Database Management

Database Management Approaches
Objectives

- Describe distributed database management systems (DDBMSs)
- Discuss client/server systems
- Examine the ways databases are accessed on the Web
- Discuss XML and related document specification standards
Objectives (continued)

- Define data warehouses and explain their structure and access
- Discuss the general concepts of object-oriented DBMSs
Distributed Databases

- Computers at various sites
- Connected with *communications network* or *network*
- **Distributed database**: single logical database physically divided among networked computers
- **Distributed database management system (DDBMS)**: supports and manipulates distributed databases
Distributed Databases (continued)

FIGURE 9-1: Communications network
Distributed Databases (continued)

- Computers in a network communicate through messages
- **Access delay** required for every message
 - Fixed amount of time
- Communication time = access delay + (data volume / transmission rate)
Characteristics of Distributed DBMSs

- **Homogeneous DDBMS**: same local DBMS at each site
- **Heterogeneous DDBMS**: at least two sites at which local DBMSs are different
- Shared characteristics of DDBMSs
 - Location transparency
 - Replication transparency
 - Fragmentation transparency
Location Transparency

- **Remote site**: site other than one where user is
- **Local site**: site where user is
- **Location transparency**: users do not need to be aware of location of data in a distributed database
Replication Transparency

• Data replication creates update problems that can lead to data inconsistencies

• **Replication transparency**: users unaware of steps taken by DDBMS to update various copies of data
Fragmentation Transparency

• **Data fragmentation**: DDBMS can divide and manage a logical object among various locations under its control
 – Data placed at the location where it is most often accessed

• **Fragmentation transparency**: users unaware of fragmentation
Fragmentation Transparency (continued)

<table>
<thead>
<tr>
<th>PartNum</th>
<th>Description</th>
<th>OnHand</th>
<th>Class</th>
<th>Warehouse</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT94</td>
<td>Iron</td>
<td>50</td>
<td>HW</td>
<td>3</td>
<td>$24.95</td>
</tr>
<tr>
<td>BV06</td>
<td>Home Gym</td>
<td>45</td>
<td>SG</td>
<td>2</td>
<td>$794.95</td>
</tr>
<tr>
<td>CD52</td>
<td>Microwave Oven</td>
<td>32</td>
<td>AP</td>
<td>1</td>
<td>$165.00</td>
</tr>
<tr>
<td>DL71</td>
<td>Cordless Drill</td>
<td>21</td>
<td>HW</td>
<td>3</td>
<td>$129.95</td>
</tr>
<tr>
<td>DR93</td>
<td>Gas Range</td>
<td>8</td>
<td>AP</td>
<td>2</td>
<td>$495.00</td>
</tr>
<tr>
<td>DW11</td>
<td>Washer</td>
<td>12</td>
<td>AP</td>
<td>3</td>
<td>$399.99</td>
</tr>
<tr>
<td>FD21</td>
<td>Stand Mixer</td>
<td>22</td>
<td>HW</td>
<td>3</td>
<td>$159.95</td>
</tr>
<tr>
<td>KL62</td>
<td>Dryer</td>
<td>12</td>
<td>AP</td>
<td>1</td>
<td>$349.95</td>
</tr>
<tr>
<td>KT03</td>
<td>Dishwasher</td>
<td>8</td>
<td>AP</td>
<td>3</td>
<td>$595.00</td>
</tr>
<tr>
<td>KV29</td>
<td>Treadmill</td>
<td>9</td>
<td>SG</td>
<td>2</td>
<td>$1,390.00</td>
</tr>
</tbody>
</table>

FIGURE 9-2: Premiere Products Part table data
Fragmentation Transparency (continued)

