
Using Transparent Shaping and Web Services to Support
Self-Management of Composite Systems

S. Masoud Sadjadi
School of Computer Science

Florida International University
Miami, Florida 33199

Email: sadjadi@cs.fiu.edu

Philip K. McKinley
Department of Computer Science

Michigan State University
East Lansing, Michigan 48824
Email: mckinley@cse.msu.edu

Abstract

Increasingly, software systems are constructed by com-
posing multiple existing applications. The resulting com-
plexity increases the need for self-management of the sys-
tem. However, adding autonomic behavior to composite
systems is difficult, especially when the existing compo-
nents were not originally designed to support such inter-
actions. Moreover, entangling the code for integrated self-
management with the code for the business logic of the orig-
inal applications may actually increase the complexity of
the system, counter to the desired goal. In this paper, we
propose a technique to enable self-managing behavior to
be added to composite systems transparently, that is, with-
out requiring manual modifications to the existing code.
The technique uses transparent shaping, developed previ-
ously to enable dynamic adaptation in existing programs,
to weave self-managing behavior into existing applications,
which interact through Web services. A case study demon-
strates the use of this technique to construct a fault-tolerant
surveillance application from two existing applications, one
developed in .NET and the other in CORBA, without the
need to modify the source code of the original applications.

1. Introduction

The ever increasing complexity of computing systems
has been accompanied by an increase in the complexity of
their management. Contributing factors include the increas-
ing size of individual networks and the dramatic growth of
Internet, increasing heterogeneity of software and hardware
components, the deployment of new networking technolo-
gies, the need for mobile access to enterprise data, and the
emergence of pervasive computing. In this paper, we focus
on the management complexity resulting from integrating
existing, heterogeneous systems to support corporate-wide,

as well as Internet-wide, connectivity of users, employees,
and applications.

Autonomic computing [23] promises to solve the man-
agement problem by embedding the management of com-
plex systems inside the systems themselves, freeing the
users from potentially overwhelming details. Instead of re-
quiring low-level instructions from system administrators
in an interactive and tightly coupled fashion, such self-
managing systems require only high-level human guidance
– defined by goals and policies – to work as expected. How-
ever, if the code for self-management and application inte-
gration is entangled with the code for the business logic of
the original systems, then the complexity of managing the
integrated system may actually increase, contradicting the
purpose of autonomic computing.

To integrate heterogeneous applications, possibly de-
veloped in different programming languages and targeted
to run on different platforms, requires conversion of data
and commands between the applications. The advent of
middleware – which hides differences among program-
ming languages, computing platforms, and network pro-
tocols [3, 6, 16] – in the 1990’s mitigated the difficulty of
application integration. Indeed, the maturity of middleware
technologies has produced several successful approaches to
corporate-wide application integration [20, 32], where ap-
plications developed and managed by the same corporation
are able to interoperate with one another.

Ironically, the difficulty of application integration, once
alleviated by middleware, has reappeared with the prolifer-
ation of heterogeneous middleware technologies. As a re-
sult, there is a need for a “middleware for middleware” to
enable Internet-wide and business-to-business application
integration [33]. Successful middleware technologies such
as Java RMI [22], CORBA [26], and DCOM/.NET Remot-
ing [12, 25] have been able to integrate corporate-wide ap-
plications. However, such middleware technologies are of-
ten unable to integrate applications managed by different
corporations connected through the Internet. The reasons

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

are twofold: (1) different corporations select different mid-
dleware technologies, which are more appropriate to inte-
grate their own applications; and (2) middleware packets
often cannot pass through Internet firewalls.

Web services [4] offer one approach to addressing these
problems. A Web service is a program delivered over the
Internet that provides a service described in the Web Ser-
vice Description Language (WSDL) [9] and communicates
with other programs using SOAP messages [21]. WSDL
and SOAP are both independent of specific platforms, pro-
gramming languages, and middleware technologies. More-
over, SOAP leverages the optional use of the HTTP proto-
col, which can bypass firewalls, thereby enabling Internet-
wide application integration.

Although Web services have been successfully used to
integrate heterogeneous applications, by themselves they do
not provide a transparent solution. A challenging problem
is to enable integration of existing applications without en-
tangling the integration and self-management concerns with
the business logic of the original applications. In this pa-
per, we propose a technique to enable self-managing be-
havior to be added to composite systems transparently, that
is, without requiring manual modifications to the existing
code. The technique uses transparent shaping, developed
previously to enable dynamic adaptation in existing pro-
grams, to weave self-managing behavior into existing appli-
cations. We demonstrate that combining transparent shap-
ing with Web services provides an effective solution to the
transparent application integration problem.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on Web services. Section 3 in-
troduces two approaches to transparent application integra-
tion through Web services. Section 4 overviews two in-
stances of transparent shaping that we have developed. Sec-
tion 5 presents a case study, where we use the transparent
shaping techniques to integrate two existing applications,
one developed in .NET and the other in CORBA, in order to
construct a fault-tolerant and surveillance application. Sec-
tion 6 discusses related work, and Section 7 summarizes the
paper.

2. Web Services Background

A service-oriented architecture, as depicted in Figure 1,
is composed of at least one provider program, which is a
program capable of performing the actions associated with
a service defined in a service description, and at least one re-
quester program, which is a program capable of using the
service provided by a service provider.1 In this model, we
assume that a program is executed inside a process, with a

1 We use the terms “provider program” and “requester program” instead
of the terms “provider agent” and “requester agent,” as used in [4], to
avoid confusion with agents in agent-based systems.

boundary distinguishing local and remote interactions, and
is composed of a number of software components, which
are units of software composition hosted inside a program
process.2 A component implementing a service is called a
provider component and a component requesting a service
is called a requester component.

Figure 1 also shows that the application-to-application
(A2A) interaction is accomplished through the use of a mid-
dleware technology over a network. The network can be the
Internet, an Intranet, or simply an inter-process communica-
tion (IPC) facility. In the case of Web services, the middle-
ware is composed of two layers: a SOAP messaging layer
governed by a WSDL layer (described below). Web services
are software programs accessible over the Internet by other
programs using the SOAP messaging protocol and service
descriptors defined in WSDL.

