algorithm will indicate whether or not the protein sequence contains

a motif, the location of this motif, a score indicating the confidence of the prediction, along with a

list of proteins from the master set that share high sequence homology with the detected motif as

inferred from matching patterns from the dictionary.

4.1 Preprocessing: “Pattern Mining”

The input to this phase is a master set of aligned motifs without spaces. Thus when two motifs

are aligned, either the amino acids in a certain location in the motif match or have a mismatch.

Figure 1 shows an example of a set of aligned motif sequences, where each motif is of length 7; this

is a hypothetical motif that is simply used to illustrate the method. Note that each of these motif

sequences occur at different locations in different proteins as indicated in Figure 1.

Location Sequence Protein
in Seq. 1 2 3 4 5 6 7 Name

14 G V S A S A V Ka RbtR
32 G V S E M T I Ec DeoR
33 G V S P G T I Ec RpoD
76 G A G I A T I Ec TrpR

178 G C S R E T V Ec CAP
205 C L S P S R L Ec AraC
210 C L S P S R L St AraC

Figure 1: Aligned Motifs – An example

Every amino acid in each of the hypothetical

motif sequences in Figure 1 is associated with

a position in the motif. Thus protein Ka RbtR

has amino acid G in location 1, V in location 2,

S in location 3, and so on. We thus represent

the motif by a sequence of pairs, where each

pair <aa, pos> consists of an amino acid and

its position in the motif. We simplify the no-

tation and denote these amino acids by pairs

of symbols such as G1, V2, and S3, respectively.

Ka RbtR would thus be denoted by the set of

pairs {G1, V2, S3, A4, S5, A6, V7}.
A Pattern is simply a set of pairs. Thus, {G1, S3, T6} and {C1, P4, S5, L7} are two

examples of patterns. Protein Ec DeoR contains the pattern {G1, S3, T6}, but does not contain

the pattern {C1, P4, S5, L7}. The length of a pattern is defined as the number of pairs in it.

Thus, {G1, S3, T6} is a pattern of length 3; this pattern is also shared by protein Ec CAP and

Ec RpoD. The support of a pattern is the number of proteins in which it appears. For the 7

motif sequences in Figure 1, the patterns {G1, S3, T6} and {G1, S3, V2} have a support of 3,
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while pattern {G1, S3} has a support of 4. A pattern is called a significant pattern (or a frequent

pattern), if its support is no less than a certain threshold. A significant pattern is called maximal

if it is not contained in any other significant pattern. For a threshold value of 3, the pattern {G1,
S3, T6} is significant, but not maximal, since the maximal significant pattern {G1, I7, S3, T6,

V2} contains it. The pattern mining phase outputs a list of all maximal frequent patterns. This list

will henceforth be referred to as the pattern dictionary. For a threshold value of 3, the dictionary

that will be output for the example in Figure 1 would be that in Figure 2(a). If we lower the

threshold to 2, the dictionary that will be output would be as shown in Figure 2(b).

Pattern Maximal Support
length Patterns

2 { S3, P4} 3
2 { S3, S5} 3
3 { G1, T6, I7} 3
3 { G1, S3, T6} 3
3 { G1, V2, S3} 3

(a) THRESHOLD = 3

Pattern Maximal Support
length Patterns

2 { S3, P4 } 3
3 { G1, S3, V7} 2
5 { G1, V2,

S3, T6, I7 } 2
7 { C1, L2, S3,

P4, S5, R6, L7 } 2

(b) THRESHOLD = 2

Figure 2: Frequent patterns for aligned motifs from Figure 1 with different THRESH-
OLD values.

Algorithm Pattern-Mining
Input : Motif length m, support threshold

T , and list of aligned motifs.
Output : Dictionary L of frequent patterns.
1. Generate all frequent patterns of length 1

and insert into list L1.
2. for i = 2 to m do
3. for every pair of patterns p, q ∈ Li−1

such that |p ∩ q| = i− 1 do
4. Insert pattern p ∪ q into list Ei
5. for every pattern p ∈ Ei do
6. if (support(p) > T ) then
7. Insert p into Li.
8. Remove all subsets of p from Li−1.
9. if (|Li| ≤ 1) then
10. return L = ∪iLi

Figure 3: Pattern Mining Algorithm

The algorithm goes through at most m

(length of the motif) iterations. In the i-th

iteration, it generates all frequent patterns of

length i. In the i-th iteration, the algorithm

first generates a collection of potentially fre-

quent patterns and then their supports are com-

puted to verify if they are frequent enough.

