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1
SYSTEMS AND METHODS FOR
EVALUATING TEMPORAL DEPENDENCY
TREES

GOVERNMENT SUPPORT

This invention was made with government support under
N00014-17-1-2983 awarded by the Office of Naval
Research (ONR) and under FA8650-19-C-6017 awarded by
Defense Advanced Research Projects Agency (DARPA).
The government has certain rights in the invention.

BACKGROUND

Extracting a representation of the temporal information in
atext is a useful yet challenging task within natural language
processing. Representations of temporal information can
facilitate question answering (Saquete et al., Splitting com-
plex temporal questions for question answering systems, In
Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics (ACL 2004), pages 566-573,
Barcelona, Spain), information extraction (Wu et al.,
CTEMP: A Chinese temporal parser for extracting and
normalizing temporal information, In Proceedings of the
2nd International Joint Conference on Natural Language
Processing: Full Papers, pages 694-706, 2005), and summa-
rization (Liu et al, Tiara: Interactive, topic-based visual text
summarization and analysis, ACM Transactions on Intelli-
gent Systems & Technology, 3(2):25:1-25:28, 2012), among
many other tasks.

Researchers have developed several formalisms for rep-
resenting temporal information expressed in text, each with
specific advantages and disadvantages. Temporal represen-
tation languages that allow the representation of temporal
graphs, such as Allen’s temporal algebra (Allen, Maintain-
ing knowledge about temporal intervals, Communications of
the ACM, 26(11):832-843, 1983) or the XML -based Tem-
poral Markup Language (TimeML) (Sauri et al., TimeML
annotation guidelines, version 1.2.1, 2006, catalog.ldc.u-
penn.edu/docs/LDC2006T08/timem]_annguide_1.2.1.pdf.),
are the most flexible schemes for marking of events, tem-
poral expressions, and temporal relations. Temporal graphs
expressed in these languages can be used for inference or
determining partial orders of events and times. Although
some of these languages for temporal graphs are quite
expressive, for example TimeML having 25 relation types,
they have certain limitations. First, the generality of tempo-
ral graphs makes many operations on them computation-ally
hard. Second, they are less than ideal for visualization
purposes, as they are difficult for people to read and under-
stand. Third, they only explicitly provide partial, local
orderings of events.

Allen’s interval algebra (or Allen’s temporal algebra) was
the first attempt to model temporal information in docu-
ments (Allen, 1983, supra.). It is a calculus for temporal
reasoning that defines 13 relations between time intervals.
These relations are BEFORE, MEETS, OVERLAPS,
STARTS, DURING, and FINISHES, their inverses, and
EQUALS. Allen’s algebra is what is called a qualitative
temporal framework (Bartak et al., An Introduction to Con-
straint-Based Temporal Reasoning, Morgan & Claypool
Publishers, 2014). Allen’s conception of temporal algebras
has been extended to quantitative frameworks, such as
Simple Temporal Problems (STPs), Temporal Constraint
Satisfaction Problems (TCSPs), Disjunctive Temporal Prob-
lems (DTPs), and Temporal Networks with Alternatives
(TNAs) (Bartak, 2014, supra.). Quantitative temporal frame-
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works allow precise reasoning about the metric temporal
distances between time points. Whether qualitative or quan-
titative, the temporal graphs generated through Allen-like
frameworks can be checked for consistency. Allen intro-
duced a constraint propagation algorithm to do just that,
using the composition table and a shortest path algorithm,
although it was also shown by counterexample that the
algorithm was necessarily incomplete (Allen, 1983, supra.).
Later, it was shown that full consistency checking must be
NP-complete (Vilain et al., Constraint propagation algo-
rithms for temporal reasoning: A revised report, Readings in
Qualitative Reasoning About Physical Systems, pages 373-
381, Morgan Kaufmann, San Francisco, Calif., 1990).

Because of the utility of temporal frameworks for rea-
soning about time, and also the relevance of time to under-
standing natural language, these results have been attempted
to be applied to text understanding. This requires annotation
schemes that would allow a person or a machine to notate
the events, time points, and temporal relations expressed in
a text. With regard to expressions of time itself, including
expressions of when something happened, how often some-
thing occurs, or how long something takes, a sequence of
TIMEX annotation schemes has been developed (Setzer,
Temporal Information in Newswire Articles: an Annotation
Scheme and Corpus Study, Ph.D. thesis, University of
Sheffield, 2001; Ferro et al., Tides temporal annotation
guidelines, ver. 1.0.2., 2001, www.timeml.org/terps/read-
ings/MTR AnnotationGuide_v1_02.pdf; Pustejovsky et al.,
TimeML.: robust specification of event and temporal expres-
sions in text. In Proceedings of the 5th International Work-
shop on Computational Semantics (IWCS-5), pages 1-11,
Tilberg, The Netherlands, 2003) for annotating expressions
such as at 4 a.m. (when), every 3 weeks (how often), or for
2 hours (how long). Because events are also involved in
temporal relations, these approaches developed into
schemes for capturing events as well. For example, the
Translingual Information Detection, Extraction, and Sum-
marization (TIDES) (Ferro et al., 2001, supra.) is an XML-
based annotation scheme that integrates TIMEX2 expres-
sions, events, and six types of temporal relations.

Temporal Dependency Trees (TDTs) are an alternative to
full temporal graphs for representing the temporal structure
of texts, with a key advantage being that TDTs can be
computed in a straightforward manner using adapted depen-
dency parsers (Cheng et al., NAIST.Japan: Temporal rela-
tion identification using dependency parsed tree. In Proceed-
ings of the 4th International Workshop on Semantic
Evaluations (SemEval 2007), pages 245-248, Prague, Czech
Republic). TDTs are a more computationally efficient rep-
resentation where all events are arranged in a tree using only
three temporal relation types: BEFORE; AFTER; and
OVERLAPS. TDTs have been further improved with more
precise definitions and increased expressivity (Kolomiyets
et al., Extracting narrative timelines as temporal dependency
structures, In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (ACL 2012),
pages 88-97, Jeju Island, Korea; and Zhang et al., Neural
ranking models for temporal dependency structure parsing.
arXiv, CoRR, abs/1809.00370, 2018). TDTs have the advan-
tage that they can be easily computed using adapted depen-
dency parsers, and extracting timelines from TDTs is much
easier than from temporal graphs.

