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Abstract 

High performance computing (HPC) is gaining popularity 

in solving scientific applications. Using the current 

programming standards, however, it takes an HPC expert 

to efficiently take advantage of HPC facilities; a skill that a 

scientist does not necessarily have. This lack of separation 

of concerns has resulted in scientific applications with rigid 

code, which entangles non-functional concerns (i.e., the 

parallel code) into functional concerns (i.e., the core 

business logic). Effectively, this tangled code hinders the 

maintenance and evolution of these applications. In this 

paper, we introduce Transparent Grid Enabler (TGE) that 

separates the task of developing the business logic of a 

scientific application from the task of improving its 

performance. TGE achieves this goal by integrating two 

existing software tools, namely, TRAP/J and GRID 

superscalar. A simple matrix multiplication program is 

used as a case study to demonstrate the current use and 

capabilities of TGE. 
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1. Introduction 
 

The advent of cluster and grid computing has created a 

remarkable interest in high performance computing (HPC) 

both in academia and industry, especially as a solution to 

complex scientific problems (e.g., hurricane path 

prediction). To efficiently utilize the underlying HPC 

facilities using the current programming models and tools, 

however, a scientist is expected to develop complex parallel 

programs; a skill that she might not necessarily have and is 

better done by an HPC expert.  

 

Current standards for cluster and grid programming such as 

MPI [8], OGSA [9], and WSRF [10] (and their 

implementations such as MPICH2 [11], Globus Toolkit 

[12], Unicore [13], and Condor [14]; to name just a few) 

have provided scientists with higher levels of abstraction. 

Noteworthy, these approaches have been successful in 

hiding the heterogeneity of the underlying hardware 

devices, networking protocols, and middleware layers from 

the scientist developers. However, the scientists are still 

expected to develop complex parallel algorithms and 

programs. Moreover, as the code for parallel algorithms 

would typically crosscut the code for business logic of the 

application, the resulting code will be an entangled code 

that is difficult to maintain and evolve.  

 

In this paper, we introduce Transparent Grid Enabler (TGE) 

that addresses these problems by enabling a separation of 

concerns in the development and maintenance of the non-

functional concerns (i.e., the parallel code) and the 

functional concerns (i.e., the business logic) of scientific 

applications. TGE achieves this goal by integrating two 

existing programming tools, namely, a Grid framework, 

called GRID superscalar [2], and an adaptation-enabling 

tool, called TRAP/J [6].On one hand, GRID superscalar  

enables the development of applications for a 

computational Grid by hiding details of job deployment, 

scheduling, and dependencies and enables the exploitation 

of the concurrency of these applications at runtime. On the 

other hand, TRAP/J supports automatic weaving of 

alternative parallel code (including the corresponding calls 

to GRID superscalar runtime) into the sequential code 

developed by the scientist.   

 

TGE increases the level of modularity of code by separating 

crosscutting grid related code from the business logic of the 

application. This allows scientists to continue focusing only 

on the core logic of the scientific applications, leaving the 

parallel code and its complexity to the HPC experts. In 

TGE, the grid enablement or weaving of parallel code into 

the original application is called to be transparent, because 

all the grid enablement process occurs automatically with 

no manual modifications to the business logic of the 

application and hence “transparent” to the scientist and her 

sequential code. This way, TGE supports transparent grid 

enablement of existing scientific applications also. 

 

The rest of this paper is organized as follows. In Section 2, 

we provide a short background on GRID superscalar and 

TRAP/J. In Section 3, we introduce a simple case study, 

called “Matmul”, which is a matrix multiplication program. 

In Section 4, we show how TGE works by adapting Matmul 

to run on a computational grid. In Section 5, we provide 

some experimental results and demonstrate the speedup 

gained because of grid enablement. In Section 6, we discuss 

some related works and in Section 7, we provide some 

future research directions. Currently, TGE enables only 

static grid enablement of Java programs by means of 

configuration files at startup time. We are planning to 



public static void main(String[] args) 

{ . . .  

Multiply_Matrices(size, args[1], args[2], 
args[3]); 

//args[] contains the names of the files 

//containing the input matrices 

} 

public static void Multiply_Matrices(int 
size, fileC, fileA, fileB) 

{ Block A = new Block(fileA, size); 

  Block B = new Block(fileB, size); 

  Block C = new Block(size); 

  C.Multiply(A,B); 

  C.blockToDisk(fileC); 

} 

provide dynamic grid enablement as well as self-

management behavior to scientific applications at run time. 

