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Abstract

This paper proposes an Adaptive CORBA Tem-
plate (ACT), which enables run-time improvements to
CORBA applications in response to unanticipated changes
in either their functional requirements or their execu-
tion environments. ACT enhances CORBA applications
by transparently weaving adaptive code into their ob-
ject request brokers (ORBs) at run time. The woven code
intercepts and adapts the requests, replies, and excep-
tions that pass through the ORBs. Specifically, ACT can be
used to develop an object-oriented framework in any lan-
guage that supports dynamic loading of code and can be
applied to any CORBA ORB that supports portable inter-
ceptors. Moreover, ACT can be used to support interop-
eration among otherwise incompatible adaptive CORBA
frameworks. To evaluate the performance and functional-
ity of ACT, we implemented a prototype in Java. Our exper-
imental results show that the overhead introduced by the
ACT infrastructure is negligible, while the adaptations of-
fered are highly flexible.

1. Introduction

CORBA applications comprise autonomous programs
typically hosted on heterogeneous platforms and distributed
over heterogeneous networks. Although an application may
be targeted at a particular type of execution environment
when originally developed, over its lifetime the application
is likely to be ported to new environments. Indeed, a key
benefit of CORBA and other middleware platforms is that
they mask the distribution of resources across a network and
hide differences among computing platforms and networks.
However, the need to achieve acceptable quality-of-service
over different underlying technologies has given rise to ex-
tensive research and development in adaptive middleware.
Moreover, the potential diversity of platforms and networks

hosting a given CORBA application increases the likelihood
that the application will be required to accommodate situ-
ations not anticipated during the original development. In
these cases, new adaptive code needs to be introduced to
the application after it is deployed. Examples include code
to enhance the fault-tolerance of critical application com-
ponents, to detect and respond to new security attacks, and
to mitigate variable channel conditions and frequent discon-
nections that arise when an application is ported to a wire-
less network. However, adding new adaptive functionality
to an extant application is complicated when (1) the source
code of the application is unavailable, (2) the source code
is available but modifying it directly is undesirable, or (3)
the application is required to run continuously and cannot
be easily taken off-line for upgrade.

In this paper, we propose the Adaptive CORBA Tem-
plate (ACT), which supports such “unanticipated” adapta-
tion in CORBA applications. ACT enables dynamic im-
provements to CORBA applications in response to changes
in their functional requirements or in non-functional con-
cerns, such as quality-of-service, fault-tolerance, and secu-
rity. We refer to ACT as a framework template, because
it provides a generic model for constructing and enhanc-
ing adaptive CORBA frameworks. Several such frameworks
have been developed recently to support quality-of-service,
real-time processing, fault tolerance, and mobile comput-
ing. As depicted in Figure 1, ACT-based frameworks can be
implemented in different programming languages such as
Java and C++, and can be used to extend existing adaptive
CORBA frameworks such as QuO [19]. Moreover, ACT can
be used to enable interoperation among otherwise incom-
patible frameworks, such as OpenORB [2] and TAO [17].

An ACT-based framework can be integrated with a
CORBA application transparently at run time: new types of
adaptation can be added without recompiling the applica-
tion. The key insight into how to achieve this transparency
is the concept of a generic interceptor, which is a particu-
lar type of CORBA portable request interceptor [11]. Al-
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Figure 1: ACT as a template for adaptive CORBA frameworks.

though a generic interceptor must itself be registered with
the ORB of a CORBA application at startup time, its pres-
ence enables registration of specific request interceptors to
be postponed until run time. In this manner, a generic inter-
ceptor can dynamically weave new adaptive code into the
ORB as the application executes. The adaptive code can in-
tercept and adapt requests, replies, and exceptions that pass
through the ORB. In addition to a generic interceptor, ACT
also defines a rule-based interceptor, which adapts inter-
cepted requests according to a set of rules that also can be
loaded dynamically at run time.

