


recently released a corpus of 24,422 words annotated for re-
ferring expressions [6]. The Story Workbench currently has
17 implemented representations, the conjunction of which
gives fairly reasonable cover of the basic meaning of a nar-
rative. These representations are:

1. Tokens - location of each word token

2. Multi-word Expressions - words that are made up mul-
tiple tokens

3. Sentences - location of each sentence

4. Part of Speech Tags - a Penn Treebank tag for each
word token and multi-word expression

5. Lemmas - a lemma (i.e., stem, root form) for each word
or multi-word expression not already lemmatized

6. Word Senses - a Wordnet sense for each token or multi-
word expression

7. Context-Free Grammar Parse - a CFG parse of each
sentence

8. Referring Expressions - locations of all expressions that
refer to something

9. Referent Attributes - properties (unchanging attributes)
of referents referred to in the text

10. Co-reference Relationships - which referring expres-
sions refer to the same referent (co-refer)

11. Time Expressions - location, type, and value of tem-
poral expressions, as defined by TimeML [9]

12. Events - location, features, and type of event mentions,
as defined by TimeML

13. Temporal Relationships - event-event, event-time, or
time-time temporal relationships, as defined by TimeML

14. Referent Relationships - event-event, event-referent, or
referent-referent non-temporal relationships

15. Semantic Roles - predicate features and arguments, as
defined in PropBank

16. Mental State - mental state valencies as consequences
of actions, as described by Lehnert [7]

17. Proppian Functions - locations of functions as identi-
fied by Propp’s monograph

Ten trained annotators have annotated 16 of Propp’s sin-
gle move folktales translated into English, a total of 21,182
words. All 17 of the implemented representations have been
double-annotated and adjudicated into a gold-standard for
each tale. These particular sixteen tales were chosen for the
following reasons. First, Propp identified only 46 of the tales
he analyzed. Second, I was able to identify extant transla-
tions into English for only 31 of Propp’s identified tales, even
with the help of Russian speakers searching large numbers
of translated collections. Third, of those 31 tales, only 16
were single-move. I targeted single move tales because hav-
ing only one move in a tale simplifies the observed order
of Proppian functions; I hypothesized that this would ease
learning the functions, and so should form the first attempt.
Thus these 16 single-move, English translations of Propp’s
original tales comprise the initial set to be analyzed.

The first 16 annotations in the list above will form the raw
data for the function extraction algorithm. The final rep-
resentation, Proppian functions, will be used in the second

evaluation metric, namely, comparing my extracted func-
tions with Propp’s original analysis.

3. LEARNING MORPHOLOGIES
I have developed an algorithm called Analogical Story Merg-
ing (ASM) [5] to extract Proppian functions from the anno-
tated folktales. ASM is a variation of the machine learning
technique of Bayesian Model Merging [12]. The algorithm
begins by constructing an initial model that explicitly en-
codes each story as one possible output. I do this by first
extracting from each the annotation’s of each story a se-
quence of events, shown as D in Figure 1. Each story’s
event sequence is then incorporated into the initial model,
marked as M0 in the figure, as a single, linear branch of
model states. While there are numerous possible orderings,
one of the simplest is make the order of states in the model
the same as the order in which their associated events occur
in the narration of the story (as opposed the order of events
in the story world).

ASM then searches the space of state merges, where two
states, each representing an event, are merged into one. To
accomplish this, I define both a merge operation over states,
and a prior probability function to be used when calculating,
via Bayes’ rule, the posterior probability of the model given
the data. The merge operation takes two states and replaces
them by a single state, where the merged state inherits the
weighted sum of the transitions and emissions of its parents.
Because each state in the initial model represents an event in
the story, each merged state represents set of all the events
of its parents.

The prior is defined such that smaller models are attributed
greater probability than larger models, and models that con-
tain merged states representing sets of similar events are
given higher probability than otherwise. In ASM the pri-
mary calculation of similarity is done via an analogical map-
per, an augmented version of the the Structure Mapping
Engine [3]. This mapper assesses the similarity between
events, taking into account aspects of those event such as
their structure (do the number of arguments match?), their
classification (is it a run or a love?), the identities of other
events to which the events in question are connected casu-
ally or temporally, the consistency of role assignments (is
character A in story 1 consistently mapped to character B
in story 2?).

The search space for ASM is quite large, being equal in size
to Bell’s number, Bn, where n is the number of initial states
in the model. Bell’s number counts the number of unique
partitions of a set of n objects [10], and has been shown [2]
to be relatively closely bounded above by equation 1.

Bn <


0.792n

ln(n+ 1)

n

(1)

Because the search space is so large, ASM cannot be ex-
pected to do an exhaustive search of the state merge space
for a set of real stories. Greedy search is required, with
efficient pruning of the search space to ensure that the algo-
rithm converges. I have shown that this approach is feasi-
ble in two experiments. The first experiment was reported
in [5], and was the first proof-of-concept test of the algo-
rithm using summaries of Shakespearian plays. The initial
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(1) The boy and girl were playing.  He chased her, but she ran away. She thought he was gross.