Finally, we finish the paper in Section 7 after providing 

some concluding remarks. 

 

2. Background 

 

Transparent grid enablement is achieved by the 

combination of TRAP/J and GRID superscalar. Therefore, 

as a first step, we present a brief background information 

about both technologies.  For more detail, please refer to 

the references. 

   

2.1 GRID superscalar 

 

Inspired by the superscalar processors, GRID superscalar 

provides an easy programming paradigm for developing 

parallel programs [2]. Similar to superscalar processors that 

provide out-of-order and parallel execution of machine 

instructions by bookkeeping their dependencies, GRID 

superscalar provides parallelism to the functions of a 

program written in a high-level programming language such 

as Java. Using GRID superscalar, a sequential scientific 

application developed by a scientist is dynamically 

parallelized in a computational Grid. GRID superscalar 

hides the details such as resource mapping, staging input 

data files, cleaning temporary data files, task deployment, 

task scheduling, exploiting instruction-level parallelism, 

and exploiting data locality. We note that for many of its 

responsibilities, GRID superscalar depends on other grid 

computing toolkits such as GT4 [12], Condor [14], and 

others. 

 

2.2 TRAP/J 

  

TRAP/J is a tool that enables static and dynamic adaptation 

in Java programs at startup and runtime, respectively [6]. It 

consists of two GUI-based interactive tools as follows: (1) 

Generator, which generates an adapt-ready version of an 

existing application by inserting generic hooks into a previ-

ously selected subset of classes in the application; and (2) 

Composer, which allows insertion of new code at the ge-

neric hooks both at startup or runtime. We note that only 

the pre-selected classes are capable of being adapted and 

they are called adaptable classes. Adaptable behavior is 

provided through alternative implementation of adaptable 

classes, which are called delegate classes. To replace alter-

native parallel algorithms developed using the GRID super-

scalar codes, we use the Generator to make the classes with 

sequential code adaptable, and then we use the Composer to 

weave in the parallel code.  

 

3. Case Study: Matmul 

 

Our case study is a simple application, called Matmul, 

which is a matrix multiplication program written in Java. It 

uses a sequential matrix multiplication algorithm, which 

computes C = A.B, where A, B, and C are matrices of size 

NxN. It uses the classic algorithm of “rows by columns” 

multiplication. This algorithm involves O(N
3
) operations.  

 
Figure 1: Hyper-Matrix Multiplication. 

 

We will use TGE to make this application grid enabled. 

First, we use GRID superscalar to develop alternative 

hyper-matrix multiplication algorithms by splitting the 

original matrices into a number of sub-matrices or blocks as 

shown in Figure 1 (a). Then we multiply these sub-matrices 

accumulatively as shown in Figure 1 (b). GRID superscalar 

will exploit the task-level parallelism by resolving the 

dependencies of the tasks as shown in Figure 1 (b). 

Therefore, instead of just one task as in the original 

approach, using hyper-matrix multiplication and GRID 

superscalar, up to 4 tasks can be active at the same time. 

Similarly, if we split the matrix into 9 blocks, then up to 9 

tasks can be executed at the same time and so on and so 

forth.  

 

4. Grid Enablement of Matmul 

 

We begin with the snippet code of the simple sequential 

matrix multiplication program that is shown in Figure 2. 

The bold method method in Figure 2 performs a 

conventional row by column matrix multiplication.  The 

statement underlined saves the result of the multiplication in 

the specified file.     

 Figure 2: Original Matrix Multiplication Code        



public class Matmul_Del implements Delegate     
Interface 

{  public static void Multiply_Matrices(int                 
size, fileC, fileA, fileB) 

  { . . . 

   GSMaster.On(); 

   for(int i=0;i<num_of_pieces;i++) 

   {  //Split in 4 pieces- 

     for(int j=0; j<num_of_pieces;j++) 

     { 

      for(int k=0; k<num_of_pieces;k++) 

      {  //Sending to Grid 

         Matmul.multiply_acc(C[i][j],  

A[i][k],B[k][j],size/    

num_of_pieces); 

      } 

    GSMaster.Off(); 

     . . . 