ACT can be used to develop an object-oriented frame-
work in any programming language that supports dynamic
loading of code and can be applied to any CORBA ORB
that supports portable interceptors [11]. We developed a
Java prototype of ACT as well as a set of administrative
consoles that enable manual adaptation of applications at
run time. The prototype uses ORBacus [6], a Java ORB
from IONA Technologies. To demonstrate the seamless in-
teraction of ACT with other adaptive CORBA frameworks,
we coupled ACT with the QuO framework [19] developed
at BBN Technologies. The resulting framework is able to
weave quality-of-service (QoS) aspects (referred to as qos-
kets in QuO terminology [15]) into CORBA applications
both at compile time and at run time. To evaluate the func-
tionality and performance of this hybrid framework, we
used it to enhance an existing image retrieval application
as it executes. The results at this case study show that ACT
introduces negligible overhead to an application while sup-
porting transparent and flexible adaptation at run time.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses background and related work. Section 3 de-
scribes the ACT architecture and its prototype implementa-
tion. Section 4 describes a case study in which we coupled
ACT with QuO. Finally, Section 5 concludes the paper.

2. Background and Related Work

In this section, we review CORBA portable interceptors
and describe how ACT relates to other projects.

2.1. CORBA Portable Request Interceptors

CORBA Portable Request Interceptors, defined by OMG
[11], provide a transparent mechanism to intercept mes-
sages (defined as requests, replies, and exceptions) inside
the ORBs of a CORBA application. According to the spec-
ification, a request interceptor is considered as part of an
ORB and must be registered with the ORB at its initializa-
tion time (notably, a request interceptor cannot be registered
with the ORB at run time).

Figure 2 shows the flow of a CORBA request/reply se-
quence with interceptors present. The middleware layers
labeled in the center of the figure are those defined by
Schmidt [16]. This application comprises two autonomous
programs hosted on two computers connected by a network.
Let us assume that the client has a valid CORBA reference
to the CORBA object realized by the servant. The client’s
request to the servant is first received by the stub, which rep-
resents the CORBA object at the client side. The stub mar-
shals the request and sends it to the client ORB, where the
request is intercepted by the client request interceptor. The
interceptor can inspect requests, create new requests, and
raise exceptions. For example, the ForwardRequest excep-
tion can be used to forward a particular request to a different
CORBA object. However, to ensure portability, interceptors
are not allowed to reply to intercepted requests or to mod-
ify the parameters [11]. This restriction limits the ability of
request interceptors alone to adapt the behavior of CORBA
applications.

Continuing the example, let us assume that the client-
request interceptor in Figure 2 simply passes the request
unmodified. In this case the client ORB sends the request to
the server ORB, where it is intercepted by the server-request
interceptor. Again, let us assume that the request is passed
unmodified, in which case it is delivered to the servant by
way of a skeleton, which unmarshals the request. The ser-
vant replies to the request, by way of the server ORB, where
the reply also is intercepted. Eventually, the reply will be re-
ceived by the client ORB and is intercepted by the client-
request interceptor before it reaches the client.
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Figure 2: A CORBA application with request interceptors.

As we shall discuss in Section 3, the generic interceptors
in ACT are in fact CORBA portable interceptors. The inter-
ceptors provide “hooks” into the interaction between clients
and servants. Moreover, they use the ForwardRequest ex-
ception to deliver requests to a proxy, a CORBA object that
is not prohibited from replying to or modifying the request.

2.2. Relationship between ACT and other projects

ACT is intended to complement adaptive middleware
frameworks and to support interoperation among incom-
patible frameworks. Specifically, ACT can be used to dy-
namically load components of one adaptive framework into
an existing CORBA application that was developed using a
different framework. By transparently intercepting requests
and replies, ACT enables such applications to exploit adap-
tive functionality defined in other frameworks. We refer to
such a system as a framework gateway. Next, we discuss
several adaptive middleware frameworks and their relation-
ship to ACT; additional comparisons can be found can be
found in [14]. We group the frameworks into three cate-
gories: aspect-oriented middleware, reflective middleware,
and interception-based middleware.

