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A B S T R A C T   

Given the negative trajectories of early behavior problems associated with ADHD, early diagnosis is considered 
critical to enable intervention and treatment. To this end, the current investigation employed machine learning 
to evaluate the relative predictive value of parent/teacher ratings, behavioral and neural measures of executive 
function (EF) in predicting ADHD in a sample consisting of 162 young children (ages 4–7, mean age 5.55, 82.6 % 
Hispanic/Latino). Among the target measures, teacher ratings of EF were the most predictive of ADHD. While a 
more extensive evaluation of neural measures, such as diffusion-weighted imaging, may provide more infor-
mation as they relate to the underlying cognitive deficits associated with ADHD, the current study indicates that 
measures of cortical anatomy obtained in research studies, as well cognitive measures of EF often obtained in 
routine assessments, have little incremental value in differentiating typically developing children from those 
diagnosed with ADHD. It is important to note that the overlap between some of the EF questions in the BRIEF, 
and the ADHD symptoms could be enhancing this effect. Thus, future research evaluating the importance of such 
measures in predicting children’s functional impairment in academic and social areas would provide additional 
insight into their contributing role in ADHD.   

1. Introduction 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a develop-
mental disorder, characterized by symptoms of inattention, hyperac-
tivity and impulsive behavior (see Mahone and Denckla, 2017 for a 
historical overview). The National Resource Center on ADHD (NRC) 
currently indicates that fifteen million individuals have ADHD in 
America. ADHD has a worldwide prevalence of 7.2 % in children 
(Wolraich et al., 2019). Early identification and treatment of ADHD is 
considered critical due to the serious consequences of ADHD, including 
but not limited to academic/school and social difficulties (Hoza, 2007; 
Moffitt et al., 2002; Ros and Graziano, 2018; Shaw et al., 2003). Previous 
ADHD research implicates the important role of executive function (EF) 
processes (Barkley, 1997; Sergeant, 2000; Sonuga-Barke, 2002), with 
strong observed links between EF deficits and academic (Biederman 
et al., 2004; Blair and Razza, 2007; Clark et al., 2010) and social diffi-
culties (Hill, 2004; Riggs et al., 2006). Machine learning techniques can 
leverage these important measures as a means to help identify 1) the 
most important predictors critical for successful classification of ADHD, 

and 2) provide objective measures of the relative clinical utility of target 
predictors. To this end, the current study evaluated the predictive utility 
of EF measures in three categories, namely parent/teacher ratings of EF, 
behavioral performance in EF tasks, and neural measures of cortical 
thickness in brain regions that support EF in a sample of 162 children 
between ages 4–7 (mean age 5.5 years). 

An important advantage of multivariate modeling approaches in 
cognitive and translational neuroscience research has been their ability 
to combine information from data in a distributed fashion. As opposed to 
traditional univariate approaches, where data (such as signal intensity 
from functional MRI) are averaged over a specific region of interest 
(ROI), and compared to the mean signal in another ROI to assess po-
tential differences in magnitude of neural activation, multivariate ap-
proaches use data from distributed patterns of a neural measure (e.g., 
brain activity or anatomical properties of the brain), and apply 
computational models to the data that extend beyond conducting sta-
tistical analyses on averages [for reviews see (Davis and Poldrack, 2013; 
Haxby, 2012; Haxby et al., 2001; Norman et al., 2006; Yang et al., 
2012)]. While computationally more challenging, this latter approach 

* Corresponding author at: Center for Children and Families, Florida International University, 11200 SW 8th St, Miami, FL, 33199, United States. 
E-mail address: igillam@fiu.edu (I. Öztekin).  
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enables researchers to answer key questions regarding mental repre-
sentations (e.g., what type of information is represented in different 
brain regions and at different stages of cognitive processing) in cognitive 
neuroscience research (Haxby et al., 2001; Kuhl et al., 2011; Liang et al., 
2013; Norman et al., 2006; Oztekin and Badre, 2011; Polyn et al., 
2005)], and provides unique opportunities for clinical diagnosis and 
prediction of disorder or symptom severity, as well as behavioral out-
comes associated with specific disorders. Despite this promising poten-
tial for such computational, multivariate approaches to advance 
translational neuroscience, significant challenges and pitfalls have pre-
vented the development of generalizable methods and approaches that 
can be applied in clinical settings [see (Arbabshirani et al., 2017; 
Kassraian-Fard et al., 2016; Varoquaux, 2018; Varoquaux et al., 2017; 
Woo et al., 2017)]. 

One commonly recognized obstacle is small sample size, which leads 
to overfitting. Overfitting refers to the modeling of noise in the data 
rather than the underlying pattern of interest, which results in good 
performance on the training data, but poor performance on previously 
unseen data. Accordingly, overfitting is a major obstacle in generating a 
valid predictive model that can produce generalizable results for clinical 
diagnosis, and which can be used across a variety of clinical settings 
(Arbabshirani et al., 2017; Foster et al., 2014; Kassraian-Fard et al., 
2016; Pulini et al., 2019; Varoquaux, 2018; Varoquaux et al., 2017; Woo 
et al., 2017). Indeed, most neuroscience studies suffer from small sample 
sizes (Arbabshirani et al., 2017; Foster et al., 2014; Kassraian-Fard et al., 
2016; Pulini et al., 2019; Varoquaux, 2018). Notably, the current 
investigation leveraged a data set with a larger sample size (162 par-
ticipants) that provided a unique opportunity to leverage predictive 
modeling that utilized a machine learning approach. 