Nevertheless, it is intuitive that TDTs should suffer from
temporal information loss relative to temporal graphs. TDTs
are restricted to a tree form, and so certain temporal rela-
tionships that can be expressed in a graph cannot be
expressed in the tree (e.g., cycles). Further, all TDT
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approaches restrict the types of temporal relationships,
eliminating even more information. These omissions and
restrictions should intuitively result in more indeterminacy
in the global ordering of times and events.

BRIEF SUMMARY

Embodiments of the subject invention provide novel and
advantageous systems and methods for quantifying temporal
indeterminacy of timelines (e.g., the global ordering of
temporal graphs and/or Temporal Dependency Trees
(TDTs)). Systems and methods can rely on solving temporal
constraint problems to extract timelines. Systems and meth-
ods of embodiments of the subject invention can calculate
the temporal relation loss during TDT transformation and
then identify the temporal indeterminate sections of
extracted timelines from both TDTs and temporal graphs to
measure the total temporal information loss.

In an embodiment, a system for providing quantifying
temporal indeterminacy of a timeline can comprise: a pro-
cessor; a memory in operable communication with the
processor; and a machine-readable medium in operable
communication with the processor and the memory, the
machine-readable medium having instructions stored
thereon that, when executed by the processor, perform the
following steps: generating at least one TDT by transform-
ing at least one temporal graph of a corpus to the at least one
TDT, the at least one temporal graph being stored on at least
one of the memory and the machine-readable medium;
identifying first indeterminate sections on at least one first
timeline extracted from the at least one TDT; and calculating
a first indeterminacy value of the at least one TDT based on
the first indeterminate sections, thereby quantifying tempo-
ral indeterminacy of the at least one TDT with the first
indeterminacy value. The processor when executed can
further identify second indeterminate sections on at least one
second timeline extracted from the at least one temporal
graph. The processor when executed can further: calculate a
second indeterminacy value of the at least one temporal
graph based on the second indeterminate sections; and
optionally compare the first indeterminacy value to the
second indeterminacy value to determine an increase in
indeterminacy of the at least one TDT compared to the at
least one temporal graph. The generating of the at least one
TDT by transforming the at least one temporal graph can
comprise storing omitted relations in an array stored on at
least one of the memory and the machine-readable medium.
The at least one temporal graph can comprise, for example,
a Temporal Markup Language (TimeML) graph. The gen-
erating of the at least one TDT can comprise generating at
least one full TDT and/or at least one abstract TDT in which
a class of temporal relations has been abstracted. The at least
one first timeline can be extracted from the at least one full
TDT and the first indeterminacy value can be an indetermi-
nacy value of the at least one full TDT, and the processor
when executed can further: identify third indeterminate
sections on at least one third timeline extracted from the at
least one abstract TDT; and calculate a third indeterminacy
value of the at least one abstract TDT based on the third
indeterminate sections. The first indeterminacy value can be
calculated by dividing an average number of the first inde-
terminate sections per text of the corpus by a total number
of the first indeterminate sections in the corpus; the second
indeterminacy value can be calculated by dividing an aver-
age number of the second indeterminate sections per text of
the corpus by a total number of the second indeterminate
sections in the corpus; and/or the third indeterminacy value
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can be calculated by dividing an average number of the third
indeterminate sections per text of the corpus by a total
number of the third indeterminate sections in the corpus. In
addition, the processor when executed can further compare
the third indeterminacy value to the second indeterminacy
value to determine an increase in indeterminacy of the at
least one abstract TDT compared to the at least one temporal
graph.

In another embodiment, a method for providing quanti-
fying temporal indeterminacy of a timeline can comprise:
generating (e.g., by a processor in operable communication
with a memory and a machine-readable medium) at least one
TDT by transforming at least one temporal graph of a corpus
to the at least one TDT, the at least one temporal graph being
stored (e.g., on at least one of the memory and the machine-
readable medium); identifying (e.g., by the processor) first
indeterminate sections on at least one first timeline extracted
from the at least one TDT; and calculating (e.g., by the
processor) a first indeterminacy value of the at least one
TDT based on the first indeterminate sections, thereby
quantifying temporal indeterminacy of the at least one TDT
with the first indeterminacy value. The method can further
comprise identifying (e.g., by the processor) second inde-
terminate sections on at least one second timeline extracted
from the at least one temporal graph. The method can further
comprise: calculating (e.g., by the processor) a second
indeterminacy value of the at least one temporal graph based
on the second indeterminate sections; and comparing (e.g.,
by the processor) the first indeterminacy value to the second
indeterminacy value to determine an increase in indetermi-
nacy of the at least one TDT compared to the at least one
temporal graph. The generating of the at least one TDT by
transforming the at least one temporal graph can comprise
storing omitted relations in an array stored on at least one of
the memory and the machine-readable medium. The at least
one temporal graph can comprise a TimeML graph. The
generating of the at least one TDT can comprise generating
at least one full TDT and/or at least one abstract TDT in
which a class of temporal relations has been abstracted. The
at least one first timeline can be extracted from the at least
one full TDT and the first indeterminacy value can be an
indeterminacy value of the at least one full TDT, and the
method can further comprise: identifying (e.g., by the pro-
cessor) third indeterminate sections on at least one third
timeline extracted from the at least one abstract TDT; and
calculating (e.g., by the processor) a third indeterminacy
value of the at least one abstract TDT based on the third
indeterminate sections. The first indeterminacy value can be
calculated by dividing an average number of the first inde-
terminate sections per text of the corpus by a total number
of the first indeterminate sections in the corpus; the second
indeterminacy value can be calculated by dividing an aver-
age number of the second indeterminate sections per text of
the corpus by a total number of the second indeterminate
sections in the corpus; and/or the third indeterminacy value
can be calculated by dividing an average number of the third
indeterminate sections per text of the corpus by a total
number of the third indeterminate sections in the corpus. In
addition, the method can further comprise comparing (e.g.,
by the processor) the third indeterminacy value to the second
indeterminacy value to determine an increase in indetermi-
nacy of the at least one abstract TDT compared to the at least
one temporal graph.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1(a) shows a full Temporal Markup Language
(TimeML) temporal graph for an example snippet of a
corpus.
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FIG. 1(b) shows a full Temporal Dependency Tree (TDT)
for the example snippet represented in FIG. 1(a).