Aspect-Oriented Middleware. Aspect-oriented mid-
dleware enables separation of functional aspects from
its non-functional aspects (e.g., quality-of-service, secu-
rity, and fault-tolerance) of a distributed application. One
of the most extensive projects in this area is Quality Ob-
jects (QuO) [19], which provides an adaptable framework
to support QoS in CORBA applications. QuO weaves QoS
aspects, referred to as qoskets, into the applications at com-
pile time by wrapping stubs and skeletons with specialized
delegates, which intercept requests and replies for pos-
sible modifications [19]. In Section 4, we show how
ACT can interact with QuO transparently to enable unan-
ticipated adaptation by dynamically weaving new qos-
kets into the application at run time. AspectIX [5] is an

aspect-oriented distribution middleware that is based on the
distributed object model, in which an object comprises mul-
tiple fragments distributed across nodes. AspectIX enables
dynamic weaving of non-functional aspects into ob-
ject fragments. Although AspectIX is CORBA compliant,
its dynamic adaptation feature cannot be used if when it in-
teroperates with other non-AspectIX ORBs. To solve
this problem, ACT could be used as a framework gate-
way that hosts fragments of a distributed object at the
non-AspectIX ORBs. Squirrel [10] is an adaptive distribu-
tion middleware, specialized for streaming data, that sup-
ports QoS for multimedia applications. Again, ACT could
be used as a gateway that enables interoperation among
non-Squirrel and Squirrel ORBs. Specifically, ACT can en-
able non-Squirrel ORBs to accept and use smart prox-
ies transparently so that they could better communicate
with Squirrel ORBs.

Reflective Middleware. Reflective middleware uses com-
putational reflection to enables inspection and modifica-
tion of middleware dynamically during application execu-
tion [8]. DynamicTAO [9] is a CORBA-compliant reflec-
tive ORB that employ the component-configurator pattern
to support dynamic adaptation. OpenORB [2] is a reflective
ORB that provides explicit binding of remote objects and
enables unanticipated dynamic adaptation using structural
and behavioral reflection. The Coyote project [13] also ad-
dresses unanticipated dynamic adaptation in distributed ap-
plications using Iguana/J, a reflective language. To exploit
the adaptive features provided by these ORBs, one must use
the same ORB in all the autonomous programs that consti-
tute the CORBA application. ACT could be used as a gate-
way between a non-reflective CORBA-compliant ORB and
a reflective ORB, as well as between two reflective ORBs
of different types, to enable interoperation while exploiting
the adaptive features of the reflective ORBs. To do so, ACT
can host different reflective ORBs transparently while in-
tercepting all CORBA requests, replies, and exceptions and
passing them to the appropriate reflective ORB.

Interception-Based Middleware. The concept of trans-
parently intercepting CORBA requests and replies has been
used in several projects. Friedman et al. [4] use CORBA
portable interceptors to enhance the client side of a CORBA
application by introducing proxies that can cache replies
and forward requests to other CORBA objects. This work
is among the first to exploit CORBA portable intercep-
tors for transparent adaptation. In the IRL project, Baldoni
et al. [12] use portable interceptors to transparently intro-
duce their implementation of fault-tolerant CORBA [11] to
CORBA-compliant ORBs. In general, the above projects fo-
cus on modifying program behavior in a particular way, for
example, to enhance fault tolerance, rather than handling
multiple concerns. Like ACT, the DADO project [18] uses
CORBA portable interceptors to support dynamic weaving
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of multiple cross-cutting concerns such as security, fault tol-
erance, and QoS. However, ACT uses the concept of generic
interceptors to enable late binding of the adaptation infras-
tructure itself. Moreover, generic interception enables ACT
to be used as a framework gateway.

3. ACT Architecture and Operation

The Adaptive CORBA Template (ACT) is intended
to support the construction and enhancement of adap-
tive CORBA frameworks. ACT enables CORBA appli-
cations to support unanticipated adaptation at run time
without the need to modify, recompile, and relink the ap-
plication source code. We introduce ACT by defining
its core components and by describing their interac-
tion with the rest of the system.