Another salient pitfall centers around the selection of features in the 
model. Two important factors stand out with respect to this obstacle 
(Arbabshirani et al., 2017; Foster et al., 2014; Woo et al., 2017). The first 
is unbiased feature selection. In their critical review of predictive 
modeling approaches for clinical diagnosis, Arbabshirani et al. (Arbab-
shirani et al., 2017) and Woo et al. (Woo et al., 2017) point out that it is 
common for predictive modeling studies to use a group analysis over the 
whole dataset to select appropriate features for the classifier. This, 
however, constitutes “double dipping” and produces biased results. In 
our approach, our feature selection was performed a priori, based on the 
ADHD literature that highlights the importance of executive function for 
ADHD, and prior research on the neurobiology of executive function. 
The second obstacle is the need for theoretical motivation for selection of 
features. In addition to selecting features in an unbiased manner, several 
critique articles (Foster et al., 2014; Kassraian-Fard et al., 2016; Woo 
et al., 2017) have put forth the importance of theoretical relevance of 
the features in the model, especially in the context of clinical diagnosis. 
Accordingly, in the current investigation, we limited our features to 
those that are theoretically relevant, namely the cognitive and neuro-
biological measures of executive function. 

1.1. Current study 

The ADHD Heterogeneity of Executive Function and Emotion 
Regulation Across Development (AHEAD) study aims to characterize the 
heterogeneity of well-established predictors of ADHD among young 
children (ages 4-to-7, mean age 5.5 years) across multiple levels of 
analysis. It thus uniquely provides multiple measures of executive 
function, which we focus in the current investigation, at both behav-
ioral/cognitive and neural levels at an age-range where early diagnosis 
of ADHD is critically important. Notably, several research groups have 
previously applied machine learning to better characterize the hetero-
geneity of the behavioral profile in ADHD [for instance see (Karalunas 
et al., 2019; Qureshi et al., 2016)]. However, to date, none of the at-
tempts have been adapted for clinical diagnosis in children with early 
diagnosis—i.e., in the pre-K age range during which initial contact with 
educators and clinicians typically occurs. Our AHEAD study provides a 

unique data set with the potential for a significant contribution in this 
domain. 

The AHEAD study is among the first to scan children with ADHD as 
young as 4–7 years. Indeed, only a few imaging studies have evaluated 
the neurobiology of ADHD in this young age range. Jacobson and col-
leagues (Jacobson et al., 2018) evaluated structural scans from 90 4–5 
year-old preschoolers. They noted volume reductions in bilateral frontal, 
parietal and temporal cortices for children with ADHD compared to 
controls. Furthermore, specific subregions of the frontal cortex were 
significantly correlated with ADHD symptom severity. In another 
investigation, Rosch and colleagues (Rosch et al., 2018) evaluated 
subcortical volumes in 87 4–5 year-old preschoolers, and observed the 
largest reductions in the caudate, globus pallidus, and the thalamus for 
children with ADHD. The age range in majority of the other existing 
studies is usually 9 or older, with few studies also sampling an age range 
of 7 and above (Fair et al., 2012; Karalunas et al., 2014, 2019; Qureshi 
et al., 2017). Given that early diagnosis of ADHD is critical for informing 
treatment, the current investigation provides a unique opportunity to 
assess whether predicting ADHD from scans is feasible in this age range. 

1.1.1. Executive function and ADHD 
Importantly, previous research points to the critical role of executive 

function (EF) processes in ADHD (Barkley, 1997; Sergeant, 2000; 
Sonuga-Barke, 2002). Crucially, a strong relationship has been noted 
between EF deficits and academic (Biederman et al., 2004; Blair and 
Razza, 2007; Clark et al., 2010), as well as social difficulties (Hill, 2004; 
Riggs et al., 2006). With respect to the neurobiological markers that 
support EF, previous research notes the functional interactions among 
lateral frontal, inferior frontal/insular (Aron et al., 2004), medial fron-
tal/anterior cingulate/pre-SMA (Aron et al., 2004; Bunge and Wright, 
2007; Fedota et al., 2014; Miller and Cohen, 2001; Rushworth et al., 
2005), lateral parietal (Corbetta and Shulman, 2002), and dorsal striatal 
(Morein-Zamir and Robbins, 2015) regions of the brain (Hart et al., 
2014). Accordingly, our machine learning approach in this investigation 
focuses on the cognitive behavioral and neural measures of executive 
function, with the primary goal of assessing the utility of predicting 
ADHD diagnostic category from the target measures of executive func-
tion. Within this overarching goal, we pursued two aims: 1) to evaluate 
the predictive value of behavioral and neural correlates of executive 
function, and 2) to determine the relative importance of each measure in 
predicting ADHD diagnostic category. Given the implicated importance 
of executive function in ADHD, we hypothesized that our models would 
successfully predict ADHD diagnostic category. 

2. Materials and methods 

2.1. Participants and recruitment 

Children and their caregivers were recruited from local schools and 
mental health agencies via brochures, radio and newspaper ads, and 
open houses/parent workshops. Legal guardians contacted the clinic 
and were directed to the study staff for screening questions to determine 
eligibility. For the ADHD sample, if the parent (1) endorsed clinically 
significant levels of ADHD symptoms (six or more symptoms of either 
Inattention or Hyperactivity/Impulsivity according to the DSM-5 OR a 
previous diagnosis of ADHD), (2) indicated that the child is currently 
displaying clinically significant academic, behavioral, or social impair-
ments as measured by a score of 3 or higher on a seven-point impairment 
rating scale (Fabiano et al., 2006), and (3) were not taking any psy-
chotropic medication, the parent and child were invited to participate in 
an assessment to determine study eligibility. For the typically devel-
oping sample, if the parent (1) endorsed less than 4 ADHD symptoms 
(across either Inattention or Hyperactivity/Impulsivity according to the 
DSM-5), (2) less than 4 Oppositional Defiant Disorder (ODD) symptoms, 
and (3) indicated no clinically significant impairment (score below 3 on 
the impairment rating scale), the parent and child were invited to 
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participate in an assessment to determine study eligibility. Participants 
were also required to be enrolled in school during the previous year, 
have an estimated IQ of 70 or higher, have no confirmed history of an 
Autism Spectrum Disorder, and be able to attend an 8-week summer 
treatment program (Graziano et al., 2014) prior to the start of the next 
school year (ADHD groups only). Due to the young age of the sample, 
only disruptive behavior disorders were extensively examined for 
diagnostic purposes. 