FIG. 1(c) shows an abstract TDT for the example snippet
represented in FIG. 1(a).

FIG. 2(a) shows a timeline for a TimeML graph.

FIG. 2(b) shows a timeline for a full TDT and abstract
TDT.

FIG. 3(a) shows an indeterminate temporal graph; the
relative order of 3 and 4 is indeterminate.

FIG. 3(b) shows a minimal timeline solution for the
indeterminate temporal graph of FIG. 3(a), with the inde-
terminate section marked in gray; the relative order of 3 and
4 is indeterminate.

FIG. 4 shows a table of mapping of 19 TimeML temporal
and aspectual link types into four abstract temporal link
types.

FIG. 5 shows a table summarizing four different types of
corporate (ProppLearner, N2 Corpus, TimeBank, and TDT
Corpus).

FIG. 6 shows a table representing translation of TimeML
temporal and aspectual links into primitive temporal rela-
tions between interval start and end points. For an interval
I (an event or a time) the start point of the interval is denoted
by I and the end point is denoted by I*.

FIG. 7 shows a table of counts of temporal relations
present in TimeML graphs and omitted in TDTs.

FIG. 8 shows a table of characteristics of timelines
extracted from corrected corpora. The TDT corpus is
included for comparison only and includes only abstract
TDTs, with inconsistent TDTs excluded (25 texts).

FIG. 9 shows a table of indeterminacy in timelines
extracted from TimeML graphs versus that in TDTs. The
TDT corpus is included for comparison only and includes
only abstract TDTs, with inconsistent TDTs excluded (25
texts). Sections are defined as unbroken sequences of inde-
terminate time points or steps. The weighted average was
computed by weighting with time points.

DETAILED DESCRIPTION

Embodiments of the subject invention provide novel and
advantageous systems and methods for quantifying temporal
indeterminacy of timelines (e.g., the global ordering of
temporal graphs and/or Temporal Dependency Trees
(TDTs)). Systems and methods can rely on solving temporal
constraint problems to extract timelines. Systems and meth-
ods of embodiments of the subject invention can calculate
the temporal relation loss during TDT transformation and
then identify the temporal indeterminate sections of
extracted timelines from both TDTs and temporal graphs to
measure the total temporal information loss.

In many embodiments, at least one algorithm can be used
to determine/quantify temporal indeterminacy of at least one
TDT (see Algorithm 1 and Algorithm 2). First, at least one
TDT can be generated by transforming at least one temporal
graph to the at least one TDT. During the transformation,
omitted relations can be kept in an array. Second, indeter-
minate sections on timelines extracted from the at least one
temporal graph and the at least one TDT can be identified.
The indeterminacy can be computed by, for example, divid-
ing the average number of indeterminate sections per text
(within the corpus) by the total number of indeterminate
sections per corpus (the corpus or corpora being the piece(s)
which were used to create the temporal graph(s)) to give an
indeterminacy value. This indeterminacy value quantifies
the temporal indeterminacy of the at least one TDT, and can
be compared to the indeterminacy value of the at least one
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temporal graph if desired. Systems and methods of embodi-
ments of the subject invention can show that TDTs can result
in up to a greater than 100% (e.g., up to 109%) increase in
temporal indeterminacy over the corresponding temporal
graphs for the same corpus.

Deficiencies in Translingual Information Detection,
Extraction, and Summarization (TIDES) led to the devel-
opment of Temporal Markup Language (TimeML), another
XML-based markup language for annotating temporal infor-
mation, originally targeted at news articles (Sauri et al.,
2006, supra.). TimeML added facilities for representing not
just Allen’s classic temporal relations, but also event co-
reference (IDENTITY), sub-event structure (aspectual rela-
tions) and relations of conditional, hypothetical, or counter-
factual nature (subordinating relations). In all there are 25
types of relations (called links) in TimeML: 14 temporal; 5
aspectual; and 6 subordinating. TimeML annotations explic-
itly encode a temporal graph, where the nodes are events or
time expressions and edges are temporal links. As used
herein, a TimeML temporal graph can be defined as follows:
a TimeML temporal graph is a graph T=(V, E,), where
Vi{e, e, ... e, t, 4, ...t} is a set of events e, and
time expressions t,, and E,={1,, L,, . . ., 1} is a set of
temporal links 1,=(u, v, w), a tuple where u, v€V ,and wE&l,
where L is the set of TimeML link types.

TDTs seek to identify temporal relations between events
using a sequence labeling model with features from a
dependency parse tree. They originally only used three
temporal relations in the model: BEFORE; AFTER; and
OVERLAPS. They used a Hidden Markov Model (HMM)
combined with a support vector machine (SVM) as a
sequence labeling model and achieved a 0.75 F1 score on
correctly identifying the link type (as well as the labels
NONE or VAGUE) between neighboring event and times.
Several improvements were later applied to TDTs (Kolo-
miyets, 2012, supra.). TDTs were redefined as a tree where
nodes are events and edges are temporal links, and the set of
link types was expanded to six: BEFORE; AFTER;
INCLUDES; IS INCLUDED; OVERLAPS; and IDEN-
TITY. A timeline extraction method using TDTs was also
proposed. This updated system was evaluated with an anno-
tation study: two annotators created TDTs for 100 short
narrative texts (fables) and then they measured inter-anno-
tator agreement between them. Using Krippendorff s a as an
agreement measure, the annotators achieved agreements of
0.86 for event recognition, 0.82 for link recognition, and
0.70 link label identification. This work generated an anno-
tated corpus of temporal dependency trees, but this corpus
has not been made public.

Another improvement to TDTs is to include time expres-
sions in the tree structure instead of just events (Zhang,
2018, supra.). Only four relation types (BEFORE, AFTER,
OVERLAPS, and INCLUDES) were used, but stative events
(such as modals) were also included, and TDTs were auto-
matically generated for a corpus that included both news and
narrative genres. The reliability of this approach was evalu-
ated by double annotation, having two annotators manually
generate TDTs for 20% of their corpus, achieving F1 agree-
ment scores of 0.97 on time expression recognition, 0.94 on
event recognition, 0.86 on link recognition, and 0.79 on link
label identification. A precise definition of the TDT structure
was also provided, which can serve as the definition of a
TDT as used herein: A temporal dependency tree (TDT)
structure is defined as a 4-tuple (T, E, N, L), where T is a set
of [TimeML] temporal expressions, E is a set of [TimeML]
events, and N is a set of pre-defined “meta” nodes not
anchored to a span of text in the document. [Elements from]|
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T, E, and N are the nodes in the dependency structure, and
L is the set of edges in the tree, where each element in L is
a temporal link.