FIGURE 9-3: Fragmentation of Part table data by warehouse

<table>
<thead>
<tr>
<th>Fragment Part1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PartNum</td>
<td>Description</td>
<td>OnHand</td>
<td>Class</td>
<td>Warehouse</td>
<td>Price</td>
</tr>
<tr>
<td>CD52</td>
<td>Microwave Oven</td>
<td>32</td>
<td>AP</td>
<td>1</td>
<td>$165.00</td>
</tr>
<tr>
<td>KL62</td>
<td>Dryer</td>
<td>12</td>
<td>AP</td>
<td>1</td>
<td>$349.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fragment Part2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PartNum</td>
<td>Description</td>
<td>OnHand</td>
<td>Class</td>
<td>Warehouse</td>
<td>Price</td>
</tr>
<tr>
<td>BV06</td>
<td>Home Gym</td>
<td>45</td>
<td>SG</td>
<td>2</td>
<td>$794.95</td>
</tr>
<tr>
<td>DR93</td>
<td>Gas Range</td>
<td>8</td>
<td>AP</td>
<td>2</td>
<td>$495.00</td>
</tr>
<tr>
<td>KV29</td>
<td>Treadmill</td>
<td>9</td>
<td>SG</td>
<td>2</td>
<td>$1,390.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fragment Part3</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PartNum</td>
<td>Description</td>
<td>OnHand</td>
<td>Class</td>
<td>Warehouse</td>
<td>Price</td>
</tr>
<tr>
<td>AT94</td>
<td>Iron</td>
<td>50</td>
<td>HW</td>
<td>3</td>
<td>$24.95</td>
</tr>
<tr>
<td>DL71</td>
<td>Cordless Drill</td>
<td>21</td>
<td>HW</td>
<td>3</td>
<td>$129.95</td>
</tr>
<tr>
<td>DW11</td>
<td>Washer</td>
<td>12</td>
<td>AP</td>
<td>3</td>
<td>$399.99</td>
</tr>
<tr>
<td>FD21</td>
<td>Stand Mixer</td>
<td>22</td>
<td>HW</td>
<td>3</td>
<td>$159.95</td>
</tr>
<tr>
<td>KT03</td>
<td>Dishwasher</td>
<td>8</td>
<td>AP</td>
<td>3</td>
<td>$595.00</td>
</tr>
</tbody>
</table>
Advantages of Distributed Databases

• Local control of data
• Increased database capability
• System availability
• Improved performance
Disadvantages of Distributed Databases

• Update of replicated data
 – Primary copy
• More complex query processing
• More complex treatment of concurrent update
 – Local deadlock: occurs at a single site in a distributed database
 – Global deadlock: involves more than one site
• More complex recovery measures
 – Two-phase commit: one site acts as coordinator
Disadvantages of Distributed Databases (continued)

• More difficult management of data dictionary
• More complex database design
• More complicated security and backup requirements
Rules for Distributed Databases

• Local autonomy
• No reliance on a central site
• Continuous operation
• Location transparency
• Fragmentation transparency
• Replication transparency
Rules for Distributed Databases (continued)

- Distributed query processing
- Distributed transaction management
- Hardware independence
- Operating system independence
- Network independence
- DBMS independence
Client/Server Systems

- **File server architecture**
 - **File server**: stores user files on the network

- **Client/server** architecture
 - **Server**: computer providing data to clients
 - **Back-end processor** or **back-end machine**
 - **Clients**: computers connected to a network and used by users to access data
 - **Front-end processor** or **front-end machine**
Client/Server Systems (continued)

FIGURE 9-4: File server architecture
Client/Server Systems (continued)

FIGURE 9-5: Two-tier client/server architecture
Client/Server Systems (continued)

• **Two-tier architecture**
 – Server performs database functions
 – Clients perform presentation functions
 • Fat client
 • Thin client

• **Three-tier architecture**
 – Clients perform presentation functions
 – *Database server* performs database functions
 – *Application servers* perform business functions and interface between clients and database server
Client/Server Systems (continued)

FIGURE 9-6: Three-tier client/server architecture
Advantages of Client/Server Systems

- Lower network traffic
- Improved processing distribution
- Thinner clients
- Greater processing transparency
- Increased network, hardware, and software transparency
- Improved security
- Decreased costs
- Increased scalability
Web Access to Databases

- **Internet** and **World Wide Web** (or the **Web**)
- **Web page**: digital document on the Web
- **Web server**: stores Web pages
- **Web client**: computer requesting a Web page
- Each Web page has a **Uniform Resource Locator (URL)**
- **Hypertext Transfer Protocol (HTTP)**: data communication method used to exchange data on the Internet
Web Access to Databases (continued)

- **Web browser**: computer program that retrieves a Web page from a Web client
- **Transmission Control Protocol/Internet Protocol (TCP/IP)**: standard protocol for communication on the Internet
- Web pages usually created using **Hypertext Markup Language (HTML)**
Web Access to Databases (continued)

FIGURE 9-7: Retrieving a Web page on the Internet
Web Access to Databases (continued)

• Static vs. dynamic Web pages
 – **Static Web pages**: same content for all Web clients
 – **Dynamic Web pages**: content changes in response to inputs and choices from Web clients

• **Server-side extensions or server-side scripts**

• **Client-side extensions or client-side scripts**

• Three-tier Web-based architecture
 – Web clients
 – Web server
 – Database server
Web Access to Databases (continued)

FIGURE 9-8: Three-tier Web-based architecture
XML

• HTML
 – Describes content and appearance of Web pages
 – Does not describe structure and meaning of data

• Extensible Markup Language (XML)
 – Tags can define meaning and structure of data
 – An XML document should begin with an XML declaration
XML (continued)

- **Extensible Hypertext Markup Language (XHTML)**
 - Markup language based on XML
 - Stricter version of HTML
- **Defining structure, characteristics, and relationships of data**
 - **Document Type Definition (DTD)**
 - XML schema
- **Presentation of data**
 - **Stylesheet**
FIGURE 9-10: XML schema for the Rate element from the Rep table
FIGURE 9-11: Interaction among XML and related languages
Data Warehouses