    MergeFiles(); 

} 

interface MATMUL 

{  void multiply_acc(inout File f3,   
in File f1, in File f2, in int size); 

}; 

In order to run this application on the grid we will use 

TRAP/J to weave in the parallel code developed at startup 

time into this application and use GRID superscalar to run 

the grid enabled adapted program. We select the 

Multiply_Matrices method to become adaptable since this 

method has been identified as the computationally intensive 

part of the original application. Therefore, a delegate class 

is developed that re-implements this method using the hyper 

matrix multiplication algorithm and GRID superscalar.   

 

As shown in Figure 1 (b), since the calculation of each 

block in the resulting matrix (C) is independent of the other 

ones, they can be executed in parallel, potentially on 

different processors of a grid computing environment.  

Figure 3 displays the code for a delegate class, 

Matmul_Del.java, that was implemented for this case study 

and includes the Multiply_Matrices method. The beginning 

of the method (not shown here for simplicity) takes care of 

splitting the original matrix operands A and B into blocks, 

creating files where each block is saved, and creating the 

files that will store the result of matrix multiplication for 

each block.                      

Figure 3: Delegate Class for Multiply_Matrices method 

 

The underlined section of the code calls the matrix 

multiplication method, Matmul.multiply _acc() for each 

pair of corresponding blocks.  This is the method that 

allows for parallelism by being executed in separate tasks 

(possibly running on different nodes). In order for GRID 

superscalar to know that Matmul.multiply_acc() is the 

method to be deployed on worker nodes, several steps must 

be taken.  First, an IDL file must be created as shown in 

Figure 4 to specify the signature of this method.   

 

 

 

 

 

   

Figure 4: Matmul IDL file 

 

This part is much like a CORBA IDL file that is used to 

generate stubs and skeletons to be used for a remote 

procedure call. The IDL uses the special keywords “in”, 

“out”, and “inout” to specify the type of the parameters to 

be read, written or both, respectively. Using this IDL as 

input to GRID superscalar, we generate the “worker” 

versions of Matmul; and using the selected adaptable 

method as input to TRAP/J, we generate the “master” 

version of Matmul.  

 

When we execute the master program, it calls the Multiply_ 

Matrices method, which will be intercepted by the TRAP/J 

runtime and will forward the control to the code in Figure 

3; effectively the parallel code will be executed instead of 

the original sequential code. As a first step, GRID 

superscalar will be started with a call to GSMaster.On(), 

basically to initialize resources in the grid, like for example 

Globus services. Later, each multiplication of the sub-

matrices will be sent to the nodes in the grid using the 

Matmul_multiply_acc(…). After all the calls to this method 

for all the multiplications are done, GRID superscalar is 

disabled by the call to GSMaster.Off(). Finally GRID 

superscalar runtime will collect the results using the 

mergeFiles() method, which is in charge of merging the 

individual output files obtained from the different block 

multiplications into one matrix file representing the result 

of the matrix multiplication.  

 

The class Matmul on which the static method 

Multiply_Accumulative() is invoked is actually provided by 

GRID superscalar when deploying the application.  

Basically what it does is to call the GRID superscalar 

runtime in order to execute the method, 

Multiply_Accumulative() already defined in the IDL we 

created at startup. As mentioned before, all the issues 

related to file handling, concurrency problems, and 

interactions with the grid (middleware like Globus in this 

case) are handled by GRID superscalar. 

 

Finally, the obtained grid-enabled application offers the 

choice for the user to choose among different alternative 

parallel-computing algorithms; for example, choosing 

between an algorithm which uses 4 blocks or 9 blocks. The 

decision of choosing one algorithm or another can be made 

based on the number of resources available and therefore, 

taking advantage of the grid infrastructure properly. 

Moreover, this new grid-enabled application is transparent 

to the user in the sense the way it was originally executed 

remains the same. 



5. Experimental Results 

 

The case study we discussed on the sections above left us 

with some interesting results that we present in this section.  

 

First, we should point out that even though our approach 

takes advantage of parallel programming when using the 

computational grid, we also face the problem of delays 

caused by the network traffic, coordination of tasks, and the 

middleware software services used (Amdahl’s law). 

Therefore, it is reasonable to predict that when the matrices 

to multiply present a relatively small dimension, the 

original sequential application will perform faster than the 

grid-enabled one. As the matrix size increases we will be 

able to see that this difference in time shortens 

progressively. 

