
Improving Separation of Concerns in the Development of
Scientific Applications

S. M. Sadjadi*, J. Martinez, T. Soldo, L. Atencio
School of Computing and Information Sciences

Florida International University, Miami, FL, U.S.A
{sadjadi,ftrig001}@cs.fiu.edu

R. M. Badia, J. Ejarque
Barcelona Supercomputing Center

Barcelona, Spain
{rosa.m.badia, jorge.ejarque}@bsc.es

Abstract

High performance computing (HPC) is gaining popularity

in solving scientific applications. Using the current

programming standards, however, it takes an HPC expert

to efficiently take advantage of HPC facilities; a skill that a

scientist does not necessarily have. This lack of separation

of concerns has resulted in scientific applications with rigid

code, which entangles non-functional concerns (i.e., the

parallel code) into functional concerns (i.e., the core

business logic). Effectively, this tangled code hinders the

maintenance and evolution of these applications. In this

paper, we introduce Transparent Grid Enabler (TGE) that

separates the task of developing the business logic of a

scientific application from the task of improving its

performance. TGE achieves this goal by integrating two

existing software tools, namely, TRAP/J and GRID

superscalar. A simple matrix multiplication program is

used as a case study to demonstrate the current use and

capabilities of TGE.

Keywords
Grid Enablement, Transparent Shaping, GRID superscalar

1. Introduction

The advent of cluster and grid computing has created a

remarkable interest in high performance computing (HPC)

both in academia and industry, especially as a solution to

complex scientific problems (e.g., hurricane path

prediction). To efficiently utilize the underlying HPC

facilities using the current programming models and tools,

however, a scientist is expected to develop complex parallel

programs; a skill that she might not necessarily have and is

better done by an HPC expert.

Current standards for cluster and grid programming such as

MPI [8], OGSA [9], and WSRF [10] (and their

implementations such as MPICH2 [11], Globus Toolkit

[12], Unicore [13], and Condor [14]; to name just a few)

have provided scientists with higher levels of abstraction.

Noteworthy, these approaches have been successful in

hiding the heterogeneity of the underlying hardware

devices, networking protocols, and middleware layers from

the scientist developers. However, the scientists are still

expected to develop complex parallel algorithms and

programs. Moreover, as the code for parallel algorithms

would typically crosscut the code for business logic of the

application, the resulting code will be an entangled code

that is difficult to maintain and evolve.

In this paper, we introduce Transparent Grid Enabler (TGE)

that addresses these problems by enabling a separation of

concerns in the development and maintenance of the non-

functional concerns (i.e., the parallel code) and the

functional concerns (i.e., the business logic) of scientific

applications. TGE achieves this goal by integrating two

existing programming tools, namely, a Grid framework,

called GRID superscalar [2], and an adaptation-enabling

tool, called TRAP/J [6].On one hand, GRID superscalar

enables the development of applications for a

computational Grid by hiding details of job deployment,

scheduling, and dependencies and enables the exploitation

of the concurrency of these applications at runtime. On the

other hand, TRAP/J supports automatic weaving of

alternative parallel code (including the corresponding calls

to GRID superscalar runtime) into the sequential code

developed by the scientist.

TGE increases the level of modularity of code by separating

crosscutting grid related code from the business logic of the

application. This allows scientists to continue focusing only

on the core logic of the scientific applications, leaving the

parallel code and its complexity to the HPC experts. In

TGE, the grid enablement or weaving of parallel code into

the original application is called to be transparent, because

all the grid enablement process occurs automatically with

no manual modifications to the business logic of the

application and hence “transparent” to the scientist and her

sequential code. This way, TGE supports transparent grid

enablement of existing scientific applications also.

The rest of this paper is organized as follows. In Section 2,

we provide a short background on GRID superscalar and

TRAP/J. In Section 3, we introduce a simple case study,

called “Matmul”, which is a matrix multiplication program.