During intake, ADHD diagnosis (and comorbid disruptive behavior 
disorders) was assessed through a combination of parent structured 
interview (Computerized-Diagnostic Interview Schedule for Children 
(Shaffer et al., 2000) and parent and teacher ratings of symptoms and 
impairment (Disruptive Behavior Disorders Rating Scale, Impairment 
Rating Scale (Fabiano et al., 2006) as is recommended practice (Pelham 
et al., 2005). Specifically, the DBD rating scales and diagnostic interview 
were combined using an “or rule,” which identifies the presence of a 
symptom if endorsed by either informant while clinically significant 
problems at home and school were defined by at least a “3” on a “0 to 6” 
impairment rating scale (Bird et al., 1992; Sibley et al., 2016). In-
dividuals administering the DISC were clinical graduate students 
(masters and doctoral level) who were trained and supervised by a 
licensed psychologist (3rd author). Dual Ph.D. level clinician review was 
used to determine diagnosis. Of relevance to the current study, the 
BRIEF rating scale (parent and teacher) was not used for any diagnostic 
purposes. The final sample included 162 children (87 with ADHD, and 
75 healthy developing controls). Among the participants with ADHD, 61 
(70 %) had a comorbid ODD or Conduct Disorder (CD) diagnosis. 
Parental consent and assent was obtained in accordance with the Office 
of Research Integrity at Florida International University. 

2.2. Measures of executive function (EF) 

2.2.1. Parent/teacher ratings of EF 
We utilized the Emergent Metacognition Index (MCI) t-score from 

the Behavior Rating Inventory of Executive Function (BRIEF, BRIEF-P, 
(Isquith et al., 2004)) for our measure of parent and teacher ratings of 
executive function. The MCI is thought to reflect the ability to maintain 
information and/or activities in working memory, as well as to plan and 
organize problem-solving approaches. In the BRIEF Preschool, The MCI 
is composed of the Working Memory and Plan/Organize scales. In the 
BRIEF Child, the MCI is composed of the Initiate, Working Memory, 
Plan/Organize, Organization of Materials, and Monitor scales. In our 
sample, BRIEF-P was completed for 115 of our participants (ages 4–5; 
Chronbach’s alpha for MCI .976 for BRIEF-P Teacher and .970 for 
BRIEF-P Parent), and BRIEF Child was completed for 47 of our partici-
pants (ages 6–7; Chronbach’s alpha for MCI .724 for Teacher and .978 
for Parent). 

2.2.2. Behavioral/cognitive measures of EF 
Our dataset allowed us to evaluate performance in three tasks that 

measure executive function: 
i). The Flanker Task. The Flanker Task of Inhibitory Control and 

Attention is part of the EF assessments utilized in the NIH Toolbox- 
Cognition battery (http://www.nihtoolbox.org). This task measures the 
participant’s responses under conditions where the surrounding stimuli 
and target are either congruent or incongruent. We used the Uncorrected 
Standardized Score as our dependent measure for this task. 

ii). The Dimensional Change Card Sorting Task (DCCS). The DCCS is 
also part of the Cognition battery of the NIH Toolbox. Participants sort 
objects by color or shape. 

Both the Flanker and DCCS tasks have been validated with children 
as young as age 3 (Zelazo et al., 2013). The Uncorrected Standardized 
Score was used as the dependent measure. 

iii). Head-Toes-Knees-Shoulders (HTKS) Task. HTKS (Cameron Ponitz 
et al., 2008) is a brief and widely-used task with young children ages 4–7 
that assesses multiple aspects of EF. This task implements pairings of 

behavioral rules: “touch your head” and “touch your toes”, “touch your 
shoulders” and “touch your knees”. The children first respond naturally, 
and then are asked to switch the rules by responding in the opposite 
manner. Graziano and colleagues (Graziano et al., 2015) have previ-
ously established the ecological validity of this task in young children 
with ADHD. Participants’ total score on the task was used as the 
dependent measure. 

2.2.3. Neurobiological measures 
All imaging was performed using a research-dedicated 3 T Siemens 

MAGNETOM Prisma MRI scanner (V11C) with a 32-channel coil located 
on the university campus. Children first completed a preparatory phase 
using realistic mock scanner in the room across the hall from the mag-
net. Here they were trained to stay still, and were also acclimated to the 
enclosed space of the magnet, the back projection visual presentation 
system, and to the scanner noises (in this case, presented with head-
phones). When they were properly trained and acclimated, they were 
moved to the magnet. In the magnet, during the structural scans, chil-
dren watched a child-friendly movie of their choice. Ear protection was 
used, and sound was presented through MRI compatible headphones. 

Structural MRI scans were collected using a 3D T1-weighted 
sequence (axial; 1 × 1 × 1 mm, 7 min 14 s) with prospective motion 
correction (Siemens vNAV; Tisdall et al., 2012), according to the 
Adolescent Brain and Cognitive Development (ABCD) protocol (Hagler 
et al., 2019). To provide a semi-automated parcellation of the cerebral 
cortices and volume of subcortical structures, we constructed 
two-dimensional surface renderings of each participant’s brain using 
FreeSurfer (Dale et al., 1999; Fischl and Dale, 2000). We computed 
cortical thickness and subcortical volume as part of the standard Free-
Surfer reconstruction pipeline (Rohde et al., 2004), as this has been 
shown to have high correspondence to histological measurements (Yeh 
et al., 2010). 