Requester Program Provider Program

Application
Layer

Middleware
Layer

Program component Flow of service request A2A Interaction

process boundaries

NetworkNetwork

Requester
Component

Provider
Component

System
Platform

WSDL

SOAP

WSDL

SOAP

Figure 1: A simplified Web service architecture.

SOAP. SOAP [21] is an XML-based messaging proto-
col designed to be independent of specific platforms, pro-
gramming languages, middleware technologies, and trans-
port protocols. SOAP messages are used for interactions
among Web service providers and requesters. Unlike object-
oriented middleware such as CORBA, which requires an
object-oriented model of interaction, SOAP provides a sim-
ple message exchange among interacting parties. As a re-
sult, SOAP can be used as a layer of abstraction on top of
other middleware technologies (effectively providing a mid-
dleware for middleware).

A SOAP message is an XML document with one ele-
ment, called an envelope, and two children elements, called
header and body. The contents of the header and body ele-
ments are arbitrary XML. Figure 2 shows the structure of a
SOAP message. The header is an optional element, whereas
the body is not optional; there must be exactly one body
defined in each SOAP message. To provide the developers

2 The example programs provided in this paper are all developed in
object-oriented languages. For simplicity, the terms component and
object have been used interchangeably. However, this does not im-
ply that a service-oriented system must be either implemented us-
ing object-oriented languages or designed using an object-oriented
paradigm.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

with the convenience of a procedure-call abstraction, a pair
of related SOAP messages can be used to realize a request
and its corresponding response. SOAP messaging is asyn-
chronous, that is, after sending a request message, the ser-
vice requester will not be blocked waiting for the response
message to arrive. For more information about details of
SOAP messages, please refer to [5, 13, 21].

1 ≺?xml version=“1.0” encoding=“UTF-8” ?�
2 ≺soap:Envelope xmlns:soap=
3 “http://schemas.xmlsoap.org/soap/envelope/ . . .�
4 ≺soap:Header�
5 ≺!– Header contents in defined in arbitrary XML. –�
6 ≺/soap:Header�
7 ≺soap:Body�
8 ≺!– Body contents in defined in arbitrary XML. –�
9 ≺/soap:Body�

10 ≺/soap:Envelope�

Figure 2: SOAP message structure.

WSDL. Web Services Description Language (WSDL) [9,
10] is an XML-based language for describing valid mes-
sage exchanges among service requesters and providers.
The SOAP messaging protocol provides only basic com-
munication and does not describe what pattern of mes-
sage exchanges are required to be followed by specific ser-
vice requesters and providers. WSDL addresses this issue
by describing an interface to a Web service and providing
the convenience of remote procedure calls (or more com-
plicated protocols). For more information about details of
WSDL, please refer to [9, 10, 13].

3. Transparent Application Integration

Several different approaches have been described in the
literature to integrate applications [1]. Regardless of the
specific technique, integration of two heterogeneous appli-
cations requires translating the syntax and semantics of the
two applications, typically during execution. Providing di-
rect translations for N heterogeneous middleware technolo-
gies requires N2 translators to cover all possible pairswise
interactions. Using a common language reduces the num-
ber of translators from N2 to N , assuming that one side
of the interaction (either requester or provider program) al-
ways uses the common language. Web services provide one
such language. Depending on where the translation is per-
formed (e.g., inside or outside the requester and provider
programs), we distinguish two approaches to transparent
application integration, as depicted in Figure 3. Each is de-
scribed in turn.

Bridge Approach. An intuitive approach to transparent ap-
plication integration is to use bridge programs, which sit be-

tween requesters and providers, intercepting the interactions
and translating them from application-specific middleware
protocols to Web services protocols, and vice versa. The ar-
chitecture for this approach is illustrated in Figure 3(a). A
bridge program hosts one or more translator components,
which encapsulate the logic for translation. A translator
component plays the role of a provider component for the
requester component, as well as the role of a requester com-
ponent for the provider component. We note that an appli-
cation integration solution may involve more than one re-
quester and provider components and it may not be as sim-
ple as a one-to-one mapping of requesters and providers.

Using this architecture is beneficial for the following rea-
sons. First, hosting translator components inside a sepa-
rate process (the bridge program) does not require modi-
fications to the requester and provider programs. Second,
a bridge program can host several translator components,
where each translator component may provide translation
to one or more requester and provider programs. Third, the
localization of translator components in one location (the
bridge program) simplifies the maintenance of application
integration. For example, security policies can be applied
to the bridge program once, and will be effective to all the
translator components hosted by the bridge.

The main disadvantage of this architecture is the over-
head imposed on the interactions due to process-to-process
redirection (in case the bridge programs are located on
the same machine as the requester and/or provider) or
machine-to-machine redirection (in case the bridge pro-
grams are located on separate machines). Other disadvan-
tages include a potential single-point-of-failure and a com-
munication/processing bottleneck at the bridge. Further-
more, this approach may not even be possible in some situ-
ations, for example, if the provider address is hard-coded in
the requester program.

Transparent Shaping Approach. To avoid these prob-
lems, the translator components can instead be hosted in-
side the requester and provider programs, as illustrated in
Figure 3(b). In this case, however, providing transparent in-
terception and redirection of interactions is not as simple as
in the bridge approach.

Transparent shaping provides a solution to this prob-
lem by generating adaptable programs from existing appli-
cations. We call a program adaptable if its behavior can
changed with respect to the changes in its environment or
its requirements. An adaptable program can be thought of
as a managed element, as described in [23]. We use the
term composer to refer to the entity that performs dynamic
adaptation on the program The composer might be a hu-
man – software developer or a system administrator inter-
acting with a running program through a graphical user in-
terface – or a piece of software – an autonomic manager, a
dynamic aspect weaver, a component loader, a runtime sys-

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

InternetInternet

Provider-Side Bridge Provider Program

IntranetIntranet

Requester Program

IntranetIntranet

Requester-Side Bridge

WSDL

SOAP

WSDL

SOAP

Application
Layer

Middleware
Layer

System
Platform

(a) Transparent application integration using bridge programs.