In Section 4, we show how TGE works by adapting Matmul

to run on a computational grid. In Section 5, we provide

some experimental results and demonstrate the speedup

gained because of grid enablement. In Section 6, we discuss

some related works and in Section 7, we provide some

future research directions. Currently, TGE enables only

static grid enablement of Java programs by means of

configuration files at startup time. We are planning to

public static void main(String[] args)

{ . . .

Multiply_Matrices(size, args[1], args[2],
args[3]);

//args[] contains the names of the files

//containing the input matrices

}

public static void Multiply_Matrices(int
size, fileC, fileA, fileB)

{ Block A = new Block(fileA, size);

 Block B = new Block(fileB, size);

 Block C = new Block(size);

 C.Multiply(A,B);

 C.blockToDisk(fileC);

}

provide dynamic grid enablement as well as self-

management behavior to scientific applications at run time.

Finally, we finish the paper in Section 7 after providing

some concluding remarks.

2. Background

Transparent grid enablement is achieved by the

combination of TRAP/J and GRID superscalar. Therefore,

as a first step, we present a brief background information

about both technologies. For more detail, please refer to

the references.

2.1 GRID superscalar

Inspired by the superscalar processors, GRID superscalar

provides an easy programming paradigm for developing

parallel programs [2]. Similar to superscalar processors that

provide out-of-order and parallel execution of machine

instructions by bookkeeping their dependencies, GRID

superscalar provides parallelism to the functions of a

program written in a high-level programming language such

as Java. Using GRID superscalar, a sequential scientific

application developed by a scientist is dynamically

parallelized in a computational Grid. GRID superscalar

hides the details such as resource mapping, staging input

data files, cleaning temporary data files, task deployment,

task scheduling, exploiting instruction-level parallelism,

and exploiting data locality. We note that for many of its

responsibilities, GRID superscalar depends on other grid

computing toolkits such as GT4 [12], Condor [14], and

others.

2.2 TRAP/J

TRAP/J is a tool that enables static and dynamic adaptation

in Java programs at startup and runtime, respectively [6]. It

consists of two GUI-based interactive tools as follows: (1)

Generator, which generates an adapt-ready version of an

existing application by inserting generic hooks into a previ-

ously selected subset of classes in the application; and (2)

Composer, which allows insertion of new code at the ge-

neric hooks both at startup or runtime. We note that only

the pre-selected classes are capable of being adapted and

they are called adaptable classes. Adaptable behavior is

provided through alternative implementation of adaptable

classes, which are called delegate classes. To replace alter-

native parallel algorithms developed using the GRID super-

scalar codes, we use the Generator to make the classes with

sequential code adaptable, and then we use the Composer to

weave in the parallel code.

3. Case Study: Matmul

Our case study is a simple application, called Matmul,

which is a matrix multiplication program written in Java. It

uses a sequential matrix multiplication algorithm, which

computes C = A.B, where A, B, and C are matrices of size

NxN. It uses the classic algorithm of “rows by columns”

multiplication. This algorithm involves O(N
3
) operations.

Figure 1: Hyper-Matrix Multiplication.

We will use TGE to make this application grid enabled.

First, we use GRID superscalar to develop alternative

hyper-matrix multiplication algorithms by splitting the

original matrices into a number of sub-matrices or blocks as

shown in Figure 1 (a). Then we multiply these sub-matrices

accumulatively as shown in Figure 1 (b). GRID superscalar

will exploit the task-level parallelism by resolving the

dependencies of the tasks as shown in Figure 1 (b).

Therefore, instead of just one task as in the original

approach, using hyper-matrix multiplication and GRID

superscalar, up to 4 tasks can be active at the same time.

Similarly, if we split the matrix into 9 blocks, then up to 9

tasks can be executed at the same time and so on and so

forth.

4. Grid Enablement of Matmul

We begin with the snippet code of the simple sequential

matrix multiplication program that is shown in Figure 2.

The bold method method in Figure 2 performs a

conventional row by column matrix multiplication. The

statement underlined saves the result of the multiplication in

the specified file.