2.3. Quality control of magnetic resonance imaging scans 

Movement artifacts in T1-weighted MRI scans are common, espe-
cially in pediatric populations in this age range, and especially in chil-
dren with ADHD. Fortunately, FreeSurfer is robust to movement-related 
artifacts and, except in extreme cases, is able to accurately identify in-
tensity differences between white matter and grey matter inherent in the 
T1-weighted image. In some cases, however, manual intervention is 
necessary. In this manual intervention, each individual MRI scan is 
inspected, and in cases where the program does not adequately identify 
the appropriate regional boundaries, manual edits are employed. We 
also visually rated each T1-weighted image on a seven-point scale 
ranging from “Poor = 1” to “Excellent = 4”, with allowances for half- 
points (e.g., 3.5). Scans for both groups were generally rated “Very 
Good” to “Excellent”, with an average of 3.61 for the ADHD group, and 
3.54 for the typical control group. There were no significant group dif-
ferences for the quality of the scans, t(145.46) = − 0.72, p = 0.47. 

2.4. Machine learning approach 

2.4.1. Features 
Following the strong link between ADHD and executive function 

observed in prior research, our features constitute parent/teacher rat-
ings of executive function (the Emergent Metacognition Composite score 
from BRIEF), performance in the three tasks that measure executive 
function (Flanker task, Dimensional Card Sorting task, HTKS task), and 
cortical thickness measures in the subregions of the frontal (superior 
frontal gyrus, middle frontal gyrus, inferior frontal gyrus- pars oper-
cular, inferior frontal gyrus- pars triangularis, inferior frontal gyrus- pars 
orbitalis, insula, anterior cingulate, middle-anterior cingulate, middle- 
posterior cingulate, rectus) and parietal (superior parietal lobule, 
intraparietal and transverse parietal sulci, angular gyrus, supramarginal 
gyrus, and precuneus) cortices in both hemispheres (see Supplementary 
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Figs. 1–3). In addition to these target cortical thickness measures, we 
further conducted exploratory follow-up analyses on cortical volume in 
these regions (Supplementary Fig. 3), as well as subcortical volume in 
the cerebellum, caudate, putamen, hippocampus and the amygdala 
(Supplementary Fig. 4). Finally, we also evaluated two demographic 
features, namely age and child sex. 

2.4.2. Model construction and assessment 
We employed the scikit-learn (https://scikit-learn.org/stable/) open 

source machine learning platform for constructing our models. In order 
to evaluate feature importance from classifier coefficients, we adapted a 
Support Vector Machine classifier with a linear kernel. For model vali-
dation, we leveraged the built-in cross-validation function of the scikit- 
learn library. In this approach, the data is split into training and test sets. 
This is repeated five times, using different portions of the data as 
training and test. Specifically, in each iteration, the classifier is tested on 
a portion of the data set that it did not see during training, following the 
recommended approach in the field (e.g., Varoquax, 2018; Varoquax 
et al., 2017). Performance was then evaluated with the commonly 
employed accuracy scores, as well as precision, recall, and area under 
the receiver operator characteristic curve (ROC AUC) metrics. Following 
the recommended practice in the field, our primary assessment of sta-
tistical significance employed permutation tests (Combrisson and Jerbi, 
2015; Noirhomme et al., 2014; Pereira et al., 2009). 5000 permutations 
were employed for each evaluated model. Along with permutation tests, 
we also report two baseline accuracy levels (see Table 1) as additional 
benchmark comparisons, namely the baseline for ADHD in our current 
sample, and the baseline for ADHD in the population. Our dataset con-
sists of 87 participants with ADHD, and 75 typically developing (TD) 
children. Accordingly, the baseline for the present data set is .537. The 
population baseline, derived from the pooled worldwide prevalence of 
ADHD among children (Wolraich et al., 2019) is .072. In addition to 
Support Machine Vector classifiers, we also report performance metrics 
from two additional classifiers, namely Naïve Bayes and Random Forest 
Classifiers (see Supplementary Table 1). 

3. Results 

Below we assess our target measures and their predictive utility for 
ADHD classification. Our analytic plan follows a two-step approach to 
determine model performance and relative predictive utility of our 
target features: 1) Feature Elimination. To this end, we ran multiple 
models and compared the performance metrics across the models. This 
approach pursued four categories of models, i) a model including the 
demographics features (age and sex), ii) a model including the parent/ 
teacher ratings of EF (Emergent Metacognition Composite t-score from 
BRIEF), iii) a model including the behavioral/cognitive measures of EF 
(including scores from HTKS, Flanker and Dimensional Card Sorting 
tasks), and iv) neural models assessing cortical thickness measures in our 
target regions for EF. 2) Feature Importance Rankings. Within each model, 
we were able to further assess the relative importance of our features for 
predicting diagnostic category. We utilized the coefficients of our linear 
SVM classifier as an index for the relative importance across our features 

within each model. 

3.1. Predicting ADHD diagnostic category 

For each model, a Support Vector Machine classifier with a linear 
kernel was trained to distinguish the two diagnostic categories (ADHD 
diagnosis absent, ADHD diagnosis present) using the target features. We 
scaled our features using the MinMaxScaler function built in the sci-kit 
machine learning library. To evaluate the performance of our models, 
we conducted cross validation across five indices (k-folds). Adapting 
five-folds follows the recommendation of Varoquax and colleagues 
(Varoquaux, 2018; Varoquaux et al., 2017), whose work suggested 
random splits with 20 % data yield the best cross validation results in 
machine learning applications in neuroscience research. In machine 
learning research, performance of classifiers is usually reported as the F1 
score, which is the harmonic mean of precision and recall. For better 
interpretability, we report performance here in terms of accuracy with 
respect to the ADHD class, but include F1 scores in the tables. 