3.1. ACT Core Components

Figure 3 shows the flow of a request/reply sequence in a
simple CORBA application using ACT. For clarity, details
such as stubs and skeletons are not shown. ACT comprises
two main components: a generic interceptor and an ACT
core. A generic interceptor is a specialized request inter-
ceptor that is registered with the ORB of a CORBA applica-
tion at startup time. The client generic interceptor intercepts
all outgoing requests and incoming replies (or exceptions)
and forwards them to its ACT core. Similarly, the server
generic interceptor intercepts all the incoming requests and
outgoing replies (or exceptions) and forwards them to its
ACT core. A CORBA application is called ACT-enabled
if a generic interceptor is registered with all its ORBs at
startup time. If, in addition to the generic interceptors, all
the ACT core components are also loaded into the applica-
tion, the application is called ACT-ready. Making the appli-
cation ACT-ready can be done either at startup time or at
run time.

ApplicationsClient

Client Application

Servant

Server Application

Domain-Services

Common-Services

Distribution

Host-Infrastructure
System Platform

Network

Client GI 

Client ORB

Server GI

Server ORB

Client ACT Core Server ACT Core

request flow reply flow GI: generic interceptor

Figure 3: ACT configuration in a CORBA application.

Figure 4 shows the flow of a request/reply sequence
intercepted by the client ACT core. The components of
the core include dynamic interceptors, a proxy, a decision
maker, and an event mediator. Each component is described
in turn.

Client ORB

Dynamic
Interceptors

Client ACT Core

Rule-Based
Interceptor

Proxy Decision 
Maker

Event 
Mediator

Client Generic Interceptor

request flow

to/from the host-infra. middleware

reply flow

to/from the common-services middleware

Figure 4: ACT core components.

Dynamic Interceptors. According to the CORBA spec-
ification [11], a request interceptor is required to be reg-
istered with an ORB at the ORB initialization time. The
ACT core enables registration of request interceptors af-
ter the ORB initialization time (at run time) by publishing
a CORBA interceptor-registration service. Such request in-
terceptors are called dynamic interceptors. Dynamic inter-
ceptors can be unregistered with the ORB at run time also.
In contrast, a request interceptor that is registered with the
ORB at startup time is called a static interceptor and cannot
be unregistered with the ORB during run time. We note that
the code developed for a static interceptor and that for a dy-
namic interceptor can be identical, the difference being the
time at which they are registered. In ACT, only generic in-
terceptors are static.

A rule-based interceptor is a particular type of dynamic
interceptor that uses a set of rules to direct the operations
on intercepted requests. The rules can be inserted, removed,
and modified at run time. A rule consists of two objects:
a condition and an action. To determine whether a rule
matches a request, a rule-based interceptor consults its con-
dition object. Once a match is found, the interceptor sends
the request to the action object of the rule. Since it is part
of a CORBA portable interceptor, the action object can-
not itself reply to the request or modify the request param-
eters [11]. The action object can, however, send new re-
quests, record statistics, or raise a ForwardRequest excep-
tion, causing the request to be forwarded to another CORBA
object such as a proxy.

Proxies. A proxy is a surrogate for a CORBA object that
provides the same set of methods as the CORBA object. Un-
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like a request interceptor, a proxy is not prohibited from re-
plying to intercepted requests. A proxy can reply to the in-
tercepted request by sending a new request (possibly with
modified arguments) to either the target object or to another
object. Alternatively, a proxy can reply to the intercepted re-
quests using local data (e.g., cached replies).

Decision Makers. A decision maker assists proxies in re-
plying to intercepted requests as depicted in Figure 4. A de-
cision maker receives requests from a proxy and, similar to
a rule-based interceptor, uses a set of rules to direct the op-
eration on the intercepted requests. However, unlike a rule-
based interceptor, a decision maker is not prohibited from
replying to the requests.