WSDL

SOAP

WSDL

SOAP

InternetInternet

Provider ProgramRequester Program

Application
Layer

Middleware
Layer

System
Platform

1

2

3

4

5

6

(b) Transparent application integration using transparent shaping.

Program components Flow of service request A2A InteractionTranslator components Hook

Figure 3: Alternative approaches to transparent application integration through Web services.

tem, or a metaobject [24].
We developed transparent shaping originally to enable

reuse of existing applications in environments whose char-
acteristics were not necessarily anticipated during the de-
sign and development [28, 29]. An example is porting ap-
plications to wireless networks, which often exhibit rela-
tively high packet loss rates and frequent disconnections.
In this paper, however, we show how transparent shaping
can be used to enable transparent application integration.
The integration is performed in two steps. In the first step,
an adapt-ready program is produced at compile, startup, or
load time using static transformation techniques. An adapt-
ready program is a managed element whose behavior is ini-
tially equivalent to the original program, but which can be
adapted at run time by insertion or removal of adaptive code
at certain points in the execution path of the program, called
sensitive joinpoints. For application integration, we are in-
terested only in those joinpoints related to remote interac-
tions. To support such operations, the first step of transpar-
ent shaping weaves interceptors, referred to as hooks, at the
remote interaction joinpoints.

As illustrated in Figure 3(b), hooks may reside inside
the program code itself (arrows 1 and 4), inside its sup-
porting middleware (arrows 2 and 5), or inside the system
platform (arrows 3 and 6). Example techniques for imple-
menting hooks include weaving aspects into the application
(compile time) [29], inserting portable interceptors into a

CORBA program [26] (startup time), and byte-code rewrit-
ing in a virtual machine [11] (load time). In the second step,
executed at run time, the hooks in the adapt-ready program
are used by a composer to redirect the interactions to adap-
tive code, which in this case implements the translator.

4. Transparent Shaping Mechanisms

In this section, we briefly describe two concrete in-
stances of transparent shaping. The first one is a language-
based approach to transparent shaping that uses a combina-
tion of aspect weaving and metaobject protocols to intro-
duce dynamic adaptation to the application code directly.
The second one is a middleware-based approach that uses
middleware interceptors as hooks. Both instances adhere to
the general model described above.

Language-Based Transparent Shaping. Transparent Re-
flective Aspect Programming (TRAP) [29] is an instance
of transparent shaping that supports dynamic adaptation in
existing programs developed in class-based, object-oriented
programming languages. TRAP uses generative techniques
to create an adapt-ready application, without requiring any
direct modifications to the existing programs. To validate
the TRAP model, previously we developed TRAP/J [29],
which supports dynamic adaptation in existing Java pro-
grams. To support existing programs developed in C++,

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

members of our group have implemented TRAP/C++ us-
ing compile-time meta-object protocols supported by Open
C++ [8].

For the case study in this paper (described in Section 5),
we developed TRAP.NET, which supports dynamic adapta-
tion in .NET applications developed in any .NET program-
ming language (e.g., C#, J#, VB, and VC++). As illustrated
in Figure 4, the developer selects at compile time a sub-
set of classes in the existing .NET assemblies3 that are to
be reflective at run time. A class is reflective at run time
if its behavior (i.e., the implementation of its methods) can
be inspected and modified dynamically [17]. Since .NET
does not support such functionality inherently, TRAP.NET
uses generative techniques to produce adapt-ready assem-
blies with hooks that provide the reflective facilities for the
selected classes. Next, we use AspectDNG version 0.6.2, a
recently released .NET aspect weaver [19], to weave gener-
ated aspect and metaobject assemblies into the original ap-
plication. Finally, we execute the adapt-ready application
together with an autonomic manager using a host applica-
tion (explained in Section 5.3). The autonomic manager can
be specific to the application or generic for any .NET appli-
cation.

Figure 5 shows the operation of TRAP.NET at run time.
As the adapt-ready assemblies execute, the autonomic man-
ager may introduce new behavior to the adapt-ready assem-
blies according to the high-level user policies by insertion
and removal of adaptive code via interfaces to the reflective
classes. Basically, the hooks inside a reflective class wrap
the original methods, intercept all incoming calls, and can
forward the calls to new implementations of the methods, as
needed. The new implementations can be inserted dynami-
cally by the autonomic manager.

Middleware-Based Transparent Shaping. The Adaptive
CORBA Template (ACT) [27, 28] is an instance of trans-
parent shaping that enables dynamic adaptation in existing
CORBA programs. ACT enhances CORBA ORBs to sup-
port dynamic reconfiguration of middleware services trans-
parently not only to the application code, but also to the
middleware code itself. Although ACT itself is specific to
CORBA, the concepts can be applied to many other middle-
ware platforms. To evaluate the performance and function-
ality of ACT, we constructed a prototype of ACT in Java,
called ACT/J [27, 28]. To support CORBA programs devel-
oped using C++ ORBs, we plan to develop ACT/C++. In
addition, we are planning to develop similar frameworks for
Java/RMI and Microsoft’s .NET.

Figure 6 shows the flow of a request/reply sequence in a
simple CORBA application using ACT/J. For clarity, details
such as stubs and skeletons are not shown. ACT comprises

3 A .NET assembly is simply a .NET executable file (i.e., a .EXE file)
or a .NET library file (i.e.,a .DLL file).

AspectAspect

Metaobject Assembly
Generator

.NET Assemblies
(dll, exe)

Original .NET Application

AspectDNG Compiler (AspectDNG.exe)

Generic Aspect
Generator

Fully Qualified
Names

Class Name List

Aspects
Assemblies

TRAP.NETTRAP.NET

Data Flow

Adapt-Ready Application

AspectAspect
Metaobject
Assemblies

Adapt-Ready
.NET

Assemblies

C
om

pile T
im

e
C

om
pile T

im
e

Startup T
im

e
Startup T

im
e

C:> Host.exe Host.exe.config AdaptReadyApp
lication.exe AutonomicManger.exe

Figure 4: TRAP.NET first step.