- **Online transaction processing (OLTP) systems**
 - Users use transactions when interacting with an RDBMS

- **Data warehouse**
 - Subject-oriented, integrated, time-variant, nonvolatile collection of data in support of management’s decision-making process
 - Used for analysis of existing data
 - Resolves performance issues suffered by operational RDBMSs and OLTPs
Data Warehouses (continued)

FIGURE 9-12: Data warehouse architecture
Data Warehouse Structure and Access

- **Star schema**
 - Fact table
 - Dimension table
- **Online analytical processing (OLAP) software**: for access to a data warehouse
- **Data cube**: a shape for visualizing a data warehouse as a multidimensional database
- **Data mining**: uncovering new knowledge, patterns, trends, and rules from data in a data warehouse
FIGURE 9-13: A star schema with four dimension tables and a central fact table
Data Warehouse Structure and Access (continued)

FIGURE 9-14: A data cube representation of the Part, Customer, and Time dimensions

Concepts of Database Management 37
Rules for OLAP Systems

- Multidimensional conceptual view
- Transparency
- Accessibility
- Consistent reporting performance
- Client/server architecture
- Generic dimensionality
Rules for OLAP Systems (continued)

• Dynamic sparse matrix handling
• Multiuser support
• Unrestricted, cross-dimensional operations
• Intuitive data manipulation
• Flexible reporting
• Unlimited dimensions and aggregation levels
Object-Oriented DBMSs

- Complex objects: graphics, drawings, photographs, video, sound, voice mail, spreadsheets, etc.
- RDBMSs store complex objects using special data types
 - Binary large objects (BLOBs)
- Object-oriented DBMSs used with applications whose focus is on complex objects
What Is an Object-Oriented DBMS?

• **Object**: set of related attributes along with associated actions

• **Object-oriented database management system (OODBMS)**: database management system in which data and associated actions are **encapsulated** into objects
Objects and Classes

• Represent each entity as an *object* rather than a relation
• List attributes vertically below object names
 – Follow each attribute by name of **domain**
• Objects can contain other objects
• An object can contain a portion of another object
Methods and Messages

- **Methods**: actions defined for a class
- Defined during data definition process
- Executed when user sends a message to the object
Methods and Messages (continued)

FIGURE 9-22: Two methods for the Premiere Products object-oriented database
Inheritance

• Subclass
 – Every occurrence of subclass is considered an occurrence of the class
 – Subclass *inherits* structure and methods of the class
Unified Modeling Language (UML)

- Used to model all aspects of software development for object-oriented systems
 - Includes a way to represent database designs
- **Class diagram**: most relevant diagram type for database design
 - Rectangles represent classes
 - Lines joining classes represent relationships; called *associations*
 - **Visibility symbol** indicates whether other classes can view or update value in attribute
Unified Modeling Language (UML) (continued)

FIGURE 9-24: Class diagram for the Premiere Products database
Unified Modeling Language (UML) (continued)

- **Multiplicity**: number of objects that can be related to an individual object
- Constraints
- **Superclass**
- **Generalization**: relationship between a superclass and a subclass
Unified Modeling Language (UML) (continued)

FIGURE 9-26: Class diagram with a generalization and a constraint
Rules for OODBMSs

• Complex objects
• Object identity
• Encapsulation
• Information hiding
• Types of classes
• Inheritance
• Late binding
Rules for OODBMSs (continued)

- Computational completeness
- Extensibility
- Persistence
- Performance
- Concurrent update support
- Recovery support
- Query facility
Summary

• Distributed database: single logical database physically divided among computers at several sites on a network
• Location transparency, replication transparency, and fragmentation transparency are important characteristics of DDBMSs
• Two-tier client/server architecture: DBMS runs on file server and server sends only the requested data to the clients
Summary (continued)

• Three-tier client/server architecture: clients perform presentation functions, database servers perform database functions, and application servers perform business functions

• Web servers interact with Web clients using HTTP and TCP/IP to display HTML Web pages

• Dynamic Web pages, not static Web pages, are used in e-commerce

• XML was developed because of need for data exchange between organizations and inability of HTML to specify structure and meaning of data
Summary (continued)

- XHTML: markup language based on XML; stricter version of HTML
- Data warehouse: subject-oriented, integrated, time-variant, nonvolatile collection of data in support of management’s decision-making process
- Users perceive data in a data warehouse as a multidimensional database in data cube shape
- Data mining: uncovering new knowledge, patterns, trends, and rules from data stored in a data warehouse
Summary (continued)

• Object-oriented DBMSs deal with data as objects
 – Object: set of related attributes and actions associated with the attributes
 – OODBMS: database management system in which data and actions that operate on the data are encapsulated into objects
• UML: an approach to model all aspects of software development for object-oriented systems