ATDT is rooted in a ROOT node, which represents the
document creation time (DCT). The children of the root are
called meta-nodes, and represent time points defined relative
to the DCT. Three of the meta-nodes that can be used are
PAST REF, PRESENT REF, and FUTURE REF. A fourth
ATEMPORAL meta-node can also be used for timeless
statements. All other nodes in the TDT (descendants of the
meta-nodes) represent events or times. Visualizations of a
TDT are shown in FIGS. 1(54) and 1(c).

There are 14 TimeML temporal relations, which have
been into four relations—BEFORE, AFTER, OVERLAP-
S, and INCLUDES. The tdt subscript is used to indicate
that the OVERLAPS,,, definition (as given in Zhang, 2018,
supra.) is different than Allen’s. In Allen’s temporal algebra,
when two events E; and E, are related by an OVERLAPS
relation (E, OVERLAPSE,), it means the events intersect in
time but neither is completely contained in the other. How-
ever, OVERLAPS, , stands for a conjunction of six TimeML
temporal relations—BEGINS, BEGUN BY, ENDS,
ENDED BY, SIMULTANEOUS, and IDENTITY.

A non-temporal DEPENDS ON link type can also be
defined and used only to connect each meta-node to their
children. The mapping is shown in FIG. 4, which is a table
of mapping of 19 TimeML temporal and aspectual link types
into four abstract temporal link types (Zhang, 2018, supra.).
Because this mapping essentially abstracts the class of
temporal relations, the TDTs defined in Zhang (2018, supra.)
can be referred to as abstract TDTs. TDTs that use the full
set of TimeML temporal and aspectual link types can be
referred to as full TDTs.

Any corpora can be used with systems and methods of
embodiments of the subject invention. Three manually
annotated TimeML corpora have been specifically used (see
also the examples): TimeBank 1.2, the ProppLearner corpus,
and the N2 corpus, all in the English language. TimeBank
1.2 is a collection of news stories from various sources such
as Public Radio International, Voice of America, and the
New York Times (Pustejovsky and Lazo et al., The Time-
Bank corpus, In Proceedings of Corpus Linguistics Confer-
ence, pages 647-656, Lancaster, U K, 2003). The N2 corpus
contains Islamic Extremist stories including Inspire Maga-
zine that were annotated with TimeML, among other things
(Finlayson and Corman, The N2 corpus: a semantically
annotated collection of islamist extremist stories. In Pro-
ceedings of the 9th International Conference on Language
Resources and Evaluation (LREC’14), pages 896-902,
Reykjavik, Iceland, 2014). The PropplLearner corpus was
developed to enable the machine learning of Vladimir
Propp’s morphology of Russian folktales, containing
TimeML annotations (Finlayson, Propplearner: Deeply
annotating a corpus of russian folktales to enable the
machine learning of a russian formalist theory. Digital
Scholarship in the Humanities, 32(2):284-300, 2017). Sta-
tistical information about these three corpora is provided in
FIG. 5.

TimeML corpora can be used because there is no corpus
that has both TimeML temporal graphs and TDTs annotated
on it. There is only one known publicly available corpus of
TDTs, the TDT corpus, which is an automatically annotated
collection of Chinese news reports and fairy tale stories
(Zhang and Xue, The TDT Corpus, GitHub, github.com/
yuchenz/structured, 2018). The TDTs in the TDT corpus
were generated using an adapted dependency parser
(Robaldo et al., From italian text to TimeML document via
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dependency parsing. In Proceedings of the 12th Computa-
tional Linguistics and Intelligent Text Processing (CICLing
2011), pages 177-187, Tokyo, Japan), but the texts do not
have corresponding TimeML graphs. The TDT corpus can
be used to compare the raw indeterminacy of automatically
computed TDTs to the TimeML-derived TDTs presented
herein.

In order to evaluate what is lost when moving from
TimeML temporal graphs to TDTs, texts that have both
TimeML and TDT annotations are needed. This data could
be generated in several different ways. First, TimeML and
TDT annotations can be automatically generated for texts
using TimeML. and TDT parsers. This is problematic
because of the great deal of noise introduced by even
state-of-the-art TimeML and TDT parsers, which then
obscures what deficiencies are a result of the TDT repre-
sentation as opposed to parser performance. Second, a
dataset that has gold standard annotations of TimeML and
TDTs can be used; unfortunately, no such datasets are
known to exist. There are numerous corpora with gold-
standard TimeML annotations, but no manually annotated,
publicly available TDT corpus that also has TimeML anno-
tations is known. One corpus (the TDT corpus) has auto-
matically generated TDT annotations, but no TimeML. A
third option is to generate TDTs programmatically from
gold-standard TimeML annotated texts. This approach guar-
antees that both gold-standard TimeML annotations and the
best possible TDT for every text will be present, so that they
can be directly compared.

Because TDTs are being automatically generating from
TimeML graphs, and not generated using a TDT parser,
there is a question as to whether the TDTs are faithful to the
original TDT scheme. Below is a brief description of how
TDT parsers work, so that it can be seen that the generation
algorithm (Algorithm 1) intuitively follows the automatic
TDT parsing and thus produces a “best possible” TDT.

A TDT parser starts by initializing a TDT with a ROOT
node that represents the document creation time (DCT), and
which has four children (the meta-nodes): PAST REF;
PRESENT REF; FUTURE REF; and ATEMPORAL (Zhang
and Xue, 2018, supra.). The parser then proceeds through the
text in reading order. Every time the TDT parser detects a
new event or time expression, it attempts to find a relation-
ship between that event or time and an existing node in the
TDT in a breadth-first manner. If a relationship (link) is
found to an existing node (by running a link classifier, e.g.,
an SVM), the new event or time is added as a child to that
node, with the appropriate link type, and removed from
further consideration. If no relationship is found, it is set
aside and checked for a relationship with each new node that
is later added to the tree. If, at the end of the text, there are
still nodes that have no relationships to any other nodes in
the tree, they are added as children of the ATEMPORAL
meta-node.