Event Mediators. An event mediator is a CORBA object
that decouples event generators from event listeners using a
publish/subscribe approach. We adopted this concept from
the work by Bacon et al. [1]. An event mediator publishes
a listener service, enabling registration of CORBA objects
as event listeners. The event mediator is informed of events
through a notification service. An event mediator forwards
a copy of a new event to all listeners that have registered in-
terest in this type of event.

3.2. Interaction among ACT Components

To describe the interactions among the ACT compo-
nents, we provide a detailed sequence diagram [3] in Fig-
ure 5. The diagram shows the flow of a request/reply se-
quence in an ACT-ready application. The configuration
shown in Figures 3 and 4 is used as the basis for this par-
ticular sequence diagram. Here, we consider only the activ-
ities on the client side and, for clarity, stubs and skeletons
are not shown.

First, the request from the client to the servant is for-
warded to the proxy (messages #1 to #11). After the re-
quest is received by the client ORB (#1), it is intercepted by
the client generic interceptor (#2), where it is forwarded to
the client rule-based interceptor (#3). The client rule-based
interceptor checks its active rules. In this scenario, we as-
sume it finds a rule that matches the request. The rule raises
a ForwardRequest exception, which is passed to the client
generic interceptor (#4) and then to the client ORB (#5),
where the request target is changed to the proxy (#6). Be-
fore the new request is sent to the proxy, it is intercepted
again by the client generic and rule-based interceptors (#7
and #8), but this time no exception is raised (#9 and #10),
and the calls simply return. The proxy receives the request
(#11).

Next, the proxy processes the request and forwards it
to the servant (messages #12 to #21). The proxy consults
the decision maker (#12), where an event may be raised
to handle an unknown situation (#13 and #14). The deci-
sion maker may adapt the client application by modifying

the request parameters, sending new requests to other ob-
jects, or directing the proxy to reply to the request (e.g., us-
ing cached replies). We assume that in this scenario, the de-
cision maker modifies the request parameters and directs
the proxy to send the modified request to the servant (#15)
via the client ORB (#16). The modified request is also in-
tercepted by the client generic and rule-based interceptors
(#17 and #18) but again no exception is raised (#19 and
#20). Therefore, the modified request is sent to the server
ORB (#21).

The reverse sequence of actions occurs at the server ap-
plication (not shown) and the reply to the modified request
is returned to the client ORB (#22). The reply is intercepted
by the client generic and rule-based interceptors (#23 and
#24), where no exception is raised (#25 and #26). The re-
ply is sent back to the proxy (#27), where it is forwarded
to the decision maker (#28) for possible modifications and
possible event raising (#29, #30, and #31).

Finally, using the reply from the servant and the direc-
tion given by the decision maker, the proxy replies to the
client’s request (#32). The reply is intercepted by the client
generic and rule-based interceptors (#33 and #34). Again no
exception is raised (#35 and #36), and the client ORB sends
the reply back to the client (#37).

The extensive redirecting of messages in ACT raises the
issue of performance overhead. We deem such overhead as
necessary to provide flexibility and transparency. Moreover,
our experimental results, described in Section 4, indicate
that the overhead is actually quite small.

3.3. ACT Prototype

We have developed an ACT prototype in Java and tested
it over ORBacus [6], a CORBA-compliant ORB distributed
by IONA Technologies. ORBacus [6], like JacORB, TAO,
and many other CORBA ORBs, supports CORBA portable
interceptors, the only requirement for using ACT.