To evaluate feature importance rankings, we leveraged the magni-
tude of classifier coefficients across the target features in the model. 
Weights obtained from the resultant classifier coefficients of linear SVM 
classifiers can be utilized to infer feature importance rankings within the 
assessed model. Thus, the average classifier coefficients across the five 
cross-validation indices provided an index for the feature importance 
rankings for each model evaluated. Fig. 1 illustrates the feature impor-
tance rankings and classifier performance across the four sets of models, 
described in more detail below. 

3.1.1. Model 1: demographics 
The demographics model included two features, child age and sex. 

Across the five cross-validation indices, this model yielded an average 
accuracy of .574 (p < .047), with child sex yielding classifier coefficients 
of higher magnitude than age (see Fig. 1). Higher coefficients for child 
sex presumably arise from the disproportionate sex distribution across 
the two groups, with boys more represented in the ADHD group (74 %) 
compared to the TD group (61 %). 

3.1.2. Model 2: parent and teacher ratings of executive function 
Our second model included the Emergent Metacognition Index t- 

scores from the BRIEF parent and BRIEF teacher ratings. This model 
achieved an average accuracy score of .926 (p < .001), with the teacher 
ratings yielding higher classifier coefficients compared to parent ratings 
(Fig. 1). 

3.1.3. Model 3: behavioral/cognitive measures of executive function 
Our EF tasks included the DCCS, the Flanker task, and the Head-toes 

Knees-Shoulder Task (HTKS). This model leveraged the behavioral 
performance across the three tasks in order to distinguish ADHD diag-
nostic category. The model achieved an average accuracy score of .667 
(p < .001), with the HTKS and Flanker tasks yielding classifier co-
efficients of greater magnitude than the DCCS task. 

Table 1 
Model performance metrics across the four sets of target features.  

Performance Metric Model Evaluation 

Models Accuracy Precision Recall F1 ROC-AUC PT CSB PPB 

1. Demog. .574 .585 .736 .651 .624 p < .047 .537 .072 
2. P/T Rat. .926 .940 .919 .929 .982 p < .001 .537 .072 
3. EF Tasks .667 .709 .644 .674 .738 p < .001 .537 .072 
4. Neural .612 .640 .646 .641 .624 p < .016 .537 .072 

PT = Permutation Tests. 
CSB = Baseline for ADHD in the current study. 
PPB = Baseline for prevalence of ADHD in the population. 
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3.1.4. Model 4: neural measures of cortical thickness 
Our next set of models explored our neural measures of cortical 

thickness in target regions that support executive function. We first ran a 
model including cortical thickness measures in both hemispheres of the 
brain. Fig. 1 depicts classifier performance (average accuracy .612, p <
.016), and coefficients for the top 10 features in this model. We next ran 
two models that contained features from the left and right hemispheres 
respectively. The model assessing cortical thickness measures from the 
left hemisphere yielded an average accuracy of .612 (p < .01), while the 
model evaluating cortical thickness measures from the right hemi-
spheres achieved an accuracy of .50 (p > .64). Accordingly, our current 
investigation points to the more pronounced importance of the left 
hemisphere in predicting diagnostic category. In the left hemisphere, the 
regions yielding the top three classifier coefficients were the anterior 
cingulate, the intraparietal and transverse parietal sulci, and the supe-
rior frontal gyrus (Fig. 1). 

3.1.5. Model 5: full model 
Among the four sets of models evaluated, our analyses implicate the 

BRIEF Emergent Metacognition ratings (with teacher ratings ranking 
higher than the parent ratings in predicting diagnostic category) to be 
the most important sets of features. This model achieved .926 accuracy. 
We next evaluated whether the classifier’s performance could be further 
improved by including additional features from our target measures. 
This full model included the demographics, the parent/teacher ratings of 
MCI, cognitive measures of EF, and cortical thickness in the left anterior 
cingulate, the left intraparietal transverse parietal sulci and the left su-
perior frontal gyrus. Across the five cross-validation indices, this full 
model achieved an average accuracy of .944 (p < .001). Table 1 sum-
marizes the performance metrics across the models. 

In summary, our computational modeling approach implicates the 
Emergent Metacognition scores from the BRIEF assessment to be the 
most important target measure. More specifically, the teacher ratings 
were identified to be the most important feature. In our current set of 
findings, the two BRIEF ratings alone achieved an accuracy of .926. 
Adding additional features that included demographics, performance in 

EF tasks and neural measures of cortical thickness in regions identified 
to be important in predicting ADHD diagnostic category increased the 
classifier’s performance to .944. Thus, when considering different types 
of variables (e.g., demographics, parent/teacher ratings of EF, behav-
ioral measures of EF, and neural measures of cortical thickness in re-
gions that support EF) and their relative importance for classification of 
diagnostic category, our current set of analyses point to the critical 
importance of teacher ratings of executive function for classification of 
ADHD diagnostic category. 