To illustrate the TDT structure, below is a snippet from
the TimeBank 1.2 text APW19980213.1320.tml (Pustejov-
sky and Lazo et al., 2003, supra.), which will be referred to
herein as “the TimeBank 1.2 snippet”. In this snippet,
underlined text refers to a marked TimeML event or tem-
poral expression, and is labeled with its id (e.g., e, or t,,)
from the annotation. To enhance understandability, only
show events and times related to the FUTURE REF meta-
node are shown, which corresponds to one top-level branch
of the resulting TDT.

DCT: 1998-02-13,

Qantas will almost double, its flights between Australia

and India by August, in the search for new markets
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untouched the crippling Asian financial crisis. This
move, comes barely a month, , after Qantas suspend-
ed, anumber of services, between Australia, Indone-
sia, Thailand and Malaysia in the wake of the Asian
economic crisis,, . The airline has also cut, all flights,
to South Korea.

The temporal graph for the TimeBank 1.2 snippet is
shown in FIG. 1(a). A TDT can be generated from this
temporal graph by following the TDT definition and proce-
dure. During the process, two types of TDTs can be gener-
ated: first, TDTs that use the full set of TimeML temporal
and aspectual links (full TDTs); then the abstraction map-
pings shown in in FIG. 4 can be applied to produce abstract
TDTs.

The algorithm for generating full TDTs from TimeML
graphs is shown in Algorithm 1. It follows the TDT parsing
procedure almost exactly, but rather than using a classifier to
determine whether there is a relationship between a new
node and the TDT, it queries the TimeML graph. First, a
first-in first-out (FIFO) queue can be initialized with all
events and times in the TimeML graph such that they will be
returned in text order (line 2). An empty TDT can then be
initialized with a ROOT node and all four meta-nodes can be
added to the tree as children of the root (lines 3-7). Events
or times can then be popped from the queue (call this event
or time n; lines 8-20), first looking through the tree in a
breadth-first manner for an event or time to which n is linked
(line 11). The presence of a link is determined by querying
the TimeML graph. It should be noted that in a consistent
TimeML graph no two nodes will be connected by more than
one temporal or aspectual link. If n is not found to link to an
existing node (line 12), then n is added to the unlinked set
for future processing (line 13). If n is found to link to
existing node, it is added as a child to that node (line 15) and
all unlinked nodes are checked for relationships to the new
node (lines 16-20). Any events or times that remain unre-
lated to any other nodes at end of the text are added as
children to the ATEMPORAL meta-node (line 21).

When this procedure is applied to the example temporal
graph in FIG. 1(a), it produces the full TDT shown in FIG.
1(5). As can be seen 3 of the original 11 links in the TimeML
graph are omitted in the TDT. One of the questions is how
much temporal information is lost in this process, which can
be measured directly with systems and methods of embodi-
ments of the subject invention.

As mentioned above, during the transforming events and
times can be iterated in text order. Other orders can also be
considered to determine if the order of iteration matters.
While different specific links can be omitted for different
orders (e.g., reverse text order, or random), it resulted in the
same average loss of temporal information. The main reason
for this is that to transform a graph into a tree, the algorithm
must ultimately remove one edge from every cycle. After
generating full TDTs, abstract TDTs were generated by
applying the mappings shown in FIG. 4. FIG. 1(c¢) shows the
abstract TDT for the TimeBank 1.2 snippet.

Algorithm 1 Generating a Full TDT

1:  procedure GENERATEFULLTDT(G)

Require: G > TimeML graph

Require: N > FIFO queue

Require: U > set of as-yet unlinked events and times

2: N.pushAll(G.V) ® Add all events and times in text
order

3: T — ROOT > initialize TDT with the ROOT node

4: T.ROOT.addChild(PAST_REF) > add meta-nodes
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-continued

Algorithm 1 Generating a Full TDT

5 T.ROOT.addChild(PRESENT_REF)
6: T.ROOT.addChild(FUTURE_REF)
7: T.ROOT.addChild(ATEMPORAL)
8: while IN.isEmpty( ) do
9: n < N.pop()
10: forall veT,do > iterate over tree breadth-first
11: | < GETLINK(G, n, v) > identify link, if any
12: if | = 0 then
13: U.add(n)
14: else
15: v.addChildW ithLink(n, 1)
16: forallue Udo > check all as-yet unlinked
17: | < GETLINK(G, n, u)
18: if | # © then
19: n.addChildWithLink(u, 1)
20: U.remove(u)
21:  ATEMPORAL.addChildren(U)
22: return T

The information lost in moving from TimeML graphs to
TDTs can be precisely compared by converting both the
TimeML graphs and TDTs into a uniform representation,
namely, timelines. To extract a timeline, the TimeML or
TDT can first be translated into a temporal constraint graph
using primitive temporal relations, and then the graph can be
solved. This translation is made by substituting each indi-
vidual event or time interval I by its corresponding pairs of
start and end time points I~ and I*, and replacing each link
between intervals with conjunctions of primitive temporal
constraints (either < or =) between time points as shown in
FIG. 6. In addition to the replacements in the table of FIG.
6, for each interval I the constraint that its starting point I~
must be less than its ending point [* was also included. A
solution to the temporal constraint problem can then be
defined as follows: a temporal constraint problem P=(T, C)
where T={t,, t,, . . . } is a set of time points, and C={c;,
Co, . . . } is a set of temporal constraints between intervals,
is consistent or solvable if and only if a vector of integers (i;,
i, ...)1s asolution (t,=i;, t,=i,, . . . ) of the temporal graph
that satisfies all the constraints.

This means that if integers can be assigned to the time
points such that all temporal constraints are satisfied, then
the temporal structure (TimeML temporal graphs, full TDT,
abstract TDT, etc.) is consistent and solvable.

In order to find a solution the off-the-shelf Java Constraint
Programming (JaCoP) solver can be used (Kuchcinski et al.,
JaCoP: Java constraint programming solver, 2013,
jacop.cs.lth.se). JaCoP is an open source library that offers a
rich set of constraint types as well as configurable solution
search methods. The JaCoP setting that finds the smallest
solution can be used, which assures that any differences in
the length of timelines are the result of temporal information
content, and not choice of solution. If JaCoP is able to find
a solution then it means the temporal structure is consistent;
otherwise it is inconsistent. This method was applied to the
TimeML temporal graphs, full TDTs, and abstract TDTs for
the TimeBank corpus, the N2 corpus, and ProppLearner
corpus, as well as to the abstract TDTs automatically parsed.