The collection of potential patterns generated

in the i-th iteration consists only of those pat-

terns that are obtained by the set union of two

frequent patterns of length i − 1 that differ in

exactly one item. Even this observation is not

enough to efficiently generate all potentially fre-

quent patterns. We first present the algorithm

in Figure 3 followed by a discussion of the im-

plementation details that make it efficient.
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Implementation Details Enumerative algorithms that generate such a dictionary of frequent

patterns are likely to be inefficient because of the combinatorial explosion in the number of possible

patterns. A simple counting argument shows that if the motif length is denoted by m, there are

20m possible patterns of length one (since there are only 20 amino acids), and O((20m)k) possible

patterns of length k. However, it was recently shown (Parida, Rigoutsos, Floratos, Platt & Gao

2000) that the number of frequent or significant patterns is also bounded by O(mn), where n is the

number of motif sequences in the input.

The naive algorithm of generating all possible patterns of length i and checking whether it is

significant or not will clearly be very inefficient. Our algorithm is based on an algorithm from

the Data Mining by Agrawal et al. (1996), and is able to avoid the generation of most infrequent

patterns by using an efficient screening process to be described below. The basic idea behind the

algorithm by Agrawal et al. is that if a pattern occurs frequently, then every subset of this pattern

must necessarily be frequent. This also implies that if a pattern does not occur frequently enough,

then all supersets of this pattern may be immediately discarded.

In order to make this process efficient, all patterns are stored in a canonical form with their items

in sorted order. For example, the canonical form for a pattern {G1, A2, I4, A5} would be the

sequence {A2, A5, G1, I4}. The sorting is done in a simple lexicographic manner. Furthermore,

the list of patterns are also sorted (again, in a lexicographic order). Once the dictionary is put in

this form, a potentially frequent pattern is generated if two frequent patterns of length i− 1 share

the first i− 2 items in common. But then, since the list is in sorted order, such patterns are going

to be next (or at least close) to each other in the list. To be more precise, a block of k patterns

that share the first i−2 items are going to contribute O(k2) potentially frequent patterns of length

i. Another important observation that is not obvious is that the list does not need to be sorted if

things are processed in a proper order. When a new pattern is generated, it is automatically put at

the end of the list. Because of the order in which things are considered, the list remains sorted. For

the first iteration, the input sequences are scanned and for every amino acid in the input sequences,

either a new pattern of length one is created or the support of an existing pattern is incremented.

The implementation resulting from the algorithm is very fast in practice.

4.2 The Detection Algorithm

The detection algorithm is now quite straightforward and is described in Figure 4. It takes as

input a motif length m, the dictionary of significant patterns L output by the Pattern-Mining

algorithm (Figure 3), an integer k representing the number of best matches required as output,

and the given protein sequence P to be examined for the motif. We slide a window of length m

across the input sequence P . The subsequence of P that lies in the window is then matched against

every significant pattern in L. This is performed in a subroutine called Match. Match returns a

Match-Score that quantifies how well the window matched against the patterns in the dictionary
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L. While it is convenient to think of Match-Score as a number, as explained later, it is in reality a

collection of measures that describe the quality of the match. The k best Match-Scores along with

the corresponding window locations is maintained. Finally, all matches from the list of the k best

matches whose quality exceeds a pre-specified threshold are reported as possible motif locations.

Algorithm Motif-Detection
Input : Motif length m, threshold score T ,

dictionary L of patterns,
number of best matches k,
and input protein sequence P [1..n].