Host Assembly AppDomain

Autonomic Manager Assembly

Adapt-Ready Assemblies

R
un T

im
e

R
un T

im
e

Figure 5: TRAP.NET second step.

two main components: a generic interceptor and an ACT
core. A generic interceptor is a specialized request intercep-
tor that is registered with the ORB of a CORBA application
at startup time. The client generic interceptor intercepts all
outgoing requests and incoming replies (or exceptions) and
forwards them to its ACT core. Similarly, the server generic
interceptor intercepts all the incoming requests and outgo-
ing replies (or exceptions) and forwards them to its ACT
core. The CORBA application is adapt-ready if a generic
interceptor is registered with all its ORBs at startup time.

Implementing transparent shaping in middleware, as in
ACT, can produce greater transparency than a language-
based approach such a TRAP, which requires recompila-

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

ApplicationsClient

Client Application

Servant

Server Application

Domain-Services

Common-Services

Distribution

Host-Infrastructure
System Platform

Network

Client GI

Client ORB

Server GI

Server ORB

Client ACT Core Server ACT Core

request flow reply flow GI: generic interceptor

Figure 6: ACT configuration in the context of a simple
CORBA application.

tion of the application. As illustrated in Figure 7, to pro-
duce an adapt-ready version of an existing CORBA pro-
gram, we do not need to transform the original program as
we do in TRAP. By introducing generic hooks inside the
ORB of a CORBA application at startup time, we can in-
tercept all CORBA remote interactions. Specifically, ACT/J
provides a host program that first follows the configuration
instructed in the configuration file and uses generic CORBA
portable interceptors [26] to incorporate generic hooks in-
side the ORB making the ORB adapt-ready. Next, it loads
both the original application together with an autonomic
manager (again, the autonomic manager can be either spe-
cific to the application or generic for any applications).

C
om

pile T
im

e
C

om
pile T

im
e

Startup T
im

e
Startup T

im
e

armstrong:~> java Host.class Host.class.config
OriginalApplication.class AutonomicManger.cla
ss

No need for any transformation in the original
CORBA program (the hook is inside ORB).

Figure 7: ACT/J first step.

Later at run time, these hooks can be used by a composer
(e.g., an autonomic manager) to insert and remove adap-
tive code with respect to the adapt-ready program, which in
turn can adapt the requests, replies, and exceptions passing
through the ORBs. In this manner, ACT enables run-time
improvements to the program in response to unanticipated
changes in its execution environment.

Host Java Program

Autonomic Manager Java Package

Original Java Classes and
Adapt-Ready ORB

R
un T

im
e

R
un T

im
e

Figure 8: ACT/J second step.

5. Case Study: Fault-Tolerant Surveillance

To demonstrate how transparent shaping and Web ser-
vices can be used to integrate existing applications, while
introducing new autonomic behavior, we conducted a case
study. Specifically, we created a fault-tolerant surveillance
application by integrating existing .NET and CORBA im-
age retrieval applications and adding a self-management
component to switch among the two image sources in re-
sponse to failures. The integration and self-management
code is transparent to the original applications. The result-
ing integrated system is a fault-tolerant surveillance appli-
cation. In the remainder of this section, we briefly introduce
each of the two applications. review our strategy for inte-
gration and self-management, describe the details of the in-
tegration process, and describe the operation of the result-
ing system.

5.1. Existing Applications

The Sample Grabber Application. The first application
is a .NET sample grabber application (called Sample-

GrabberNET). Basically, it captures a video stream from
a video source (e.g., a WebCam) and displays it on the
screen. In addition, it allows the user to grab a live frame
and save it to a bitmap file. This application is a .NET
standalone application written in C# and is freely available
at the Code Project web site (URL: http://www.code-
project.com/). It is part of the DirectShow.NET frame-
work developed by NETMaster.4

The Image Retrieval Application. The second applica-
tion is a CORBA image retrieval application. It has two
parts, a client program (called SlideClient) that re-
quests and displays images, and a server program (called
SlideService) that stores images and replies to the
client program requests. The client program continu-
ously sends requests to the server program asking for im-

4 NETMaster is an active member of the Code Project. It uses the inter-
faces provided in the DirectShow.NET framework to interop-
erate with DirectShow. The Code Project (URL: http://www.-
codeproject.com/) is a place for a large number of free C++,
C# and .NET articles, code snippets, discussions, and news on the In-
ternet. It organizes the papers and programs developed by its members
and provides them freely to be used or improved by others.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

ages. After each request is replied, the retrieved image
is displayed. In our implementation, the images main-
tained by the server program are live shots taken periodi-
cally using a WebCam and stored in a file. This application
is developed in Java by BBN Technologies and is dis-
tributed with the QuO framework [35]. The image retrieval
application by itself can benefit from the QuO frame-
work, which supports several adaptive behaviors. In this
study we disabled the QuO framework and used the appli-
cation only as a CORBA application.

5.2. Integration and Self-Management Strategy

Our goal is to construct a surveillance application that
can use either source of images. For example, the applica-
tion should enable the CORBA client application to retrieve
live images from the .NET frame grabber application, when
the CORBA server application is not available (e.g., due to
server crash, network disconnection, etc.). Figure 9 shows
the configuration of the integrated application. The .NET
frame grabber application plays the role of a provider pro-
gram and must be exposed as a frame grabber Web service.
On the other side, the client program of the image retrieval
application plays the role of a requester program and must
be shaped to use both the frame grabber Web service as well
as the CORBA server program.

In the rest of this section, we describe how transparent
shaping is used to expose the frame grabber application as
a Web service, followed by how the image retrieval client
program is shaped to use this Web service.

5.3. Exposing the Frame Grabber Application

Before describing the details of how TRAP.NET is used
to expose the frame grabber application as a Web Service,
we note that a .NET remoting application can be used as
a Web service without modification if none of the types to
be exposed by the .NET server application is a .NET spe-
cific type [14, 31]. However, our frame grabber application
is a .NET standalone application (as opposed to a .NET re-
moting application). Therefore, no .NET remoting service
is exposed by the frame grabber application itself. Hence,
we first need to shape the .NET frame grabber application
to become a .NET remoting application, and then use it as a
Web service.