To make a CORBA application ACT-ready at the appli-
cation startup time, we need to resolve the following boot-
strapping issues. First, we need to register a generic inter-
ceptor with the application ORB. Like many other ORBs,
ORBacus uses a configuration file that enables an adminis-
trator to register a CORBA portable interceptor with the ap-
plication ORB. JacORB and TAO use a similar approach.
Second, since the components in the ACT core are also
CORBA objects, they require an ORB to support their op-
eration (registration of services, and so on). Therefore, we
need either to obtain a reference to the application ORB for
this purpose, or to create a new ORB. ORBacus does pro-
vide such a reference, although the CORBA specification
does not support this feature. To implement ACT over an
ORB that does not provide such a reference, we simply cre-
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#33 intercepting the modified reply #34 intercepting the modified reply

#35 no exception is raised#36 no exception is raised#37 return reply

GI: generic interceptor

RBI: rule-based interceptor

DM: decision maker     

EM: event mediator

request message

return  message (reply or exception)

Figure 5: Request/reply sequence in the client side of an ACT-ready application.

ate a new ORB, although its use introduces additional over-
head.

To test the operation of our ACT prototype, we devel-
oped two administrative consoles: the Interceptor Registra-
tion Console and the Rule Management Console. The In-
terceptor Registration Console enables a user to manually
register a dynamic interceptor. This console first obtains a
generic interceptor name from the user and checks if the
generic interceptor is registered with the CORBA naming
service. Next, the user can register a dynamic interceptor
with the generic interceptor. The Rule Management Con-
sole allows a user to manually insert rules into rule-based
interceptors.

4. Case Study: Coupling ACT and QuO

To investigate the integration of ACT with an existing
CORBA framework, we combined our ACT prototype with
the Quality Objects (QuO) framework [19], developed by
BBN Technologies and released under an open-source li-
cense. QuO is a powerful adaptive framework that supports
dynamic adaptability in CORBA and Java RMI applica-
tions. ACT and QuO can work together in two major ways.
First, ACT enables legacy CORBA applications to incorpo-
rate and benefit from QuO functionality, without modifying
the source code of the application (indeed, even if the the
source code is unavailable). Such a need may arise if the ap-
plication is to be executed in an environment where condi-
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tions might be quite different than originally planned. Sec-
ond, combining QuO and ACT enables weaving of adap-
tive code into distributed applications at both compile time
and run time; we describe a specific example later in this
section. We begin a brief overview of QuO, for complete-
ness, followed by a discussion of how ACT and QuO inter-
act and a description of an experiment in which they were
combined to enhance an extant application.

4.1. QuO Background

QuO employs aspect-oriented programming [7] to sepa-
rate the non-functional (systematic) aspects from the func-
tional aspects of an application. Figure 6 illustrates a very
simple QuO application. The client wrapper (or delegate) is
the main point of contact between the client and the QuO
core. The client wrapper is generated from a program writ-
ten in the aspect-oriented structural description language
(ASL) [15]. The QuO core comprises a contract and sev-
eral system conditions. A contract is written in the contract-
description language (CDL) [15] and defines acceptable re-
gions of operation. System conditions can be considered
as software “sensors” that record values representing the
state of the execution environment. QuO combines the code
for the QuO core and the code for wrapper into a pack-
age called a qosket. Using an aspect weaver called quo-
gen, QuO weaves a qosket into an application at compile
time.

Contract

Client ORB Server ORB

ApplicationsClient

request flow

Client Application

Servant

Server Application

reply flow

Domain-Services

Common-Services

Distribution

Host-Infrastructure
System Platform

Network

Client
Wrapper

Server
Wrapper

Client QuO Core Server QuO Core

Contract SCs

SCs: sytem conditions

SCs

Figure 6: A simplified depiction of the QuO architecture.

As shown in Figure 6, a request from the client is first re-
ceived by the client wrapper. In a typical CORBA applica-
tion, a client has a reference to a CORBA object stub. In
QuO, however, the application developer explicitly creates
the client wrapper, which wraps the stub (not shown). The
client wrapper consults the contract in the client QuO core.
The contract evaluates the current acceptable region of op-
eration according to the details of the request and the sta-

tus of the system as monitored by the system-condition ob-
jects. Once the current region of operation is identified, the
actions specified in the contract are carried out. These ac-
tions might include returning a cached reply to the client,
sending a request different than the original, forwarding the
request with modified parameters, or redirecting the request
to another CORBA object. If the reply is not generated lo-
cally, the request (or a modified request) is passed to the
client ORB. The request is then sent to the server side of the
application, where the reverse sequence of actions occurs.
The reply generated by the servant, possibly modified by
the server QuO core, will eventually reach the client ORB,
where it is passed to the client wrapper. The client wrap-
per consults the client QuO core again for possible modifi-
cations and, finally, returns the reply to the client.