Output : Information about motif(s) detected.
1. Best-Match-Score = Match(P [1..m] , L)
2. for i = 2 to n−m+ 1 do
3. Match-Score = Match(P [i..i+m− 1] , L)
4. Update list of k best matches found so far.
5. for i = 1 to k do
6. if i-th best match-score exceeds T then
7. Report it as possible motif location

Figure 4: Motif Detection Algorithm

Match Parameters In our first imple-

mentation of GYM (Version 1.0) (Gao,

Mathee, Narasimhan & Wang 1999) the fol-

lowing were the parameters that defined

the quality of a match of a window of size

m with a dictionary of proteins: LPM –

the length of the longest pattern matched,

NDP – the number of distinct positions

from the window that matched some pat-

tern, and NPM – the number of distinct

maximal patterns matched.

In the second implementation of GYM

(Version 2.0), the parameter NDP was

replaced by a weighted version called

WNDP. The weighted score uses the

widely used BLOSUM62 matrix (Henikoff & Henikoff 1992). WNDP is computed by taking

the BLOSUM62 matrix score for substituting each amino acid in the pattern by itself. The use of

a weighted score is a natural way to weight patterns in the dictionary, and helped to increase the

sensitivity of the scoring scheme used.

Comparing two matches The selection of the list of parameters and the process of comparing

two matches has been developed and fine-tuned after a close study of experimental data. A signifi-

cant pattern from the dictionary represents a combination of amino acids in specific locations that

(potentially) positively reinforce the motif structure. Thus, the longer the pattern, the greater the

number of positive reinforcements to the structure, and consequently, the better the quality of the

match. By a similar argument, NDP and NPM are also significant.

The Match Procedure In GYM 1.0, a match is said to exceed the threshold (i.e., a HTH motif

is detected) if one of the following is true: (a) LPM is at least 5, OR (b) LPM equals 4, and NPM

is at least 2, OR (c) LPM equals 4, NP equals 2, and NPM is at least 6. In GYM 2.0, a match is

said to exceed the threshold if both the following are true: (a) LPM is at least 4, AND (b) WNDP

is at least 29. The choice of the threshold values in GYM 2.0 is discussed later in Section 5.
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Output of Algorithm The algorithm is designed to output the k locations with the highest

match score, as long as the scores are above a pre-specified threshold. The algorithm will output

the location of the motif as well as the residues in the motif. It also prints the match parameters,

i.e., LPM, NDP, and NPM, for the k best matches. The output includes the set of patterns that

are matched at the predicted motif location. It also indicates which particular residues in the motif

are present in the patterns matched.

Lastly, the output gives a list of proteins from the training set that exhibit the same patterns

found in the motif of the input protein sequence. For new protein sequences, this could provide

clues to the family to which this protein may belong in terms of its function. This information

would become more valuable when it is combined with similar information from other motifs found
in the same protein sequence. We also conjecture that a more careful study of the list of patterns

matched in a protein could help in determining evolutionary relationships between proteins.

Here we provide some justification for the information output by the algorithm. Clearly, the

algorithm is based on detecting the patterns from the dictionary that are present in the given

protein sequence. It thus makes sense to output the set of patterns present. However, also printing

out the list of proteins from the training set that exhibit the same pattern needs to be justified. We

note that a pattern that is generated by GYM during the pattern mining phase is likely to have

structural significance. To support this claim, we point to the recent work of Rigoutsos et al. (1999).

They noted that if a pattern generated by a data mining algorithm appears in the motif region of

several protein sequences, it is often true that the corresponding three-dimensional substructures

defined by the amino acids of that pattern in each of the proteins are also identical, i.e., the

substructures corresponding to the amino acids in the pattern tended to align almost precisely in

three-dimensions. Three-dimensional alignment was demonstrated in (Rigoutsos, Gao, Floratos &

Parida 1999) by showing that the root mean square (RMS) error between substructures involving

elements of the pattern is small (i.e., less than 1.5 Angstroms). They called these substructures as

“3D motifs”.

5 Testing the Implementation

The pattern dictionary algorithm described above was implemented, trained, and tested. We ran

two independent sets of experiments on the protein sequences. One set was run with the assumption

that the helix-turn-helix motif was located within a window of 20 residues; the other set was run

with a window size of 22. Since the differences were minor, we only present the results for a window

size of 22. On the whole, the results for a window size of 20 were subsumed by the results for a

window size of 22, i.e., sometimes the results for a window size of 22 may contain a prediction that

is missed by the results for a window size of 20.