3.1.5.1. Additional analyses exploring cortical and subcortical volume. 
While cortical thickness measures cannot be obtained for subcortical 
regions, gray matter volume measures allow assessing cortical and 
subcortical regions conjointly. Accordingly, we ran two separate models 
to evaluate the performance of gray matter volume in the cortical re-
gions assessed in the above section, and the subcortical regions. The 
model that included volume in the cortical regions yielded an accuracy 
of .487 (p > .663). The model that included volume in the subcortical 
regions reached a higher accuracy of .524 (p > .505). While both models 
did not reach statistical significance, the subcortical regions yielding 
higher performance certainly warrants further investigation into the 
importance of subcortical neural measures. To further evaluate this 
possibility, we employed recursive feature elimination (using the built- 
in RFE function in sci-kit learn library in Python) on the entire set of 
features including gray matter volume in all cortical and subcortical 
regions assessed in our study. This feature selection approach allowed us 
to identify the most informative ten regions for predicting diagnostic 
category. Importantly, the classifier identified both cortical and 
subcortical regions including the right mid-VLPFC, the right amygdala, 
the left precuneus, the right caudate, the left intraparietal and transverse 
parietal sulci, the left insula, the left cerebellum, the right hippocampus, 
the right angular gyrus, and the left mid-anterior cingulate. When the 
classifier was run on the selected regions, it reached an accuracy of .587. 
Permutation tests indicated this performance to be significantly higher 
than chance (p < .031). The selected regions are consistent with pre-
vious research investigating cortical and subcortical volume measures in 

Fig. 1. Accuracy and feature importance rankings from the four sets of models (1-demographics, 2-parent/teacher ratings of EF as measured by the Meta Cognition 
Index of the BRIEF assessment, 3- EF tasks, Dimensional Card Sorting. Flanker, and Head-Toes-Knees-Shoulders tasks, 4- Neural Measures, namely cortical thickness 
measures (the top 10 most important regions are shown). 
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this young age range, in implicating the left prefrontal cortex (Jacobson 
et al., 2018), the caudate (Hoogman et al., 2020; Rosch et al., 2018), as 
well as the hippocampus and the amygdala (Hoogman et al., 2020). 

3.1.6. Controlling for scan quality, cerebellar and intracranial volume 
We next ran an additional model assessing the diagnostic utility of 

scan quality, and overall differences across the two groups on cerebellar 
and intracranial volume. This model achieved .499 accuracy. Permuta-
tion tests further indicated that these variables did not reliably differ-
entiate the two groups above chance (p > .96). To further ensure that 
scan quality is not contributing to the discrimination assessed by our 
machine learning models, we replicated our analyses excluding 7 par-
ticipants (3 ADHD, 4 TD) with poorest scan quality (participants whose 
scans received a scan quality rating of 2). This additional analysis yiel-
ded very similar results replicating our original findings with respect to 
our target features. Specifically, the BRIEF model achieved an accuracy 
of .935 (p < .001), the executive function tasks achieved an accuracy of 
.652 (p < .001), and the cortical thickness model achieved an accuracy 
of .619 (p < .011). Models for cortical (accuracy = .523, p > .39) and 
subcortical volume (accuracy = .516, p > .71) remained statistically 
unreliable. Replicating our results above, the model assessing volume 
measures containing the selected features yielded higher performance 
and was significantly more successful than chance (accuracy = .639, p <
.003) The only change observed was the control model including the 
demographics variables of child age and sex. This model achieved an 
average accuracy of .542 and our permutation tests indicated that this 
performance was not statistically significant in differentiating ADHD 
from TD participants (p > .46). 

3.2. High comorbid ODD/CD in the ADHD sample 

Recall that our ADHD sample has high (70 %) comorbid ODD/CD. As 
such, one concern that could potentially limit the implications of our 
results is that the high prevalence of ODD/CD might have contributed to 
the differentiation of diagnostic category in our models. Unfortunately, 
due to the low sample size of participants with only ADHD diagnosis (n 
= 26), it was not methodologically feasible/sound to run our models to 
distinguish the 3 diagnostic categories (i.e. 1- ADHD diagnosis absent, 2- 
only ADHD diagnosis present, and 3- ADHD + ODD/CD diagnosis pre-
sent). To assess the potential impact/change in the performance of our 
models reported above, we repeated our analyses by excluding the 26 
participants with only an ADHD diagnosis. Thus, we trained our clas-
sifiers to distinguish ADHD diagnostic category across our typically 
developing sample and children with ADHD + ODD/CD diagnosis. This 
set of models yielded similar results [accuracy = .918, p < .001 for 
parent/teacher ratings of EF, accuracy = .711, p < .001 for cognitive EF 
tasks, accuracy = .607, p < .045 for the neural measures of cortical 
thickness], except for the demographics model [accuracy = .511 p >
.85] which was no longer significant. 

We once again acknowledge that the most ideal approach to elimi-
nate this potential confound would be to run models trained to distin-
guish the three diagnostic categories. Unfortunately, in our current data 
set, this was not possible due to the low number of participants in the 
ADHD-only category. Future work utilizing larger samples will be 
fundamental in thoroughly addressing comorbid ODD/CD within the 
ADHD sample. 

4. Discussion 

Given the negative trajectories of early behavior problems associated 
with ADHD, as well as its high public health cost, early diagnosis of 
ADHD is critical to enable early intervention and treatment. The current 
investigation aimed to evaluate the feasibility of predictive modeling 
using cognitive, behavioral and neurobiological measures of executive 
function for categorical classification of ADHD in young children. 
Notably, the current set of findings are the first to employ this approach 

in Pre-K children. The AHEAD study is among the first to scan children 
with ADHD as young as 4–7 years (mean age 5.5 years) with a good 
sample size (n > 160). Given that early diagnosis of ADHD is critical, the 
current study provides a unique opportunity to assess whether predict-
ing ADHD from scans is feasible in this age range. 