If the TimeML graphs are inconsistent this meant there
was an error in the manual annotation; these graphs were
corrected by hand using the original text as reference. There
were 9, 10, and 18 inconsistent texts in the ProppLearner, N2
Corpus, and TimeBank corpus respectively. Because the
TDT Corpus is in Chinese, these annotations were not
corrected and inconsistent TDT annotations were discarded
instead. Out of 235 TDT corpus texts, 25 were inconsistent
and discarded.
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Once integer assignments to time points are obtained for
the TimeML graph or TDT, these integers can be sorted to
obtain the corresponding timeline. Because the same integer
might be assigned to different time points, the length of
timelines can be measured in two ways: the number of time
points, which is directly proportional to the number of
events and times; or the number of time steps, which is the
number of integers in the solution to the temporal constraint
problem. For instance, the timelines extracted from the
TimeML graph, full TDT, and abstract TDT for the Time-
Bank 1.2 snippet are shown in FIGS. 2(a) and 2(b), with
FIG. 2(a) showing the timeline for the TimeML graph and
FIG. 2(b) showing the timeline for the full and abstract TDT.
The timeline for the TimeML graph has 10 time steps and 18
time points. In this example, the TimeML and TDT timelines
both have the same number of time points, but the number
of time steps in the TDT case is smaller on account of
discarded temporal information. In the general case, because
TimeML graphs encode subordinating relations that are
completely disregarded by TDTs, certain events and times
might be removed from the TDT timeline altogether, and so
the number of time points in TDT timelines can be smaller
than in the equivalent TimeML timeline.

The information loss between timelines can be compared
by computing the indeterminacy of time point orderings
relative to the original temporal graph or tree. Temporal
graphs or trees often do not have enough information to
identify a unique timeline. Sections of the timeline that have
multiple possible solutions can be referred to as indetermi-
nate. Similarly, time points or time steps involved in these
sections can also be referred to as indeterminate.

A simple example of a temporally indeterminate TimeML
graph is shown in FIG. 3(a), with its corresponding minimal
timeline solution showing in FIG. 3(5) (the indeterminate
section is marked in gray in FIG. 3(b)). For this temporal
graph, the uniquely determined orderings include the first
and last sections of the timeline, namely I"<1*<27<2%<3, 4
and 3, 4<57<5". On the other hand, the order of 3 and 4 is
indeterminate. There are 11 possible solutions for the order-
ing of the start and end points of these two intervals.

Algorithm 2 Identifying Indeterminacies

1: procedure FINDINDETERMINATESECTIONS(s, T)
Require: s > shortest timeline

Require: T > all other timelines
2: d<190 * map of time point pairs to boolean
3: forall p < (t;, t;,;) do e s do > neighboring time points
4: d(p) < false
5t forall t e T do > for all other timelines
6: if p & t then > if the pair are not neighbors
7: d(p) < true > mark the pair indeterminant
8: return d

An algorithm for identifying indeterminacies is shown in
Algorithm 2. The algorithm works by comparing all possible
timelines, which the JaCoP solver can provide. The algo-
rithm iterates through all adjacent time point pairs in the
shortest timeline (lines 3-7), and checks to see if these two
points are adjacent in all other timelines (lines 5-6). If they
are not, the order of that pair is marked indeterminate (line
7). In practice, it often takes considerable time to compute
all possible timelines. In some embodiments, to save time,
a limit can be set (e.g., 100 random alternative timelines),
which gives a lower-bound to the indeterminacy. With these
results, it can be visualized which portions of the shortest
timeline are indeterminate, as illustrated in FIGS. 3(a) and
3(b). The temporal indeterminacy of the TimeML graphs can
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thus be measured for the three TimeML corpora, and the
TDTs for all four corpora. The amount of indeterminacy can
be measured in a number of ways: the number of indeter-
minate time points or time steps can be counted; the number
of indeterminate sections can be counted; or the fraction of
time steps or time points that are indeterminate can be
counted. Detailed results are presented in FIG. 9.

In many embodiments, a system or method can be imple-
mented via software code. In an embodiment, the code can
be written in Java, for example building upon the JaCoP
constraint solving tool as mentioned above, and taking as
input TimeML (.tml), Story Workbench (.sty), or TDT (.tdt)
files. The constraint satisfaction problem is in theory NP-
complete, though the experiments in the example took no
longer than a second on a current, standard consumer laptop
(2.4 GHz 4-core Intel 17 3630QM with 8 GB of RAM).

Systems and methods of embodiments of the subject
invention can use two algorithms. First, full TDTs and/or
abstract TDTs can be generated by transforming temporal
graphs (e.g., TimeML temporal graphs) to TDTs. During the
transformation, omitted relations can be kept in an array.
Second, indeterminate sections on timelines extracted from
the temporal graphs, full TDTs, and/or abstract TDTs can be
identified. Use of these two algorithms on four different
corpora is discussed herein (see also FIG. 5-9 and Examples
1 and 2).

Systems and methods of embodiments of the subject
invention can be used to measure temporal information loss
of TDTs. An algorithm can be used to identify indeterminate
sections of timelines; indeterminate sections indicate the
fuzziness of timelines. In the indeterminate sections, total
order cannot be extracted, so identifying indeterminate sec-
tions shows the temporal information lacking in documents.
Therefore, embodiments can be used to quantify the quality
of timelines/storylines (e.g., TDTs of timelines/storylines).

The methods and processes described herein can be
embodied as code and/or data. The software code and data
described herein can be stored on one or more machine-
readable media (e.g., computer-readable media), which may
include any device or medium that can store code and/or
data for use by a computer system. When a computer system
and/or processor reads and executes the code and/or data
stored on a computer-readable medium, the computer sys-
tem and/or processor performs the methods and processes
embodied as data structures and code stored within the
computer-readable storage medium.