Choice of Master Set We first discuss the choice of the training set, also referred to as the

“Master Set”. In general, the choice of a training set is a non-trivial problem, and could determine
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the success or failure of a motif detection method. Also, automatic generation of a training set is a

difficult problem. We initially used the same training set (91 proteins) as Dodd and Egan (1990),

but subsequently eliminated three proteins. For these three proteins the GYM and DE programs

reported different motif locations, and experimental evidence defining the precise locations was

not available in the literature. We deleted these proteins so that their motifs could not bias the

training set. The three proteins deleted were: (a) SpoOA Bacillus subtillis (Assn. No: 134739):

GYM predicted positions 5 and 219, DE predicted 198; (b) XylR Bacillus subtillis (Assn. No:

98448): GYM predicted position 361, DE predicted 29; (c) pSC101 rep (Assn. No: 281929): GYM

predicted a marginal motif at location 103, while DE failed to predict any motif.

Choice of Threshold Values Next we discuss the choice of various threshold values used by

GYM. The support threshold T in the Pattern-Mining algorithm represents a tradeoff between the

sensitivity and the number of false positives that can be generated by the detection algorithm.

When the threshold is higher, while fewer patterns are generated, the resulting patterns are likely

to have higher statistical significance. On the other hand, if the threshold is lower, sensitivity is

higher since good patterns with lower statistical significance can be detected. The threshold value

used for our experiments was equal to the maximum value that optimized the detection of motifs

from the training set itself, i.e., if the threshold is any higher, then the detection algorithm failed

on some instances from the Master Set itself. For the given training set, we chose a threshold of 4

(in both GYM 1.0 and 2.0).

For the pattern detection algorithm, the minimum threshold for LPM (the length of the longest

pattern) was chosen to be 4. This choice was motivated by the result of the following experiment:

the LPM value for a randomly permuted protein sequence or a randomly permuted motif sequence

was never larger than 3. Furthermore, all sequences from the master set had patterns of length at

least 4. This suggests that LPM of 4 is natural choice for this threshold and is also statistically

significant.

Also, in GYM 2.0, the threshold on WNPD (the weighted score) was chosen to be 29. The

minimum WNPD score for all the (positive) sequences tested was 19. In direct contrast, the

maximum WNDP score from the Negates set and from a large number of randomly permuted

motif sequences (permuted from the positive sequences) turned out to be 37. Thus a clear choice

of the threshold was not forthcoming from such an experiment. The following procedure was then

used to decide on a choice of 29 for the threshold: for every choice of threshold value in the range 19

through 37, we plotted the number of false positives and (overall) false negatives. As was expected,

as the threshold value was increased, the number of false positives increased and the number of

false negatives decreased. A threshold value of 29 represents the best balance of the conflicting
interests.

Finally, we chose to output only the two (i.e., k = 2) best locations detected by GYM; choosing

k = 1 was inadequate because there are a number of proteins with more than one helix-turn-helix
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motif.

Choice of Test Set Since we wanted to test the performance of the GYM program on a diverse

set of proteins, the GYM program was then tested on several families of proteins. Some of the

sub-families (such as the SigE sub-family) are not represented in the training set. The sequences

were downloaded from GenBank Protein Sequence Database maintained by the National Center for

Biotechnology Information (NCBI). For the helix-turn-helix motif, we ran the GYM 1.0 program

on 675 protein sequences and GYM 2.0 on 721 sequences.

Of the input sequences, GenBank had the motif location annotated in only about 36% of the

cases. However, the database had no information on how these locations were determined (What

program was used to determine the motif location? Were any laboratory experiments performed

to verify the claim?). Thus we consider these annotations unverified, as are the predictions of our

program. In order to confirm our results with an independent program, we also implemented the

score matrix method described by Dodd and Egan (1990). For the sake of convenience, we refer

to this program as DE, and we refer to our program as GYM. Among the proteins selected, 93 are

proteins involved in metabolic pathways and other enzymatic reactions. These are presumed not

have a helix-turn-helix motif, since they are unlikely to bind to DNA. We refer to this family as

the “Negates” family (see section 6.3).