 

Matrix 

Size (N) 

Sequential 

(ms) 

Parallel with 4 

blocks (ms) 

Speedup 

(S/P) 

144 674 61512 0.010957212 

288 2031 66096 0.030728032 

576 9527 69365 0.137345924 

1152 62269 172787 0.360380121 

Table 1: Initial time results 

 

 
Figure 5: Speedups of the experiments 

 

Table 1 shows the initial experiments we ran, and there you 

can compare the results obtained by both the original 

sequential program versus our approach using four nodes of 

the grid and therefore having a level of parallelism of 4. In 

this first set of experiments, we noticed that the sequential 

code always ran faster than the grid-enabled one; however, 

as the matrix size increased, we could notice that the 

difference in time between the two approaches became 

smaller and smaller. 

 

One of the main problems we had by then with the 

performance was due to the way GRID superscalar works. 

The method GS_Off(), mentioned in section 4 and in figure 

3, is in charge of freeing resources and deleting temporary 

files after finishing the calls to the grid method and since all 

the data is distributed along the nodes, then a cleanup was 

needed everywhere causing our application to take extra 

time. 

Since we wanted to get a more optimized grid-enabled 

application, we took the GRID superscalar source code and 

optimized it, removing the cleanup but keeping the main 

functionality so that we can still get consistent results. 

Applications that benefit from HPC are usually scientific 

applications like, for example, those related to hurricane 

prediction and monitoring. In such cases, temporary left 

over data is irrelevant if the application provides us with the 

correct results quickly. Therefore, the approach we took at 

this stage seems proper.  

 

With this optimization in hand, we also decided to 

implement a new algorithm in which we handled a 

parallelism of 9. Due to infrastructure reasons at the time, 

the number of nodes available for this experiment was at 

most 6. The results in terms of times consumed for this set 

of new experiments are shown in Figure 6 and 7. 

 

Matrix 

Size 

(N) 

 

Seq. 

(ms) 

 

 

Par. w/ 4 

blocks and  

2 workers 

(ms) 

Par. w/ 4 

blocks and 

4 workers 

(ms) 

Par. w/ 9 

blocks and 

6 workers 

(ms) 

144 5576 79221 57656 145331 

288 14934 86259 62013 146744 

576 44755 108107 78096 148240 

1152 19318 176464 133058 176464 

2304 79837 643925 441891 474215 

Table 2: Final time results 
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Figure 6: Chart of the times for each approach 

 

With the results (time in ms) obtained in Table 2 and Figure 

6 we were able to build a table and a graph showing the 

Speedups of each algorithm as shown in table 3 and figure 

7. 

In Figure 7 we see that as the matrix size increases, the 

speedup improves and finally when the size of the matrix is 

1152 (number of rows = number of columns = 1152), all of 

the algorithms for the grid-enabled application perform 

better than the original sequential application. Furthermore, 

when the size of the matrix is 2304, all of the algorithms 

perform even much better than the sequential one. As a 

result, we notice that the algorithm with best performance is 

the one that uses parallelism of 4 and 4 nodes which for a 

matrix of size 2304 performs almost twice faster than the 



sequential one. This is because we have more CPU power 

and we are using all of it because of the parallelism of 4. 

Besides that, having only 4 nodes, reduces the number of 

file transfers among the nodes, which in turn reduces time 

of execution. 

 

Matrix

Size 

 

Seq 

 

 

Parallelism 

(4) 

2 workers 

Parallelism 

(4) 

4 workers 

Parallelism 

(9) 

6 workers 

144 1 0.0703858 0.09671153 0.03836759 

288 1 0.1731298 0.24082048 0.10176907 

576 1 0.4139879 0.57307673 0.30190907 

1152 1 1.0947502 1.45187813 1.09475020 

2304 1 1.2398462 1.80670799 1.68355704 

Table3: Speedups of each approach 
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Figure 7: Speedups of each approach 

 

We emphasize that the experiments are part of our ongoing 

research activities and by no means they are meant to be 

representative and conclusive with respect to providing a 

quantitative metric for speedup of sequential applications. 

The main purpose of these experiments is to show that we 

were able to use the current prototype of TGE to 

transparently adapt an application to run on a grid 

computing environment. 

 

6. Related Work 

 

Other approaches that enable programming parallel 

applications for computational Grids are Satin, HOCS, 

ProActive or ASSIST. 

 

Satin [7] is a Java based programming model for the Grid 

which allows to explicitly expressing divide-and-conquer 

parallelism. Satin uses marker interfaces to indicate that 

certain invocation methods need to be considered for 

potentially parallel (spawned) execution. Moreover, 

synchronization is also explicitly marked whenever it is 

required to wait for the results of parallel method 

invocations. 