 Figure 2: Original Matrix Multiplication Code

public class Matmul_Del implements Delegate
Interface

{ public static void Multiply_Matrices(int
size, fileC, fileA, fileB)

 { . . .

 GSMaster.On();

 for(int i=0;i<num_of_pieces;i++)

 { //Split in 4 pieces-

 for(int j=0; j<num_of_pieces;j++)

 {

 for(int k=0; k<num_of_pieces;k++)

 { //Sending to Grid

 Matmul.multiply_acc(C[i][j],

A[i][k],B[k][j],size/

num_of_pieces);

 }

 GSMaster.Off();

 . . .

 MergeFiles();

}

interface MATMUL

{ void multiply_acc(inout File f3,
in File f1, in File f2, in int size);

};

In order to run this application on the grid we will use

TRAP/J to weave in the parallel code developed at startup

time into this application and use GRID superscalar to run

the grid enabled adapted program. We select the

Multiply_Matrices method to become adaptable since this

method has been identified as the computationally intensive

part of the original application. Therefore, a delegate class

is developed that re-implements this method using the hyper

matrix multiplication algorithm and GRID superscalar.

As shown in Figure 1 (b), since the calculation of each

block in the resulting matrix (C) is independent of the other

ones, they can be executed in parallel, potentially on

different processors of a grid computing environment.

Figure 3 displays the code for a delegate class,

Matmul_Del.java, that was implemented for this case study

and includes the Multiply_Matrices method. The beginning

of the method (not shown here for simplicity) takes care of

splitting the original matrix operands A and B into blocks,

creating files where each block is saved, and creating the

files that will store the result of matrix multiplication for

each block.

Figure 3: Delegate Class for Multiply_Matrices method

The underlined section of the code calls the matrix

multiplication method, Matmul.multiply _acc() for each

pair of corresponding blocks. This is the method that

allows for parallelism by being executed in separate tasks

(possibly running on different nodes). In order for GRID

superscalar to know that Matmul.multiply_acc() is the

method to be deployed on worker nodes, several steps must

be taken. First, an IDL file must be created as shown in

Figure 4 to specify the signature of this method.

Figure 4: Matmul IDL file

This part is much like a CORBA IDL file that is used to

generate stubs and skeletons to be used for a remote

procedure call. The IDL uses the special keywords “in”,

“out”, and “inout” to specify the type of the parameters to

be read, written or both, respectively. Using this IDL as

input to GRID superscalar, we generate the “worker”

versions of Matmul; and using the selected adaptable

method as input to TRAP/J, we generate the “master”

version of Matmul.

When we execute the master program, it calls the Multiply_

Matrices method, which will be intercepted by the TRAP/J

runtime and will forward the control to the code in Figure

3; effectively the parallel code will be executed instead of

the original sequential code. As a first step, GRID

superscalar will be started with a call to GSMaster.On(),

basically to initialize resources in the grid, like for example

Globus services. Later, each multiplication of the sub-

matrices will be sent to the nodes in the grid using the

Matmul_multiply_acc(…). After all the calls to this method

for all the multiplications are done, GRID superscalar is

disabled by the call to GSMaster.Off(). Finally GRID

superscalar runtime will collect the results using the

mergeFiles() method, which is in charge of merging the

individual output files obtained from the different block

multiplications into one matrix file representing the result

of the matrix multiplication.

The class Matmul on which the static method

Multiply_Accumulative() is invoked is actually provided by

GRID superscalar when deploying the application.

Basically what it does is to call the GRID superscalar

runtime in order to execute the method,

Multiply_Accumulative() already defined in the IDL we

created at startup. As mentioned before, all the issues

related to file handling, concurrency problems, and

interactions with the grid (middleware like Globus in this

case) are handled by GRID superscalar.

Finally, the obtained grid-enabled application offers the

choice for the user to choose among different alternative

parallel-computing algorithms; for example, choosing

between an algorithm which uses 4 blocks or 9 blocks. The

decision of choosing one algorithm or another can be made

based on the number of resources available and therefore,

taking advantage of the grid infrastructure properly.