Overview of Experimental Results The programs GYM 1.0 and DE disagreed on 68 (approx-

imately 10%) of the 675 sequences. Of these disagreements 23 were from the negates set, indicating

a large number of false positives for our program. The programs GYM 2.0 and DE disagreed on

61 (approximately 8%) of the 721 sequences. However, the number of disagreements in the negates

set were significantly reduced to 7. Among the disagreements in both sets of experiments, 23 of

them were from the “Sigma” family (sigma factor proteins). As discussed in section 6.2, there is

evidence to support the helix-turn-helix predictions made by our program for these 23 sigma factor
sequences.

It is interesting to note that the DE program, by virtue of its design, makes a sharper distinction

between its first choice and its second choice in terms of the weighted scores. This is not true of

the GYM program. While this was an asset in dealing with proteins that had two helix-turn-helix

motifs, it could be considered a drawback in other cases.

The results are discussed in detail in Sections 6.2- 6.4. The scores are first summarized in
Figure 5 (experiments with GYM 1.0) and in Figure 6 (experiments with GYM 2.0). The first

column specifies the family of proteins tested. The next two columns state the number of sequences

tested and the number on which the two programs agreed on a motif location. The two programs are

said to agree if they have a common location within their top two choices and if the corresponding

scores are above the threshold. The next two columns indicate how many of the sequences tested

had published annotations for the motif location and how many of these matched with GYM’s
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predictions. Once again, an annotation is matched if one of the top two locations (if above the

threshold) are the same. While this was not known before testing, we noticed that of the 675

proteins analyzed in the first set of experiments, only 459 of the detected motifs were unique, i.e.,

216 of the sequences had motifs that were identical to the motifs in other sequences. Even if these

are discounted, the overall results show that out of 459 (= 675 − 216) sequences tested, the two

programs agreed on 630− 216 = 414 (about 90%) sequences.

We also modified the GYM 1.0 program to detect homeodomain motifs. An appropriately

modified version of the DE program was also used. After training the two programs with 121

sequences, we ran the two programs on 524 protein sequences. There was overwhelming agreement

between the two programs. The results are summarized in Figures 5 and 6.

Motif Protein How Many GYM = DE How Many GYM =
Family Tested Agree Annotated Annotated

Helix-Turn-Helix Master 88 88 (100%) 13 13
Motif Sigma 304 270+23 (96%) 96 82

(Window Size = 22) Negates 93 70 (75%) 0 0
LysR 127 125 (98%) 95 93
AraC 63 54 (86%) 37 29
Total 675 607+23 (93%) 241 217 (90%)

Homeodomain Master 121 121 (100%) 121 121
Motif Rest 403 390 (97%) 385 370

(Window Size = 60) Total 524 511 (98%) 506 491 (97%)

Figure 5: Summary of Motif Detection Results (GYM 1.0)

Motif Protein How Many GYM = DE How Many GYM =
Family Tested Agree Annotated Annotated

Helix-Turn-Helix Master 88 88 (100%) 13 13
Motif Sigma 314 284+23 (98%) 96 82

(Window Size = 22) Negates 93 86 (92%) 0 0
LysR 130 127 (98%) 95 93
AraC 68 57 (84%) 41 34
RReg 116 99 (85%) 57 46
Total 721 653+23 (94%) 289 255 (88%)

Figure 6: Summary of Motif Detection Results (GYM 2.0)

6 Results and Discussion

Now we discuss in detail the results on each individual family of proteins from the test set.
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6.1 Master Set

The GYM and DE programs were first tested on the 88 sequences from the Master Set (the same

set they were trained with). The two programs agreed on the locations of the motif in all of them.

6.2 Sigma Family

The proteins selected for this set are all sigma factors, which are known to be DNA-binding proteins.