Results from our machine learning models indicated that the full 
model including features from all sets of target features yielded a .944 
performance in predicting diagnostic category. Crucially, most of this 
high performance is accounted by the parent/teacher BRIEF Emergent 
Metacognition Index scores, which alone achieved a performance of 
.926. These findings implicate the critical importance of this measure in 
predicting diagnostic category, and this has implications for clinical 
diagnosis. Thus, the current set of results suggest that the rating scales 
are enough to distinguish the presence or absence of ADHD, and that 
more expensive and extensive behavioral and neural testing might not 
be necessary. In particular, our models identified the teacher ratings to 
be most diagnostic in predicting diagnostic category, further suggesting 
that the functional impairments pertaining to executive function pro-
cesses experienced in school can be clearly differentiated among chil-
dren with ADHD from their typically developing peers. A recent study 
(Dekker et al., 2017) evaluated the relationship between parent/teacher 
ratings of executive function in BRIEF, executive function performance 
measures obtained from the Amsterdam Neuropsychological Tasks 
(ANT) and academic outcome measures. Notably, cognitive perfor-
mance in the tasks, and teacher ratings of working memory and shifting 
were predictive of differences in spelling, while parent ratings were not. 
Our findings are consistent with this recent literature implicating a more 
important role of teacher ratings for executive function outcomes. 

It is important to emphasize that from one perspective, it is not 
surprising that parent-teacher ratings on one assessment (i.e., BRIEF) are 
good at predicting diagnostic category that is itself predicated, in part, 
on parent-teacher ratings on another assessment (e,g., DBD rating scale). 
Notably, the teacher ratings were the strongest predictor. Thus, for 
simple categorical diagnosis, collection of additional measures does not 
provide substantial improvement in the detection of ADHD. This is 
important because this study addresses some of the critical questions 
raised by the American Academy of Pediatrics Subcommittee on Chil-
dren and Adolescents with ADHD. In their recent Clinical Practice 
Guideline (Wolraich et al., 2019, p. 3) asked 1) what is the comparative 
diagnostic accuracy of approaches that can be used in the primary care 
practice setting or by specialists to diagnose ADHD among children 
younger than 7 years of age?; 2) what is the comparative diagnostic 
accuracy of EEG, imaging, or executive function approaches that can be 
used in the primary care practice setting or by specialists to diagnose 
ADHD among individuals aged 7 to their 18th birthday?; 3) are there 
more formal neuropsychological, imaging, or genetic tests that improve 
the diagnostic process? (Wolraich et al., 2019). Our results map on to the 
committee’s recommendations for young children in terms of the reli-
ance on parent and teacher ratings scales for aiding clinicians in the 
diagnosis of ADHD. Thus, while data from our study shows that neu-
rocognitive and imaging measures are not incrementally useful for 
simply detecting the presence or absence of ADHD, more research is 
needed to determine their utility as it relates to predicting more func-
tional outcomes (e.g., academic/social impairments) as well as comor-
bid conditions. Furthermore, the implicated neurobiology might still 
provide important insight into a better understanding of the heteroge-
neity of ADHD, and individual variability in treatment response. 

In addition to assessing the utility of the target measures in pre-
dicting ADHD diagnostic category, the classifier coefficients in our 
models allowed us to further rank our target features in their relative 
importance for predicting ADHD diagnostic category. Among the exec-
utive functions measured, performance in the HTKS task yielded the 
highest coefficient in our current investigation, and the Flanker task was 
identified as more diagnostic than the DCCS. With respect to the neural 
measures, regions of the left hemisphere were more diagnostic 
compared to the regions in the right hemisphere of the brain. Among our 
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target regions important for executive function, the top regions identi-
fied were the left anterior cingulate, the left superior frontal gyrus and 
the left intraparietal and transverse parietal sulci. 

Subparts of the cingulate cortex, including the anterior and middle- 
posterior cingulate cortex have been previously implicated in ADHD 
research (Rubia, 2018). This region has been previously associated with 
cognitive and impulse control, and a decreased connectivity between the 
anterior cingulate and the posterior parietal cortex in ADHD has been 
observed in prior research [see Vogt (2019) for a review]. Given its 
implication in executive function and previous ADHD research, it is not 
surprising that our classifier indicated this region as one of the top 
predictors among the cortical thickness measures evaluated in our study. 

The intraparietal sulcus is a very significant contributor to working 
memory (Chein et al., 2003; Cowan, 2016; Cowan et al., 2011; Oztekin 
et al., 2009; Smith and Jonides, 1998; Xu and Chun, 2006), and working 
memory deficits have been commonly observed in previous ADHD 
research (Hammer et al., 2015; Karalunas et al., 2017; Palladino and 
Ferrari, 2013; Raiker et al., 2019, 2012). Notably, this region has been 
previously implicated for its importance in supporting focus of attention 
during WM operations in healthy adults (Cowan et al., 2011; Oztekin 
et al., 2009). Given the widely-established deficits in working memory 
with ADHD, future research would benefit from a deeper investigation 
of the specific role of this region in potentially modulating ADHD related 
effects in working memory function. 

The superior frontal gyrus (SFG), located at the superior part of the 
prefrontal cortex is anteromedially connected to the anterior and mid- 
cingulate. The dorsolateral portion of the SFG is connected with the 
dorsolateral and ventrolateral prefrontal cortex, and the posterior 
portion of the SFG is part of the motor control network (Li et al., 2013). 
Therefore, it has connections to significant regions that modulate motor, 
cognitive control and executive function. In addition, it is part of a 
relatively recently identified fiber pathway, the frontal aslant tract 
(FAT). Recent work from our group (Dick et al., 2019; Garic et al., 2019) 
has implicated FAT to be an important potential moderator for ADHD 
related deficits in executive function. Our modeling results implicate 
SFG as a potential diagnostic region. Unfortunately, our current par-
cellation did not allow us to independently evaluate the subregions of 
SFG. We thus note that future research would benefit from a more 
focused assessment of this region. 