4.2. Dynamic Weaving of Qoskets Using ACT

Combining ACT with QuO enables transparent weaving
of new qoskets into applications at run time. We identify
three types of applications may benefit from such a capa-
bility. First, dependable applications are required to operate
continuously without interruption; code for handling newly
discovered faults can be added to these applications as
they execute. Second, embedded applications are required
to provide very small footprints; a minimal adaptive core
can be compiled with the application, and optional adaptive
code can be swapped in and out as needed during run time.
Third, the source code for some legacy CORBA applica-
tions may be unavailable, or modifying the source code may
be undesirable. Such applications can be adapted transpar-
ently using ACT and QuO, without modifying or even re-
compiling the application source code.

Figure 7 shows a request/reply sequence in a simple
CORBA application using both QuO and ACT. The client
and server generic interceptors are registered with the client
and server ORBs, respectively, at startup time. To weave a
new qosket into the application at run time, a new rule can
be inserted in the client rule-based interceptor. The new rule
can direct the rule-based interceptor to load the code for a
proxy and a decision maker. The proxy in this case is sim-
ply a modified QuO wrapper, and the decision maker is ex-
actly the contract defined in the new qosket. The rule in-
tercepts all incoming and outgoing requests/replies and for-
wards them to the proxy, where they are processed as if the
qosket had been woven in to the application at compile time.

4.3. Supporting Unanticipated Adaptation

To evaluate the performance and functionality of the hy-
brid ACT/QuO architecture described above, we used it to
insert new adaptive functionality into an existing QuO ap-
plication at run time. The application, a distributed image
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Figure 7: Coupling ACT and QuO.

retrieval system, was developed by BBN Technologies and
is distributed with the QuO framework. The application has
two parts, a client that requests and displays images, and
a server that stores the images and replies to requests for
them. This application supports several different types of
qoskets, which can be woven into the application at startup
time. A particular qosket called “UserAdapt” enables a user
to modify the application interactively by directing it to re-
trieve different versions of the images. For example, select-
ing small instead of large versions of images can be used to
reduce bandwidth consumption and delay.

First, we incorporated ACT into this application by in-
troducing generic interceptors. To do so, we started the ap-
plication with a command-line parameter directing it to an
ORBacus configuration file defining how to load, create and
register a generic interceptor with the application ORB. At
this point the application is ACT-enabled. Figure 8 com-
pares the round-trip delay for retrieving images of vary-
ing size, using both the original application and the ACT-
enabled version. As shown, this overhead is negligible.
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Figure 8: Round-trip delay in ACT/QuO application.

Next, we developed a new qosket called UserAdapt-
FrameRate to weave to the application at run time using
ACT. This qosket enables the user to interactively control
the rate at which images are retrieved. Figure 9 and 10 show
the code that define the contract (in CDL) and the wrapper
(in ADL) for the new qosket, respectively. We defined three
regions of operations Fast, Normal, and Slow in the con-
tract, enabling the user to control the frame rate, for exam-
ple, to conserve bandwidth. As illustrated in Figure 10, this
control is accomplished by inserting appropriate delays. For
the Fast region, we did not insert any delay, but for the Nor-
mal and Slow regions, we inserted 50 and 100 milliseconds
frame-interval delay, respectively. We used the quogen util-
ity to compile the new qosket.

contract UserAdaptFrameRate ( syscond quo::ValueSC
quo sc::ValueSCImpl userFrameRate )

�
region Fast (userFrameRate == 2) ��
region Normal (userFrameRate == 1) ��
region Slow (userFrameRate == 0) ��

�;

Figure 9: CDL code for the new qosket contract.

behavior UserAdaptFrameRate ()
�

void slide::SlideShow::read(in long gifNumber,
out string size, out octetArray buf)

�
before METHODCALL
�
region Fast ��
region Normal � ... Thread.sleep(50 ); ... �
region Slow � ... Thread.sleep(100); ... �
�

� ...
�

Figure 10: ASL code for the new qosket wrapper.