 

HOCS [5] is a component oriented approach based on a 

master-worker schema. Higher-Order Components (HOCs) 

express recurring patterns of parallelism that are provided 

to the user as program building blocks, pre-packaged with 

distributed implementations. 

 

ASSIST [1] is a programming environment aimed at 

providing parallel programmers with user-friendly, 

efficient, portable, fast ways of implementing parallel 

applications. It includes a skeleton based parallel 

programming language (ASSISTcl, cl stands for 

coordination language) and a set of compiling tools and run 

time libraries. The ensemble allows parallel programs 

written using ASSISTcl to be seamlessly run on top of 

workstation networks supporting POSIX and ACE (the 

Adaptive Communication Environment, which is an extern, 

open source library used within the ASSISTcl run time 

support).  

 

ProActive [3] is a Java GRID middleware library for 

parallel, distributed and multi-threaded computing. With a 

reduced set of simple primitives, ProActive provides a 

comprehensive API to simplify the programming of Grid 

Computing applications: distributed on Local Area Network 

(LAN), on clusters of workstations, or on Internet GRIDs. 

ProActive is only made of standard Java classes, and 

requires no changes to the Java Virtual Machine, no 

preprocessing or compiler modification, leaving 

programmers to write standard Java code. Architected with 

interception and reflection, the library is itself extensible, 

making the system open for adaptations and optimizations. 

Current implementation is focusing of the CoreGRID NoE 

specification of the Grid Component Model (GCM) [4]. 

 

None of the above mentioned approaches provide an 

explicit separation of concerns identifying separate tasks for 

scientist developers and HPC expert developers. TGE can 

be extended to use these works instead or in complement to 

GRID superscalar and can be used as an enabler for 

supporting interoperation among the above mentioned 

approaches. 

 

7. Future Work 
 

As we mentioned before, we have been able to achieve 

static adaptation.  Our next task will be to extend TGE in 

support of more autonomic behavior and include adaptation 

at runtime (dynamic) in response to high level system 

policies such as the addition of more nodes to the grid, 

process scheduling, etc, or application level policies such as 

different blocking algorithms, faster algorithms, etc.  

 

At present, dynamic adaptation of Java programs with 

TRAP/J has been achieved and tested. However, running an 

application in a grid environment inherently introduces a lot 

more challenges than just running the program in one node 

or virtual machine. If we take Matmul as an example, we 

can clearly see that switching the blocking algorithm 

dynamically requires us to save the present state of 



calculations, adapt it to the new algorithm, and continue 

executing.  

Furthermore, moving towards building a more autonomic 

self adapting and self configuring system, we can take TGE 

to provide context-aware adaptation. In other words, by 

invoking the Globus Toolkit monitoring service we can 

keep track of the state of the runtime environment and 

retrieve information about resource allocation, scheduling, 

etc.  

 

8. Conclusion 

In this paper we have presented an innovative approach to 

transparent grid-enablement of scientific applications. We 

achieved this goal by combining TRAP/J and GRID 

superscalar. Each tool provided us with the necessary 

features for transparent software adaptation from a 

sequential code to a grid-enabled one as Figure 8 briefly 

sums up. 

 
Figure 8: TGE Flow Diagram 

 

The matrix multiplication shown as a case study in this 

paper is just a simple example to show how our approach 

works. In fact, this matrix multiplication, for example, 

could be just one part of a whole application and be the 

portion of the code that consumes most of the execution 

time and in that sense, applying our approach would 

considerably benefit the whole application’s performance. 

In a similar fashion, we could take an existing application 

and just modify the part of the algorithm that is in charge of 

the most cpu utilization and just parallelize that logic 

without having to modify the total original code.  

 

Another important issue to mention is that the optimization 

discussed in the paper is not targeted only to improve the 

performance of our case study, in fact, since this 

optimization has been done to the Grid Superscalar library, 

any application built from now on will benefit for these 

improvements. Moreover, even though we took Java as the 

programming language to describe our case study, other 

programming languages could be used following the same 

approach since for example C and Perl are also supported 

by Grid Superscalar.  

 

Finally, we are aware that we cannot guarantee that in all 

applications we will be able to separate the parallelism of a 

portion of the algorithm from the business logic of it; 

however, there many existing applications that do offer this 

facility.  
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