Following the first step of TRAP.NET (see Figure 4),
we generate an adapt-ready version of the frame grab-
ber application. To transform this application into a
.NET remoting server, we need to weave hooks in-
side the main class of the application (MainForm). There-
fore, we listed only the name of the main class to be
passed to TRAP.NET. The code for .NET remoting and
the self-management functionality are located in a sepa-

rate assembly (AutonomicManager.exe). Following the
process shown in Figure 4, at startup time these two pro-
grams are loaded inside another program (Host.exe),
which is listed in Figure 10 (lines 1 to 14). The modi-
fied .NET frame grabber program is inside the Sample-

GrabberNET.exe assembly, the .NET remoting code is in-
side the AutonomicManager.exe assembly, and the
configuration is inside the Host.exe.config file. The ex-
cerpted code for the Host.exe.config configuration file
is listed in Figure 10 (lines 16 to 23).

As listed in Figure 10, first, the configuration file is
parsed and the instructions are followed (line 8), which pro-
vides flexibility to configure the Host program at startup
time (e.g., the port address at which the Web service can be
reached can be defined in this configuration file). Next, the
autonomicManager and the managedElement are exe-
cuted using the .NET reflection facilities (lines 10 and 11).

Now that the provider program is ready to run, we need
to generate the Web service description of our provider pro-
gram (to be used in the shaping of the CORBA client pro-
gram). We used the .NET framework SOAPsuds.exe util-
ity with the -sdl option, which generates a WSDL schema
file. The excerpted WSDL description is listed in Figure 11.

The abstract description part (lines 3 to 16) describes
the interface to the Web service using the message ele-
ments (lines 3 to 8), which defines what type of messages
can be sent to and received from the Web service, and
the portType element (lines 9 to 16), which defines all
the operations that are supported by the Web service. The
GrabFrame operation (lines 10 to 15) defines the valid mes-
sage exchange pattern supported by the Web service.

The concrete description part (lines 18 to 33) comple-
ments the abstract part using the binding element (lines
18 to 26), which basically describes how a given interac-
tion is performed over what specific transport protocol, and
the service element (lines 28 to 33) that describes where
to access the service. The how part describes how marshal-
ing and unmarshaling is performed using the operation

element inside the binding element (lines 21 to 25). The
what part is described in line 20 using the transport at-
tribute. The where part is described using the port element
(lines 29 to 32).

5.4. Shaping the Image Retrieval Client

We follow the architecture illustrated in Figure 9 to shape
the CORBA client program to interoperate with the .NET
frame grabber program. We use the ACT/J framework (as
illustrated in Figures 7 and 8) to host a Web service transla-
tor in the adapt-ready client application.

Figure 12 lists the IDL description used in the original
CORBA image retrieval application. The SlideShow in-
terface defines six methods (lines 4 to 9). As listed in Fig-

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

InternetInternet

Sample Grabber
Server Program

Image Retrieval
Client Program

IntranetIntranet

Image Retrieval
Server Program

WSDL

SOAP

Linux

Java

CORBA

WindowsLinux

Java

CORBA

WSDL

SOAP .NET

files

Fault-Tolerant
Component

Program components Flow of service request A2A InteractionTranslator components

C#

camera camera

Flow of data

1

2

Original CORBA
Application

Original .NET
Application

Transparent Transparent
Application IntegrationApplication Integration

Figure 9: The configuration of a fault-tolerant surveillance application.

1 // The host application defined in Host.cs
2 public class Host {
3 static private string configFilename, managedElement, autonomicManager;
4 public static void Main(string [] args) {
5 if (args.Length != 3) return;
6 configFilename = args[0]; managedElement = args[1]; autonomicManager = args[2];
7 try {
8 RemotingConfiguration.Configure(configFilename);
9 AppDomain ad = AppDomain.CurrentDomain;

10 ad.ExecuteAssembly(autonomicManager);
11 ad.ExecuteAssembly(managedElement);
12 } catch(Exception e) {}
13 String keyState = “”; keyState = Console.ReadLine();
14 }
15
16 // The configuration file defined in Host.exe.config
17 ≺configuration� ≺system.runtime.remoting� ≺application name=”Server”�
18 ≺service�
19 ≺wellknown mode=”Singleton” type=”SampleGrabberWebService.
20 SampleGrabberObject, SampleGrabberObject” objectUri=”SampleGrabberObject” /�
21 ≺/service�
22 ≺channels� ≺channel port=”9000” ref=”http” /� ≺/channels�
23 ≺/application� ≺/system.runtime.remoting� ≺/configuration�

Figure 10: Excerpted code for the Host program hosting the adapt-ready application and its autonomic manager.

ure 13 (lines 21 to 26), all the read*() methods defined in
the IDL file are mapped to the GrabFrame() method of the
Web service exposed by the provider program. The get-

NumberOfGifs()method simply returns -1 (line 27) to in-
dicate that the images being retrieved are live images (as op-
posed to being retrieved from a number of stored images at
the server side).

Using the ACT/J framework, eventually the calls to
the original CORBA server application are intercepted
and redirected to the translator component. The transla-
tor component is defined as SlideService Client-

LocalProxy class listed in Figure 13. First, a reference
to the SampleGrabberObject Web service is ob-

tained (lines 4 to 13). We used the Java WSDP framework
to generate the stub class corresponding to the Web ser-
vice using the WSDL file, generated in the previous
part and listed in Figure 11. Next, all calls to the origi-
nal CORBA object are forwarded to the Web service (lines
14 to 27).