Our study has a primary theoretical focus on executive function, 
given the importance of EF in ADHD. Accordingly, our analytical 
approach entailed focusing on regions that have been previously 
implicated in executive function processes, as opposed to adapting a 
feature-selection approach. However, it is conceivable that EF related 
effects might not predominantly emerge in this young age range, and 
that the early onset of ADHD in this age range might be more associated 
with subcortical regions (see Halperin and Schulz, 2006). While our 
primary focus was EF in this study, given the scarceness of literature on 
the neurobiology of ADHD on very young children, we believe it is 
important to provide an exploratory evaluation of how performance in 
the cortical EF regions compares to candidate subcortical regions (e.g., 
Hoogman et al., 2020) in this young age range. As such, we further 
conducted exploratory analyses on cortical volume in the target regions, 
as well as additional subcortical regions including the caudate, the pu-
tamen, the cerebellum, the amygdala and the hippocampus regions. In 
light of these additional exploratory follow-up analysis, we note that 
future research adapting a more data-driven approach that focuses on 
the whole brain might provide additional insight into a better under-
standing of the underlying neurobiology of ADHD in this young age 
range, and how it might change across development. While computa-
tionally more expensive, such approaches might bear the potential to 
better capture the heterogeneity of ADHD, the underlying trajectory of 
its neurobiology across development, and in doing so better inform 
theories of ADHD and cognitive development. 

4.1. Directions for future research 

The current set of findings were among the first in exploring the 
utility of predictive modeling for ADHD classification in the young age- 
range of 4–7 years. Our analyses evaluated structural brain measures. 
Whether the inclusion of more structural, and diffusion-weighted- 
imaging (DWI) measures yields better clinical utility is a question for 
further research to examine. However, to date, no predictive modeling 
approach has evaluated DWI measures for classification of ADHD. 
Notably, most computational modeling and machine learning ap-
proaches in the existing literature have focused on functional MRI data 
(most commonly functional connectivity analysis of resting state data). 
Accordingly, a major criticism has been the issue of transportability 
(Foster et al., 2014; Woo et al., 2017), and that the findings do not have 
the potential to generalize to or be easily applied in clinical settings. As 
such, the inclusion of DWI measures could potentially fill this important 
gap in the literature. Finally, network-based indicators of structure in 
addition to brain function might provide additional insight into the 
classification of ADHD and the heterogeneity of its neurobiology. 

Acknowledging that neuroimaging may yield only minimal clinical 
utility with respect to categorical classification of ADHD, there are still 
reasons to continue to pursue research within this domain. First, a 
comprehensive modeling approach should be able to identify which 
neural measures are more diagnostic, and how they compare to non- 
neural measures, such as behavioral assessments of theoretically 
important constructs for ADHD, such as executive function. Second, the 
ability to derive the most diagnostic neural measures for ADHD classi-
fication can facilitate researchers to further investigate the direct link 
between these regions and the specificity of their functional outcomes 
are with respect to ADHD-related impacts on the corresponding cogni-
tive constructs. Complementary efforts that utilize and combine pre-
dictive modeling approaches with further assessments of the implicated 
regions/neural measures in how they modulate ADHD-related func-
tional outcomes can facilitate unique ways to define and understand this 
disorder, and may foster development of novel approaches to the clas-
sification and treatment of ADHD. Third, data driven approaches that 
seek to identify the most important set of neural measures can help 
clarify the distinct neurobiology of ADHD across development, and 
provide valuable insight for theories of ADHD and neurodevelopment. 

4.2. Conclusion 

The AHEAD study is among the first to provide executive function 
measures for young children with ADHD (ages 4–7) at multiple levels of 
analysis. Providing a large sample size with complementary measures 
for both cognitive/behavioral and neural measures of executive func-
tion, the AHEAD study enabled the first assessment of the feasibility of 
predictive modeling and machine learning approaches in diagnosis of 
ADHD in Pre-K children. Our results suggest the critical importance of 
teacher ratings of executive function in predicting ADHD diagnostic 
category. Our models further allowed ranking of the importance of our 
target behavioral and neural measures of executive function. Among the 
three executive function tasks evaluated, feature importance rankings 
implicated performance in the HTKS to be the most diagnostic executive 
function measure. While teacher ratings of EF are more cost effective 
and provided a strong prediction of diagnostic status, we once again 
emphasize the partial measurement overlap in the EF items assessed in 
the BRIEF questionnaire and those present in the DSM-5 criteria for 
ADHD. Thus, it will be important for future work to not only focus on the 
utility of neural, neurocognitive, and behavioral measures of EF as it 
relates to diagnostic classification, but most importantly how they may 
predict children’s functional impairment in areas such as academic and 
social functioning. 
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Data availability statement 

MRI imaging, physiologic, and behavioral data associated with the 
collected samples will be deposited on the NIMH Data Archive (http://r 
docdb.nimh.nih.gov/). Additional data documentation and de- 
identified data will be deposited for sharing along with these data, 
which includes demographics and diagnosis, consistent with applicable 
laws and regulations. Submitted MRI data will conform to the Brain 
Imaging Data Standards (BIDS) structure (http://bids.neuroimaging. 
io/). Publication of data will occur during the project, if appropriate, 
and at the end of the project, consistent with normal scientific practices. 
Research data will be made available after the main findings from the 
final dataset have been accepted for publication. Users will be provided 
with the data under a data sharing agreement which specifies that 1) the 
data will be used only for research purposes; 2) data will be stored 
confidentially and securely, and 3) data will be destroyed after the an-
alyses are complete. We agree to deposit data into NIMH Data Archive 
repository as soon as possible, but no later than within one year of the 
completion of the funded project period for the parent award or upon 
acceptance of the data for publication, or public disclosure of a sub-
mitted patent application, whichever is earlier. 

We agree that data will be deposited and made available through 
NIMH Data Archive, and that these data will be shared with in-
vestigators working under an institution with a Federal Wide Assurance 
(FWA) and could be used for secondary study purposes. As we will be 
using the NIMH Data Archive, this repository has policies and proced-
ures in place that will provide data access to qualified researchers, fully 
consistent with NIH data sharing policies and applicable laws and 
regulations. 
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