Moreover, this new grid-enabled application is transparent

to the user in the sense the way it was originally executed

remains the same.

5. Experimental Results

The case study we discussed on the sections above left us

with some interesting results that we present in this section.

First, we should point out that even though our approach

takes advantage of parallel programming when using the

computational grid, we also face the problem of delays

caused by the network traffic, coordination of tasks, and the

middleware software services used (Amdahl’s law).

Therefore, it is reasonable to predict that when the matrices

to multiply present a relatively small dimension, the

original sequential application will perform faster than the

grid-enabled one. As the matrix size increases we will be

able to see that this difference in time shortens

progressively.

Matrix

Size (N)

Sequential

(ms)

Parallel with 4

blocks (ms)

Speedup

(S/P)

144 674 61512 0.010957212

288 2031 66096 0.030728032

576 9527 69365 0.137345924

1152 62269 172787 0.360380121

Table 1: Initial time results

Figure 5: Speedups of the experiments

Table 1 shows the initial experiments we ran, and there you

can compare the results obtained by both the original

sequential program versus our approach using four nodes of

the grid and therefore having a level of parallelism of 4. In

this first set of experiments, we noticed that the sequential

code always ran faster than the grid-enabled one; however,

as the matrix size increased, we could notice that the

difference in time between the two approaches became

smaller and smaller.

One of the main problems we had by then with the

performance was due to the way GRID superscalar works.

The method GS_Off(), mentioned in section 4 and in figure

3, is in charge of freeing resources and deleting temporary

files after finishing the calls to the grid method and since all

the data is distributed along the nodes, then a cleanup was

needed everywhere causing our application to take extra

time.

Since we wanted to get a more optimized grid-enabled

application, we took the GRID superscalar source code and

optimized it, removing the cleanup but keeping the main

functionality so that we can still get consistent results.

Applications that benefit from HPC are usually scientific

applications like, for example, those related to hurricane

prediction and monitoring. In such cases, temporary left

over data is irrelevant if the application provides us with the

correct results quickly. Therefore, the approach we took at

this stage seems proper.

With this optimization in hand, we also decided to

implement a new algorithm in which we handled a

parallelism of 9. Due to infrastructure reasons at the time,

the number of nodes available for this experiment was at

most 6. The results in terms of times consumed for this set

of new experiments are shown in Figure 6 and 7.

Matrix

Size

(N)

Seq.

(ms)

Par. w/ 4

blocks and

2 workers

(ms)

Par. w/ 4

blocks and

4 workers

(ms)

Par. w/ 9

blocks and

6 workers

(ms)

144 5576 79221 57656 145331

288 14934 86259 62013 146744

576 44755 108107 78096 148240

1152 19318 176464 133058 176464

2304 79837 643925 441891 474215

Table 2: Final time results

Time Consumed by Different Approaches

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

144 288 576 1152 2304

Matrix Size

T
im

e
 (

m
s
) Sequential

Parallelism (4) - 2 w orkers

Parallelism (4) - 4 w orkers

Parallelism (9) - 6 w orkers

Figure 6: Chart of the times for each approach

With the results (time in ms) obtained in Table 2 and Figure

6 we were able to build a table and a graph showing the

Speedups of each algorithm as shown in table 3 and figure

7.

In Figure 7 we see that as the matrix size increases, the

speedup improves and finally when the size of the matrix is

1152 (number of rows = number of columns = 1152), all of

the algorithms for the grid-enabled application perform

better than the original sequential application. Furthermore,

when the size of the matrix is 2304, all of the algorithms

perform even much better than the sequential one. As a

result, we notice that the algorithm with best performance is

the one that uses parallelism of 4 and 4 nodes which for a

matrix of size 2304 performs almost twice faster than the

sequential one. This is because we have more CPU power

and we are using all of it because of the parallelism of 4.

Besides that, having only 4 nodes, reduces the number of

file transfers among the nodes, which in turn reduces time

of execution.