5.5. Self-Managed Operation

The configuration of the resulting fault-tolerance surveil-
lance application is illustrated in Figure 9. The target setting
is to have two (or more) cameras monitoring the same gen-
eral area (a parking lot, building entrance, etc). The cam-

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

1 ≺?xml version=‘1.0’ encoding=‘UTF-8’?�
2 ≺definitions name=‘SampleGrabberObject’ . . .� ≺types� . . .≺/types�
3 ≺message name=‘SampleGrabberObject.GrabFrameInput’�
4 ≺part name=‘nQuality’ type=‘xsd:int’/�
5 ≺/message�
6 ≺message name=‘SampleGrabberObject.GrabFrameOutput’�
7 ≺part name=‘return’ type=‘ns2:ArrayOfShort’/�
8 ≺/message�
9 ≺portType name=‘SampleGrabberObjectPortType’�

10 ≺operation name=‘GrabFrame’ parameterOrder=‘nQuality’�
11 ≺input name=‘GrabFrameRequest’
12 message=‘tns:SampleGrabberObject.GrabFrameInput’/�
13 ≺output name=‘GrabFrameResponse’
14 message=‘tns:SampleGrabberObject.GrabFrameOutput’/�
15 ≺/operation�
16 ≺/portType�
17
18 ≺binding name=‘SampleGrabberObjectBinding’
19 type=‘tns:SampleGrabberObjectPortType’�
20 ≺soap:binding style=‘rpc’ transport=‘http://schemas.xmlsoap.org/soap/http’/� . . .
21 ≺operation name=‘GrabFrame’�
22 ≺soap:operation soapAction=‘. . . ’/� . . .
23 ≺input name=‘GrabFrameRequest’� ≺soap:body . . . /� ≺/input�
24 ≺output name=‘GrabFrameResponse’� ≺soap:body . . . /� ≺/output�
25 ≺/operation�
26 ≺/binding�
27
28 ≺service name=‘SampleGrabberObjectService’�
29 ≺port name=‘SampleGrabberObjectPort’ binding=‘tns:SampleGrabberObjectBinding’�
30 ≺soap:address location=
31 ‘http://haydn.cse.msu.edu:9000/Server/SampleGrabberObject’/�
32 ≺/port�
33 ≺/service�
34 ≺/definitions�

Figure 11: The excerpted WSDL description of the sample grabber Web service.

1 // The slide show interface defined in SlideShow.idl
2 module com { module bbn { module quo { module examples { module bette {
3 interface SlideShow {
4 void readSmall (in long gifNumber, out string size, out octetArray buf);
5 void readSmallProcessed (in long gifNumber, out string size, out octetArray buf);
6 void readBig (in long gifNumber, out string size, out octetArray buf);
7 void readBigProcessed (in long gifNumber, out string size, out octetArray buf);
8 void read (in long gifNumber, out string size, out octetArray buf);
9 long getNumberOfGifs ();

10 };
11 }; }; }; }; };

Figure 12: The slide show IDL file used in the original CORBA application.

eras and supporting software might have been purchased
for other purposes, and now are being combined to create
a fault-tolerant, heterogenous application. Although the ap-
plication is relatively simple, it demonstrates that it is possi-
ble to integrate application in a transparent manner without
using bridging.

In our experiments, we first execute the adapt-ready
.NET frame-grabber application (shown in the right side
of the figure), next we execute the original CORBA slide-
server (shown in the left side), and finally we execute the

adapt-ready CORBA slide-client application (shown in the
middle). We have also implemented a simple user inter-
face that enables a user to enter policies to be followed by
the application. By default, the initial policy regarding the
data source is is to retrieve images from the CORBA server,
since our experiments show it is more responsive than the
.NET application. If the CORBA server is not available or
does not respond for a certain intervl (1 second by default),
then the client should try to retrieve images from the .NET
server. While the images are being retrieved from the .NET

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

1 // The proxy defined in SlideService ClientLocalProxy.java
2 public class SlideService ClientLocalProxy extends SlideShowPOA
3 implements Serializable, SlideShowOperations {
4 private SampleGrabberObjectPortType sampleGrabberObject = null;
5 public SlideService ClientLocalProxy(ORB orb) { . . .
6 string endpoint = ”http://haydn.cse.msu.edu:9000/Server/SampleGrabberObject”;
7 try {
8 Stub stub = (Stub)(new SampleGrabberObjectService Impl().
9 getSampleGrabberObjectPort());

10 stub. setProperty(javax.xml.rpc.Stub.ENDPOINT ADDRESS PROPERTY, endpoint);
11 sampleGrabberObject = (SampleGrabberObjectPortType)stub;
12 } catch (Exception ex) {. . .}
13 }
14 private byte[] grabFrame(int nQuality) {
15 byte [] frameByteArray = null; short[] frameShortArray = null;
16 try { frameShortArray = sampleGrabberObject.GrabFrame(nQuality); }
17 catch(Exception e) {. . .}
18 frameByteArray = convertShortArray2ByteArray(frameShortArray);
19 return frameByteArray;
20 } . . .
21 public void readBig(int gifNum, StringHolder sizeHolder, octetArrayHolder pixHolder) {
22 pixHolder.value = grabFrame(75); sizeHolder.value = ”big”;
23 } . . .
24 public void readSmall(int gifNum, StringHolder sizeHolder, octetArrayHolder pixHolder) {
25 pixHolder.value = grabFrame(25); sizeHolder.value = ”small”;
26 } . . .
27 public int getNumberOfGifs() { return -1; }
28 }

Figure 13: Excerpted code for the Web service translator component defined as a proxy object in the ACT/J framework.

server, the client continues to probe the CORBA server to
see if it is available. If the CORBA server returns, the client
should stop retrieving images from the .NET server and
switch to the CORBA server. All these operations are car-
ried out completely transparently to the original CORBA
and .NET applications.

Some limited functionality has been provided to enable
the user to change the high-level policy from the GUI. For
example, user can change the initial policy and configure
the system so that every other image is retrieved from the
.NET server. In addition, user can change the timeout pa-
rameter from 1 second. The user can also set the frequency
of images being retrieved and ask the system to maintain
this frequency. For example, if user asks for 2 frames per
second then the system automatically monitors the round-
trip delay of retrieving images and correspondingly inserts
interval delays (if the current frequency is too high) or re-
quest smaller images with lower resolution (if the current
frequency is too slow). This feature has been tested over a
wireless ad hoc network, where a user with the client ap-
plication is walking about a wireless cell and experiencing
different packet loss rates in the wireless network. Although
the round-trip time was constantly changing in this experi-
ment, the system was able to maintain the frequency of im-
ages being retrieved and displayed.