It should be appreciated by those skilled in the art that
computer-readable media include removable and non-re-
movable structures/devices that can be used for storage of
information, such as computer-readable instructions, data
structures, program modules, and other data used by a
computing system/environment. A computer-readable
medium includes, but is not limited to, volatile memory such
as random access memories (RAM, DRAM, SRAM); and
non-volatile memory such as flash memory, various read-
only-memories (ROM, PROM, EPROM, EEPROM), mag-
netic and ferromagnetic/ferroelectric memories (MRAM,
FeRAM), and magnetic and optical storage devices (hard
drives, magnetic tape, CDs, DVDs); network devices; or
other media now known or later developed that are capable
of storing computer-readable information/data. Computer-
readable media should not be construed or interpreted to
include any propagating signals. A computer-readable
medium of the subject invention can be, for example, a
compact disc (CD), digital video disc (DVD), flash memory
device, volatile memory, or a hard disk drive (HDD), such
as an external HDD or the HDD of a computing device,
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though embodiments are not limited thereto. A computing
device can be, for example, a laptop computer, desktop
computer, server, cell phone, or tablet, though embodiments
are not limited thereto.

A greater understanding of the embodiments of the sub-
ject invention and of their many advantages may be had
from the following examples, given by way of illustration.
The following examples are illustrative of some of the
methods, applications, embodiments, and variants of the
present invention. They are, of course, not to be considered
as limiting the invention. Numerous changes and modifica-
tions can be made with respect to the invention.

Example 1—Omitted Temporal Relations

Using Algorithm 1 the TimeML graphs were transformed
from the 265 texts (including corrected texts) in the Time-
Bank, N2, and ProppLearner corpora into full TDTs. The
overall counts of TimeML relations and omitted links is
shown in FIG. 7, and on average 2.4% of temporal relations
were omitted. The two reasons for these omissions were: (1)
tree nodes may only have one parent; and (2) the TDT
representation ignores subordinating links. This observation
emphasizes that in the general case TDTs cannot represent
all of the temporal information in a text.

Example 2—Increase in Indeterminacy

After extracting full TDTs from the corpora abstract TDTs
were generated as described herein, and extracted timelines
were generated from the TimeML graphs, full TDTs, and
abstract TDTs. FIG. 8 shows various characteristics of the
timelines so extracted, including their average length in
terms of both time steps and time points (first and second
groups of columns), total number of time points (third
group), and average percentage decrease of TDT timeline
lengths relative to TimeML timelines in terms of time steps
(last group). In the last column group, it can be seen that
overall timeline lengths in full and abstract TDTs decreased
by anywhere from 3.4% to 14.7% on average.

Algorithm 2 was applied to these timelines to identify
indeterminate sections and time points; FIG. 9 shows the
results. The relative indeterminacy of timelines can be
compared by computing the percentage of time steps that are
assigned an indeterminate time point (last group of col-
umns). Transformation of TimeML graphs into a full TDT
increased the temporal indeterminacy by 76%, 16%, and
22% (average 22%) for the ProppLearner, N2, and Time-
Bank corpora, respectively. These fractions were computed
by dividing the numbers in the second-to-last column (aver-
age number of indeterminate sections per text) of FIG. 9 by
those in the third-to-last column (total number of indeter-
minate sections per corpus). Similarly, transformation of
TimeML graphs into abstract TDTs increased indeterminacy
by 109%, 51%, and 25% (average 32%) for the Prop-
pLearner, N2, and TimeBank corpora, respectively. Overall,
11,437 out of 14,671 (78%) time points were indeterminate
for abstract TDT timelines and 10,023 out of 14,671 (70%)
were indeterminate for full TDT timelines, compared with
8,769 out of 15,623 (56%) for TimeML timelines. Thus,
even full TDTs increased temporal indeterminacy signifi-
cantly compared to TimeML graphs. In contrast to time
points, on average 52.2% of time steps in TimeML timelines
were indeterminate, compared with 67.2% and 78.1% of
time steps in full TDT and abstract TDT timelines, respec-
tively. This increase in indeterminacy is potentially impor-
tant to downstream natural language processing (NLP)

15

25

35

40

45

50

55

60

65

14

stages. For example, for a question answering system that is
addressing temporal or causal questions, the text may pro-
vide enough information to produce a single answer, but a
TDT representation may not include all of that information,
making it impossible for the QA system to answer unam-
biguously.

On average, the increase in indeterminacy was 32%, and
this increase was a result of the TDT representation elimi-
nating on average only 2.4% of total temporal relations. This
result suggests that small differences can have big effects in
temporal graphs, and the use of TDTs must be balanced
against their deficiencies, with tasks requiring an accurate
global temporal ordering potentially calling for use of the
full temporal graph.

It should be understood that the examples and embodi-
ments described herein are for illustrative purposes only and
that various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application.

All patents, patent applications, provisional applications,
and publications referred to or cited herein are incorporated
by reference in their entirety, including all figures and tables,
to the extent they are not inconsistent with the explicit
teachings of this specification.

What is claimed is:

1. A system for quantifying temporal indeterminacy of a
timeline of a corpus, the system comprising:

a processor;

a memory in operable communication with the processor;

and

a machine-readable medium in operable communication

with the processor and the memory, the machine-

readable medium having instructions stored thereon

that, when executed by the processor, perform the

following steps:

generating at least one full Temporal Dependency Tree
(TDT) and at least one abstract TDT by transforming
at least one temporal graph of the corpus to the at
least one full TDT and the at least one abstract TDT,
the at least one temporal graph being stored on at
least one of the memory and the machine-readable
medium, each abstract TDT of the at least one
abstract TDT comprising a class of temporal rela-
tions that has been abstracted, the at least one full
TDT being generated using all temporal and aspec-
tual link types of the at least one temporal graph, and
the at least one abstract TDT being generated using
only a subset of the temporal and aspectual link types
of the at least one temporal graph;

identifying first indeterminate sections on at least one
first timeline extracted from the at least one full TDT;

identifying second indeterminate sections on at least
one second timeline extracted from the at least one
temporal graph;

identifying third indeterminate sections on at least one
third timeline extracted from the at least one abstract
TDT,;

calculating a first indeterminacy value of the at least
one full TDT based on the first indeterminate sec-
tions, thereby quantifying temporal indeterminacy of
the at least one full TDT with the first indeterminacy
value

calculating a second indeterminacy value of the at least
one temporal graph based on the second indetermi-
nate sections; and

calculating a third indeterminacy value of the at least
one abstract TDT based on the third indeterminate
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sections, thereby quantifying temporal indetermi-
nacy of the at least one abstract TDT with the third
indeterminacy value,

the at least one temporal graph comprising a Temporal
Markup Language (TimeML) graph, and

the quantifying of the temporal indeterminacy of the at
least one full TDT and the at least one abstract TDT
thereby improving the ability of the system to quan-
tify a quality of the timeline of the corpus.