The sigma subunit of eubacterial RNA polymerase is required for recognition of promoter sequences

and initiation of transcription from those sites (Lonetto, Gribskov & Gross 1992). Two major

subfamilies of the sigma family of proteins have been identified: (i) the σ70 or RpoD subfamily,

which is used by most of the “housekeeping” genes expressed during exponential growth, and (ii)

the alternative sigma factor subfamily, including RpoS, RpoE, FliA, etc., which are involved in

coordinated expression of sets of genes during a change in metabolic or developmental state.

The results for this set of proteins were quite interesting. Both GYM 1.0 and 2.0 disagreed with

the predictions of DE for about 10% of the sequences tested. On closer inspection we found that

the predicted locations for 23 of them were about 90-93 residues apart, and that most of them were

from the RpoS subfamily. Members of the sigma family are known to have two helix-turn-helix

motifs (Lonetto, Gribskov & Gross 1992; Gruber & Bryant 1997) in regions 3.1 and 4.2, which

are about 90-93 residues apart. For the RpoS subfamily, the GYM program detected the motif in

region 3.1, while DE picked the one in region 4.2, thereby accounting for the disagreements. It is

possible that there is difference in the strength of the motifs in the two regions. It is also interesting

to note that the motifs in region 3.1 were not represented in the master set but GYM was still able

to detect them.

6.3 Negates Family

Among the proteins analyzed in the two sets of experiments, 93 were specifically chosen as proteins

involved in metabolic pathways and other enzymatic reactions. We presumed that these proteins are

unlikely to have a DNA-binding function, and consequently are unlikely to have a helix-turn-helix

motif. We refer to this set of proteins as the “negates” family.

Of these 93 proteins, GYM 1.0 predicted a potential helix-turn-helix motif for 23. We initially

interpreted these results as “False Positives”; however, inspection of the crystal structure of one of

these proteins (Adenylosuccinate Synthetase from Escherichia coli, Assn. No: 1942847) revealed

three α-helices at locations 183-191, 193-201, and 204-214. The GYM program predicted a motif at

locations 188-219, which includes the last two α-helices. This demonstrates that the GYM program

is able to detect structural motifs with high sensitivity, and that a helix-turn-helix structure can

occur without guaranteeing DNA-binding function for the motif region.

It is significant that the use of the weighted scores in GYM 2.0 and a careful choice of the

corresponding weighted score threshold reduced the “False Positives” to a mere 7%.
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6.4 LysR, AraC and RReg families

The proteins from the LysR family (Schell 1993) are predominantly similar-sized, autoregulatory

transcriptional regulators. In response to different inducers, members of this family of proteins

activate divergent transcription of linked target genes or unlinked regulons encoding extremely

diverse functions. Mutational studies and amino acid sequence similarities have identified a DNA-

binding domain employing a helix-turn-helix motif (residues 1-65).

The AraC/XylS (Gallegos, Schleif, Bairoch, Hofmann & Ramos 1997) family of transcriptional

regulators includes proteins and predicted polypeptides derived from translation of DNA sequences.

Members of this family are about 300 amino acids long and have three main regulatory functions:

carbon metabolism, stress response, and pathogenesis.The conserved region contains all the ele-

ments required to bind DNA target sequences and to activate transcription from cognate promot-
ers.

The RReg family consists of response regulators of the two-component regulatory system super-

family involved in sensory transduction, with NtrC being the prototypic member. These response

regulators are characterized by a conserved N-terminal domain of approximately 125 amino acids,

central domain that is involved in interaction with sigma factors and a C-terminal with helix-turn-

helix motif (Hoch & Silhavy 1995).

GYM 1.0 was tested only on the AraC and LysR families. GYM 2.0 was tested on all the three

families – LysR, Arac and RReg.

The predictions of GYM 1.0 agreed with those from DE much more for the LysR family than

the AraC family. Among the disagreements in the LysR family was one (BlaA Sc; Assn. No:

461627) for which the published location matches GYM’s strong prediction for a motif at location

17; whereas, neither of the top two DE predictions included this location. The other disagreement

in the LysR family was one (yofA Bs; Assn. No:2634236) for which both programs had marginal

scores at different locations.
Among the disagreements in the AraC family, there were several that were displaced by about

60 residues. This raises the question whether there is a second helix-turn-helix structure in that

location (as observed in the Sigma family). There is evidence to suggest that this region containing

the second motif may have biological significance (Gallegos, Schleif, Bairoch, Hofmann & Ramos

1997). It is also interesting to note that the average “score” given by both programs was relatively

low for members of the AraC family, suggesting somewhat different characteristics for the helix-

turn-helix motifs in this family.