(2) The man stalked the woman and scared her.  She fled town.  She decided he was crazy.
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Figure 1: Analogical Story Merging in action. The
two stories being merged are written at the top, in
(1) and (2). The Story Workbench annotation step
produces data structures representing the surface
meaning of the story, marked here as D. Each event
in each story is then encapsulated in a single state,
labeled 1 through 8, in the initial model M0. ASM
searches the space of state merges to find a path to
the most probable model, here labeled M4. From
one model to the next, the two states that shaded
in the first model are merged together in the second.

model had 48 events across five plays (Macbeth, Hamlet,
Julius Caesar, Othello and Taming of the Shrew) and the
search space was pruned by not allowing merges between
dissimilar events, but not otherwise optimizing the search.
The algorithm converged, and discovered plot similarities
that one would expect a human to extract after careful con-
sideration. First, it merged large portions of Macbeth and
Hamlet, the two most similar plays in the set. Second, it
merged the ending concluding suicides of Julius Caesar and
Othello, but did not merge these with the (markedly differ-
ent) suicides of Lady Macbeth and Queen Gertrude. Third,
it did not merge the Taming of the Shrew, the only comedy
in the set, with any of other four tragedies. Numerous other
interesting observations may be made, but suffice to say that
the algorithm converged on this data and found reasonable
patterns.

A second, more recent, experiment has demonstrated that
ASM can converge on more complex data. In this experi-
ment, we used four summaries of international conflict situ-
ations, written in natural English. These stories were writ-
ten to illustrate rudimentary plot unit elements (à la Lehn-
ert [7]), in particular, Revenge and Pyrrhic Victory. After
annotation in the Story Workbench, and augmentation of
the story graphs with some light commonsense knowledge,
each story contained between 34 and 73 states, for a total of
210 states in the initial ASM model. Using a beam search
strategy and applying the constraint that all merges in a
model must preserve actor mappings across the story, ASM
converged and the final graph could be processed to extract
the two embedded plot units.

It remains to be seen whether the algorithm, when presented
with annotations of real folktales, will be able to extract
meaningful functions. Because the extremely large search
space induced by 16 folktales of up to 1,800 words each
(each folktale potentially containing hundreds of events),
I am in the process of augmenting the original ASM im-
plementation to perform efficient, greedy, parallelized beam
search, with multiple constraints on valid models, using the
400-node computing cluster available at the MIT Computer
Science and Artificial Intelligence Laboratory.

3.1 Evaluation Metrics
I will use at least three metrics to evaluate the output of
ASM. The first will be to test the ability of the algorithm to
recover patterns purposefully embedded in synthetic data.
I will create a synthetic (i.e., artificial) morphology and use
it to generate annotations for input into ASM. I will likely
start with Propp’s own observed morphology over the set of
16 tales that I am analyzing - i.e., including in the morphol-
ogy only those functions that appear in those 16 tales, and
only in those orders. Using this as a skeleton, I will write a
generator that outputs, for each Proppian function, a syn-
thetic set of events of the correct semantic character for that
function. A set of of synthetic annotations will be generated
by this technique, and then fed back into ASM. The func-
tions then discovered by ASM will then be compared with
the original synthetic morphology. The measure of success
will be an f-measure-like score. The efficiency and reliability
of ASM can be evaluated by varying the complexity of the
morphology, the number of generated annotations, and the
values of the constants in the ASM evaluation functions.



The second metric, perhaps the most interesting, will be to
compare with Propp’s own analysis the functions that are
extracted by ASM when run over the 16 annotated folk-
tales. As we have Propp’s original list of functions for these
tales, and I will take his analyses as a “gold standard”, as it
were, to measure the accuracy of the ASM-extracted func-
tions. Beyond the numerical comparison this metric affords,
comparing the ASM output with Propp’s functions should
produce a number of interesting insights. For example, I
expect that the annotations I am collecting will not be suffi-
cient to reproduce some of Propp’s functions, on account of
the wide variation in his level of abstraction. Where ASM
breaks down in this case will point to where the abstraction
strategy will need to be expanded.

The third metric will be to perform a cross-validation anal-
ysis of the set of tales, in which the algorithm is used on
different subsets of the 16 tales and the results are com-
pared between the subsets. Such an approach is standard in
machine learning studies, and allows testing the sensitivity
of the algorithm to variation of input.

4. HUMAN EXPERIMENTS
The true test of this work is whether cultural participants
are sensitive to the functions extracted from their own cul-
ture’s folktales. While there are numerous possible experi-
mental paradigms, in this design we select at least two cul-
tures for study. We will annotate a number of folktales from
each culture and extract Proppian functions for each. Using
these functions, we will then construct a set of stimuli folk-
tales that are made up primarily of functions from one cul-
ture, with the exception of a single function from the other
culture. Subjects would then be asked to read these stories
and retell them, possibly after a distractor task or delay.
Examination of the retold tales should show how subjects
treat foreign functions relative to functions from their own
culture. If participants preferentially forget or distort for-
eign functions, we will have fairly clear evidence that people
actually detect and extract (and, therefore, probably use)
these Proppian functions at some level. There are several
possible measures for examining this effect, including reac-
tion time measurements, yes-no judgments of inclusion in
the original stimuli (both found in [11]), free-response re-
call, coded by judges (e.g., [13]), either for a single recall
session, or over multiple retellings (such as in a classic study
in this area, [1]).
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