Finally, we note that once the adapt-ready applications
are executed, we could dynamically modify even the self-
management functionality itself, for example, introducing a

more sophisticated GUI, without the need to stop, modify,
compile, and re-execute the system.

6. Related Work

In this section, we categorize several research projects,
standard specifications, and commercial products that sup-
port application integration. Based on the transparency and
flexibility of the adaptation mechanisms used to support ap-
plication integration, we identify three categories as fol-
lows.

In the first category, we consider approaches that pro-
vide transparency with respect to either an existing provider
program or an existing requester program, but not both.
In other words, the existence of translator components is
transparent either to the requester or provider programs, but
not both. Therefore, the programs hosting translator com-
ponents are required to be either developed from scratch
or modified directly by a developer. Examples of research
projects in this category include the Automated Interface
Code Generator (AIAG) [7], the Cal-Aggie Wrap-O-Matic
project (CAWOM) [34], and the World Wide Web Factory
(W4F) [30]. AIAG [7] supports application integration by
providing an interface wrapper model, which enables de-
velopers to treat distributed objects as local objects. AIAG
is an automatic wrapper generator built on top of JavaS-
paces. AIAG can be used to generate the required glue code
to be used in client programs. CAWOM [34] provides a tool

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

that generates wrappers enabling command-line systems to
be accessed by client programs developed in CORBA. This
approach provides transparency for existing command-line
systems. Examples of the use of CAWOM include wrap-
ping the JDB debugger, which enables distributed debug-
ging, and wrapping the Appache Web server, which enables
remote administration. Finally, W4F [30] is a Java toolkit
that generates wrapper for Web resources. This toolkit pro-
vides a mapping mechanism for Java and XML.

In the second category, we consider approaches that pro-
vide transparency with respect to both the provider and re-
quester programs using a bridge program hosting the trans-
lator components. Although such approaches provide trans-
parency with respect to both requester and provider pro-
grams, they suffer from extra overhead imposed by another
level of process-to-process or machine-to-machine redirec-
tion, as discussed in Section 3. An example of a research
project in this category is the on-the-fly wrapping of Web
services [18]. In this project, Web services are wrapped
to be used by Java programs developed in Jini [15]. Jini
is a service-based framework originally developed to sup-
port integration of devices as services. The wrapping pro-
cess is facilitated by the WSDL2Java and WSDL2Jini gen-
erator tools, which generate the glue code part of the bridge
program and the translator component. A developer is re-
quired to complete the code for the bridge and to ensure
that the semantics of translations are correct. Using the Jini
lookup service, the bridge publishes the wrapped Web ser-
vice as a Jini service, which can be used transparently by
Jini client programs.

We consider transparent shaping in a third category. Sim-
ilar to the approaches in the second category, transparent
shaping provides transparency to provider and requester
programs, and in addition, provides flexibility with respect
to where the translator components are hosted. To our
knowledge, transparent shaping is the only application inte-
gration technique exhibiting both features. That said, trans-
parent shaping is intended to complement, rather than com-
pete with, the approaches in the second category. Specif-
ically, we plan to employ the automatic translation tech-
niques provided by those approaches in our future work.

7. Summary

In this paper, we have demonstrated how transparent
shaping can be used to facilitate transparent application in-
tegration in the construction of autonomic systems from ex-
isting applications.

Transparent shaping enables integration of existing ap-
plications – developed in heterogeneous programming lan-
guages, middleware frameworks, and platforms – through
Web services while the integration and self-management
concerns are transparent to the original applications. A

case study was described, in which we constructed a fault-
tolerant surveillance application by integrating existing ap-
plications and adding self-management functionality. We
used transparent shaping to enable two existing image re-
trieval applications, one of them was developed in .NET and
the other in CORBA, to interact as required, without modi-
fying either application directly.

We note that several challenges remain in the do-
main of transparent application integration, including
automatic translation of the semantics of heteroge-
neous applications and automatic discovery of appropri-
ate Web services. The increasing maturity of business
standards, which have been supporting the automated in-
teractions in business-to-business application integration
over the past 20 years, addresses these issues to some ex-
tent [32]. Examples of some electronic businesses based
on Web services include ebXML, RosettaNet, UCC-
Net, and XMethods. Also, the automatic service loca-
tion, which is one of the goals of Web services, has been
specified in the Universal Description, Discovery, and In-
tegration (UDDI) [2] specification. UDDI is a Web ser-
vice for registering other Web services descriptions.
Together with tools and techniques for transparently in-
tegrating existing applications, such as described in this
paper, these developments promise to significantly in-
crease the degree to which autonomic computing is used in
the Internet.

Further Information. A number of related papers and
technical reports of the Software Engineering and Net-
work Systems Laboratory can be found at the following
URL: http://www.cse.msu.edu/sens. Papers and
other results related to the RAPIDware project, includ-
ing a download of the TRAP/J, TRAP.NET, ACT/J toolk-
its, and their corresponding source code are available at
http://www.cse.msu.edu/rapidware.

Acknowledgements. This work was supported in part by
the U.S. Department of the Navy, Office of Naval Re-
search under Grant No. N00014-01-1-0744, and in part by
National Science Foundation grants CCR-9912407, EIA-
0000433, EIA-0130724, and ITR-0313142.

References

[1] Application Integration & Web Services Summit 2004, May
2004.

[2] B. Atkinson, T. Bellwood, M. Cahuzac, L. Clment, J. Col-
grave, U. Corda, A. Czimbor, M. J. Dovey, D. Feygin,
S. Garg, R. Gupta, A. Hately, B. Henry, A. Kawai, P. Ma-
cias, A. T. Manes, C. von Riegen, T. Rogers, A. Srivas-
tava, P. Thorpe, A. Triglia, M. Voskob, and G. Zagelow.
UDDI Version 3.0.1. OASIS, 2003. Available at URL:
http://uddi.org/pubs/uddi_v3.htm.