The performance of GYM 2.0 on RReg was very similar to that on AraC in the sense that its

predictions agreed to about 85%. Just as with GYM 1.0, GYM 2.0 agreed with the predictions of

DE much more for the LysR family.
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6.5 Homeodomain Motif

Both GYM 1.0 and DE programs were retrained with homeodomain motifs (60 residues in length)

from 121 proteins to generate a corresponding pattern dictionary. The two programs agreed with

each other’s predictions and with the database annotations approximately 97% of the time. Such a

high percentage of agreement may arise because homeodomain motifs are found in closely related

proteins, or because the proportion of amino acids conferring DNA-binding specificity (amino acids

that are different) is much smaller than the proportion conferring α-helical structure (amino acids

that are similar). We are unable to offer any explanations for the cases where the predictions of

the two programs differed. The choice of the threshold for LPM was 8.

7 Further Refinements to GYM

7.1 Refining the Pattern Dictionary

The occurrence of false positives in GYM’s results are likely to be the result of the generation of

“spurious” patterns in the pattern dictionary. It is possible that a pattern is detected because the

proteins are related and not because this pattern reinforces a motif structure. With the goal of

reducing the number of false positives even further, the pattern dictionary was carefully inspected.

Any pattern that is seen in a protein from the negates set is clearly a spurious pattern. However,

it is not possible to simply eliminate such patterns since a subpattern of this pattern may be

significant and eliminating it could increase the number of false negatives. In order to address this

issue, we replaced every spurious pattern in the pattern dictionary by every subpattern of length

1 less than that of the spurious pattern. Then we incrementally eliminated each spurious pattern

to see if it affected the number of false positives and false negatives. After pruning the dictionary

using the above procedure, we were able to reduce the number of false positives from 7% to under

4% (without changing the number of false negatives. These changes will be incorporated in GYM

Version 3.0 to be released later this year.

7.2 Mutational Data

Substitutions of amino acids within the motif can diminish or enhance the strength of the motif.

The pattern dictionary method gives us the unique ability to predict the effect of such substitutions.

By observing the changes in the set of patterns matched (new patterns may be matched, while old

matches may be lost), the effect of the substitution can be quantified. There is data available in the

literature describing the effect of single amino acid changes within the helix-turn-helix motifs for

specific proteins (Pfau, Arvidson & Youderian 1994; Kim, Makino, Amemura, Nakata & Shinagawa

1995; Siegele, Hu, Walter & Gross 1989; Bushman, Shang & Ptashne 1989). Work is underway to

analyze such data using the strategy described above.
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8 Conclusions

The GYM program has excellent ability to predict helix-turn-helix motifs. It appears to have

increased sensitivity over the DE program and can detect motifs with greater differences from the

training set. On the negative side, the GYM 1.0 program appears to have a higher number of false

positives; this may result from detection of closely placed α-helices that are not directly involved

in DNA binding. The improved GYM 2.0 showed significantly lower number of false positives as

compared to GYM 1.0. This was achieved by using a score weighted by the use of BLOSUM62

substitution matrix, and by careful choices of threshold values resulting from sound statistical

experiments. Modification of the GYM program to detect the longer homeodomain motifs was also

successful and resulted in very high agreement with DE and the database sequence annotations.

The previous statistical methods for motif detection are limited in that the sample training set

must contain sufficient representation of amino acid substitutions that preserve or reinforce the

particular structure and function of the motif. Some combinations of residues in specific locations

can reproduce that structure; whereas others cannot. Until we can model these complex molecular

interactions, the next best thing will be to detect and enumerate successful combinations of residues

that form such motifs.

Using GYM via the Internet GYM 2.0 is now available for use at

http://www.msci.memphis.edu/˜giri/GYM2/welcome.html
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