Matrix

Size

Seq

Parallelism

(4)

2 workers

Parallelism

(4)

4 workers

Parallelism

(9)

6 workers

144 1 0.0703858 0.09671153 0.03836759

288 1 0.1731298 0.24082048 0.10176907

576 1 0.4139879 0.57307673 0.30190907

1152 1 1.0947502 1.45187813 1.09475020

2304 1 1.2398462 1.80670799 1.68355704

Table3: Speedups of each approach

Algorithms Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

144 288 576 1152 2304

Matrix Size

S
p

e
e

d
u

p

Sequential

Parallelism (4) - 2 w orkers

Parallelism (4) - 4 w orkers

Parallelism (9) - 6 w orkers

Figure 7: Speedups of each approach

We emphasize that the experiments are part of our ongoing

research activities and by no means they are meant to be

representative and conclusive with respect to providing a

quantitative metric for speedup of sequential applications.

The main purpose of these experiments is to show that we

were able to use the current prototype of TGE to

transparently adapt an application to run on a grid

computing environment.

6. Related Work

Other approaches that enable programming parallel

applications for computational Grids are Satin, HOCS,

ProActive or ASSIST.

Satin [7] is a Java based programming model for the Grid

which allows to explicitly expressing divide-and-conquer

parallelism. Satin uses marker interfaces to indicate that

certain invocation methods need to be considered for

potentially parallel (spawned) execution. Moreover,

synchronization is also explicitly marked whenever it is

required to wait for the results of parallel method

invocations.

HOCS [5] is a component oriented approach based on a

master-worker schema. Higher-Order Components (HOCs)

express recurring patterns of parallelism that are provided

to the user as program building blocks, pre-packaged with

distributed implementations.

ASSIST [1] is a programming environment aimed at

providing parallel programmers with user-friendly,

efficient, portable, fast ways of implementing parallel

applications. It includes a skeleton based parallel

programming language (ASSISTcl, cl stands for

coordination language) and a set of compiling tools and run

time libraries. The ensemble allows parallel programs

written using ASSISTcl to be seamlessly run on top of

workstation networks supporting POSIX and ACE (the

Adaptive Communication Environment, which is an extern,

open source library used within the ASSISTcl run time

support).

ProActive [3] is a Java GRID middleware library for

parallel, distributed and multi-threaded computing. With a

reduced set of simple primitives, ProActive provides a

comprehensive API to simplify the programming of Grid

Computing applications: distributed on Local Area Network

(LAN), on clusters of workstations, or on Internet GRIDs.

ProActive is only made of standard Java classes, and

requires no changes to the Java Virtual Machine, no

preprocessing or compiler modification, leaving

programmers to write standard Java code. Architected with

interception and reflection, the library is itself extensible,

making the system open for adaptations and optimizations.

Current implementation is focusing of the CoreGRID NoE

specification of the Grid Component Model (GCM) [4].

None of the above mentioned approaches provide an

explicit separation of concerns identifying separate tasks for

scientist developers and HPC expert developers. TGE can

be extended to use these works instead or in complement to

GRID superscalar and can be used as an enabler for

supporting interoperation among the above mentioned

approaches.

7. Future Work

As we mentioned before, we have been able to achieve

static adaptation. Our next task will be to extend TGE in

support of more autonomic behavior and include adaptation

at runtime (dynamic) in response to high level system

policies such as the addition of more nodes to the grid,

process scheduling, etc, or application level policies such as

different blocking algorithms, faster algorithms, etc.

At present, dynamic adaptation of Java programs with

TRAP/J has been achieved and tested. However, running an

application in a grid environment inherently introduces a lot

more challenges than just running the program in one node

or virtual machine. If we take Matmul as an example, we

can clearly see that switching the blocking algorithm

dynamically requires us to save the present state of

calculations, adapt it to the new algorithm, and continue

executing.