[3] D. E. Bakken. Middleware. Kluwer Academic Press, 2001.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

[4] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Cham-
pion, C. Ferris, and D. Orchard. Web Services Architecture.
W3C, 2004. Available at URL: http://www.w3.org/
TR/ws-arch/.

[5] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendel-
sohn, H. F. Nielsen, S. Thatte, and D. Winer. Simple Object
Access Protocol (SOAP) 1.1. W3C, 1.1 edition, 2000. Avail-
able at URL: http://www.w3c.org/TR/SOAP.

[6] A. T. Campbell, G. Coulson, and M. E. Kounavis. Managing
complexity: Middleware explained. IT Professional, (5):22–
28, September/October 1999.

[7] N. Cheng, V. Berzins, Luqi, and S. Bhattacharya. Interoper-
ability with distributed objects through java wrapper. In Pro-
ceedings of the 24th Annual International Computer Soft-
ware and Applications Conference, Taipei, Taiwan, October
2000.

[8] S. Chiba and T. Masuda. Designing an extensible distributed
language with a meta-level architecture. Lecture Notes in
Computer Science, 1993.

[9] R. Chinnici, M. Gudgin, J.-J. Moreau, J. Schlimmer, and
S. Weerawarana. Web Services Description Language
(WSDL) Version 2.0. W3C, 2.0 edition, March 2004. Avail-
able at URL: http://www.w3.org/TR/wsdl20/.

[10] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL) 1.1.
W3C, 1.1 edition, March 2001. Available at URL: http:
//www.w3c.org/TR/wsdl.

[11] G. A. Cohen, J. S. Chase, and D. Kaminsky. Automatic pro-
gram transformation with JOIE. In Proceedings of the 1998
Usenix Technical Conference, June 1998.

[12] D. Conger. Remoting with C# and .NET. Wiley Publishing,
Inc., Indianapolis, Indiana, 2003.

[13] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. Unraveling the Web services web: An in-
troduction to SOAP, WSDL, and UDDI. IEEE Internet Com-
puting, 6(2):86–93, 2002.

[14] P. Dhawan and T. Ewald. Building distributed applications
with Microsoft .NET (ASP.NET Web services or .NET re-
moting: How to choose). Online article, September 2002.
Available at URL: http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/
dnbda/%html/bdadotnetarch16.asp.

[15] W. K. Edwards. Core Jini. Prentice-Hall, 1999.

[16] W. Emmerich. Software engineering and middleware: a
roadmap. In Proceedings of the Conference on The future
of Software engineering, pages 117–129, 2000.

[17] J. Ferber. Computational reflection in class based object-
oriented languages. In Conference proceedings on Object-
oriented programming systems, languages and applications,
pages 317–326. ACM Press, 1989.

[18] G. C. Gannod, H. Zhu, and S. V. Mudiam. On-the-fly wrap-
ping of web services to support dynamic integration. In Pro-
ceedings of the 10th IEEE Working Conference on Reverse
Engineering, November 2003.

[19] T. GIL and J.-B. Evain. AspectDNG home page. Available
at URL: http://aspectdng.sourceforge.net/.

[20] A. Gokhale, B. Kumar, and A. Sahuguet. Reinventing the
wheel? CORBA vs. Web services. In Proceedings of Interna-
tional World Wide Web Conference, Honolulu, Hawaii, 2002.

[21] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and
H. F. Nielsen. SOAP Version 1.2. W3C, 1.2 edition, 2003.
Available at URL: http://www.w3.org/TR/soap12.

[22] Java Soft. Java Remote Method Invocation Specification, re-
vision 1.5, JDK 1.2, Oct. 1998.

[23] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–50, 2003.

[24] P. K. McKinley, M. Sadjadi, E. P. Kasten, and B. H. C.
Cheng. Composing adaptive software. IEEE Computer,
pages 56–64, July 2004. For more information, please re-
fer to the technical report.

[25] Microsoft Corporation. Microsoft COM Technologies -
DCOM, 2000.

[26] Object Management Group, Framingham, Massachusett.
The Common Object Request Broker: Architecture and
Specification Version 3.0, July 2003. Available at
URL: http://doc.ece.uci.edu/CORBA/formal/
02-06-33.pdf.

[27] S. M. Sadjadi and P. K. McKinley. ACT: An adaptive
CORBA template to support unanticipated adaptation. In
Proceedings of the 24th IEEE International Conference on
Distributed Computing Systems (ICDCS’04), Tokyo, Japan,
March 2004.

[28] S. M. Sadjadi and P. K. McKinley. Transparent self-
optimization in existing CORBA applications. In Proceed-
ings of the International Conference on Autonomic Comput-
ing (ICAC-04), pages 88–95, New York, NY, May 2004.

[29] S. M. Sadjadi, P. K. McKinley, B. H. Cheng, and R. K. Stire-
walt. TRAP/J: Transparent generation of adaptable java pro-
grams. In Proceedings of the International Symposium on
Distributed Objects and Applications (DOA’04), Agia Napa,
Cyprus, October 2004.

[30] A. Sahuguet and F. Azavant. Looking at the Web through
XML glasses. In Proceedings of the Fourth IFCIS Inter-
national Conference on Cooperative Information Systems,
pages 148–159, September 1999.

[31] T. Thangarathinam. .NET remoting versus Web ser-
vices. Online article, 2003. Available at URL:
http://www.developer.com/net/net/
article.php/11087_2201701_1.

[32] S. Vinoski. Where is middleware? IEEE Internet Comput-
ing, March-April 2002.

[33] S. Vinoski. Integration with Web services. IEEE Internet
Computing, November-December 2003.

[34] E. Wohlstadter, S. Jackson, and P. Devanbu. Generating
wrappers for command line programs: the Cal-Aggie Wrap-
O-Matic project. In Proceedings of the 23rd International
Conference on Software Engineering, pages 243–252. IEEE
Computer Society, 2001.

[35] J. A. Zinky, D. E. Bakken, and R. E. Schantz. Architectural
support for quality of service for CORBA objects. Theory
and Practice of Object Systems, 3(1), 1997.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