To demonstrate the interaction between ACT and QuO,
we ran an experiment involving both static and dynamic
weaving of qoskets into this application. The experiment
represents run-time upgrading of a surveillance system (im-
plemented using the image retrieval application) to add a
new feature that controls the frame rate. Figure 11 shows an
image from a camera in an instructional laboratory.

We executed the server on a desktop computer connected
to a 100 Mbps wired network and the client on a laptop com-
puter connected to an 11Mbps 802.11b wireless network;
both systems are running the Linux operating system. At
startup the “UserAdapt” qosket is woven into the applica-
tion by specifying the wrapper class as a command-line pa-
rameter. Later, at run time, we used our Interceptor Regis-
tration Console to weave the “UserAdaptFrameRate” qos-
ket into the application. Figure 12 shows screen dumps of
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Figure 11: Image of a monitored instructional laboratory.

the application as it displays large and small versions of an
image, respectively.

Figure 13 shows a trace of the rate at which frames are
displayed at the client application. During the experiment, a
user modifies the application as follows. When application
starts, large versions of frames (the default option) are re-
trieved from the server as fast as possible. The size of these
images, combined with the limited bandwidth of the wire-
less network, produces a frame rate of approximately 2 im-
ages per second for the first 30 seconds of this experiment.
At this point, the user selects the small-images option by
way of the GUI in the “UserAdapt” qosket, thereby increas-
ing the frame rate to approximately 14 images per second.

At 60 seconds, the user dynamically weaves the User-
AdaptFrameRate qosket into the application, using the ad-
ministration utilities described in Section 3.3. Figure 13
shows a short, downward spike in the frame rate caused by
the delay for weaving the new qosket. We consider such a
one-time delay to be acceptable for this type of application.
Immediately after the qosket is inserted, an interactive con-
sole is displayed by the qosket, enabling the user to choose
from the three options ( Fast, Normal, and Slow) interac-
tively at run time. The Fast option is the default. At 90 sec-
onds into the experiment, the user selects the Normal op-
tion; the additional 50 msec delay reduces the frame rate to
approximately 7.5 images per second. At 120 seconds, the
user chooses the Slow option (100 msec delay), which re-
duces the frame rate to approximately 5.5 images per sec-
ond. At 150 seconds, the user chooses the Fast option again,
which increases the frame rate to 14 images per second.

This experiment illustrates how ACT can be used to dy-
namically incorporate new behavior (in this case, a new
QuO qosket) into a CORBA application at run time. The
process is transparent to the application, in that we did not
modify the application code or the QuO code. We simply
started the application with generic interceptors registered
with the application ORB.

Figure 12: Screen captures of ACT/QuO image retrieval ap-
plication: (top) 252 KB version of image displayed; (bot-
tom) 19 KB version of image displayed.

5. Conclusion

In this paper, we proposed an adaptive CORBA tem-
plate (ACT), which can be used to develop new adaptive
CORBA frameworks and to enhance existing frameworks
with unanticipated adaptive functionality and interoperabil-
ity features. ACT can adapt legacy CORBA applications
at run time without the need to modify or recompile their
source code. The only requirement is that the application
use a CORBA ORB that supports portable interceptors [11].
We developed an ACT prototype in Java and conducted a
case study in which we integrated ACT with QuO. Our ex-
periments show that the overhead introduced by ACT is
negligible. We also showed that ACT can enable transpar-
ent integration of new adaptive code into extant QuO appli-
cations.
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Further Information. A number of related papers and
technical reports of the Software Engineering and Network
Systems Laboratory can be found at the following URL:
http://www.cse.msu.edu/sens.
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