2. The system according to claim 1, the processor when
executed further:

comparing the first indeterminacy value to the second

indeterminacy value to determine an increase in inde-
terminacy of the at least one full TDT compared to the
at least one temporal graph.

3. The system according to claim 1, the generating of the
at least one full TDT and the at least one abstract TDT by
transforming the at least one temporal graph comprising
storing omitted relations in an array stored on at least one of
the memory and the machine-readable medium.

4. The system according to claim 1, the first indetermi-
nacy value being calculated by dividing an average number
of the first indeterminate sections per text of the corpus by
a total number of the first indeterminate sections in the
corpus.

5. A method for quantifying temporal indeterminacy of a
timeline of a corpus, the method comprising:

generating, by a processor in operable communication

with a memory and a machine-readable medium of a
system, at least one full Temporal Dependency Tree
(TDT) and at least one abstract TDT by transforming at
least one temporal graph of the corpus to the at least
one full TDT and the at least one abstract TDT, the at
least one temporal graph being stored on at least one of
the memory and the machine-readable medium, each
abstract TDT of the at least one abstract TDT compris-
ing a class of temporal relations that has been
abstracted, the at least one full TDT being generated
using all temporal and aspectual link types of the at
least one temporal graph, and the at least one abstract
TDT being generated using only a subset of the tem-
poral and aspectual link types of the at least one
temporal graph;

identifying, by the processor, first indeterminate sections

on at least one first timeline extracted from the at least
one full TDT;

identifying, by the processor, second indeterminate sec-

tions on at least one second timeline extracted from the
at least one temporal graph;

identifying, by the processor, third indeterminate sections

on at least one third timeline extracted from the at least
one abstract TDT;

calculating, by the processor, a first indeterminacy value

of the at least one full TDT based on the first indeter-
minate sections, thereby quantifying temporal indeter-
minacy of the at least one full TDT with the first
indeterminacy value;

calculating, by the processor, a second indeterminacy

value of the at least one temporal graph based on the
second indeterminate sections; and

calculating, by the processor, a third indeterminacy value

of the at least one abstract TDT based on the third
indeterminate sections, thereby quantifying temporal
indeterminacy of the at least one abstract TDT with the
third indeterminacy value,

the at least one temporal graph comprising a Temporal

Markup Language (TimeML) graph, and
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the quantifying of the temporal indeterminacy of the at
least one full TDT and the at least one abstract TDT
thereby improving the ability of the system to quantify
a quality of the timeline of the corpus.

6. The method according to claim 5, further comprising:

comparing, by the processor, the first indeterminacy value

to the second indeterminacy value to determine an
increase in indeterminacy of the at least one full TDT
compared to the at least one temporal graph.

7. The method according to claim 5, the generating of the
at least one full TDT and the at least one abstract TDT by
transforming the at least one temporal graph comprising
storing omitted relations in an array stored on at least one of
the memory and the machine-readable medium.

8. The method according to claim 5, the first indetermi-
nacy value being calculated by dividing an average number
of the first indeterminate sections per text of the corpus by
a total number of the first indeterminate sections in the
corpus.

9. A system for quantifying temporal indeterminacy of a
timeline of a corpus, the system comprising:

a processor;

a memory in operable communication with the processor;

and

a machine-readable medium in operable communication

with the processor and the memory, the machine-

readable medium having instructions stored thereon

that, when executed by the processor, perform the

following steps:

generating at least one full Temporal Dependency Tree
(TDT) and at least one abstract TDT by transforming
at least one temporal graph of the corpus to the at
least one full TDT and the at least one abstract TDT,
the at least one temporal graph being stored on at
least one of the memory and the machine-readable
medium, each abstract TDT of the at least one
abstract TDT comprising a class of temporal rela-
tions that has been abstracted, the at least one full
TDT being generated using all temporal and aspec-
tual link types of the at least one temporal graph, and
the at least one abstract TDT being generated using
only a subset of the temporal and aspectual link types
of the at least one temporal graph;

identifying first indeterminate sections on at least one
first timeline extracted from the at least one full TDT;

identifying second indeterminate sections on at least
one second timeline extracted from the at least one
temporal graph;

identifying third indeterminate sections on at least one
third timeline extracted from the at least one abstract
TDT,;

calculating a first indeterminacy value of the at least
one full TDT based on the first indeterminate sec-
tions, thereby quantifying temporal indeterminacy of
the at least one full TDT with the first indeterminacy
value;

calculating a second indeterminacy value of the at least
one temporal graph based on the second indetermi-
nate sections;

calculating a third indeterminacy value of the at least
one abstract TDT based on the third indeterminate
sections, thereby quantifying temporal indetermi-
nacy of the at least one abstract TDT with the third
indeterminacy value;

comparing the first indeterminacy value to the second
indeterminacy value to determine an increase in
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indeterminacy of the at least one full TDT compared
to the at least one temporal graph; and
comparing the third indeterminacy value to the second
indeterminacy value to determine an increase in
indeterminacy of the at least one abstract TDT com-
pared to the at least one temporal graph,
the generating of the at least one full TDT and the at least
one abstract TDT by transforming the at least one
temporal graph comprising storing omitted relations in
an array stored on at least one of the memory and the
machine-readable medium,
the at least one temporal graph comprising a Temporal
Markup Language (TimeML) graph,
the first indeterminacy value being calculated by dividing
an average number of the first indeterminate sections
per text of the corpus by a total number of the first
indeterminate sections in the corpus,
the second indeterminacy value being calculated by divid-
ing an average number of the second indeterminate
sections per text of the corpus by a total number of the
second indeterminate sections in the corpus,
the third indeterminacy value being calculated by dividing
an average number of the third indeterminate sections
per text of the corpus by a total number of the third
indeterminate sections in the corpus, and
the quantifying of the temporal indeterminacy of the at
least one full TDT and the at least one abstract TDT
thereby improving the ability of the system to quantity
a quality of the timeline of the corpus.
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