Furthermore, moving towards building a more autonomic

self adapting and self configuring system, we can take TGE

to provide context-aware adaptation. In other words, by

invoking the Globus Toolkit monitoring service we can

keep track of the state of the runtime environment and

retrieve information about resource allocation, scheduling,

etc.

8. Conclusion

In this paper we have presented an innovative approach to

transparent grid-enablement of scientific applications. We

achieved this goal by combining TRAP/J and GRID

superscalar. Each tool provided us with the necessary

features for transparent software adaptation from a

sequential code to a grid-enabled one as Figure 8 briefly

sums up.

Figure 8: TGE Flow Diagram

The matrix multiplication shown as a case study in this

paper is just a simple example to show how our approach

works. In fact, this matrix multiplication, for example,

could be just one part of a whole application and be the

portion of the code that consumes most of the execution

time and in that sense, applying our approach would

considerably benefit the whole application’s performance.

In a similar fashion, we could take an existing application

and just modify the part of the algorithm that is in charge of

the most cpu utilization and just parallelize that logic

without having to modify the total original code.

Another important issue to mention is that the optimization

discussed in the paper is not targeted only to improve the

performance of our case study, in fact, since this

optimization has been done to the Grid Superscalar library,

any application built from now on will benefit for these

improvements. Moreover, even though we took Java as the

programming language to describe our case study, other

programming languages could be used following the same

approach since for example C and Perl are also supported

by Grid Superscalar.

Finally, we are aware that we cannot guarantee that in all

applications we will be able to separate the parallelism of a

portion of the algorithm from the business logic of it;

however, there many existing applications that do offer this

facility.

9. Acknowledgement

This work was supported in part by IBM (SUR and Student

Support awards), the National Science Foundation (grants

OCI-0636031, REU-0552555, and HRD-0317692), the

Spanish CICYT (contract TIN2004-07739-CO2-01), and

the BSC-IBM Master R&D Collaboration agreement. This

work is part of the Latin American Grid (LA Grid) project.

References

[1] Marco Aldinucci, Massimo Coppola, Marco Danelutto,

Marco Vanneschi, and Corrado Zoccolo. Assist as a

research framework for high-performance grid

programming environments. In Jose C. Cunha and Omer F.

Rana, editors, Grid Computing: Software environments and

Tools. Springer-Verlag, 2004.

[2] Rosa M. Badia, Raül Sirvent, Jesus Labarta, and Josep

M. Perez. Programming the GRID: An Imperative

Language Based Approach. book chapter in Engineering

the Grid, Section 4, Chapter 12 , January 2006.

[3] Laurent Baduel, Françoise Baude, Denis Caromel,

Arnaud Contes, Fabrice Huet, Matthieu Morel, and Romain

Quilici. Programming, Composing, Deploying for the Grid

(the reference to be used to cite ProActive), in "GRID

COMPUTING: Software Environments and Tools", Jose C.

Cunha and Omer F. Rana (Eds), Springer Verlag, January

2006.

[4] CoreGRID Deliverable D.PM.02, 2006, Proposal for a

Grid Component Model.

[5] Sergei Gorlatch and Jan Dünnweber. From Grid

Middleware to Grid Applications: Bridging the Gap with

HOCs. In Future Generation Grids, Springer Verlag, 2005.

[6] S. Masoud Sadjadi, Philip K. McKinley, Betty H.C.

Cheng, and R.E. Kurt Stirewalt. TRAP/J: Transparent

generation of adaptable Java programs. In Proceedings of

the International Symposium on Distributed Objects and

Applications (DOA'04), Agia Napa, Cyprus, October 2004.

[7] Rob van Nieuwpoort, Jason Maassen, Thilo Kielmann,

and Henri E. Bal. Satin: Simple and efficient Java-based

grid programming. Scalable Computing: Practice and

Experience, 6(3):19-32, September 2005.

[8] http://www-unix.mcs.anl.gov/mpi/

[9] http://www.globus.org/ogsa/

[10] http://www.globus.org/wsrf/

[11] http://www-unix.mcs.anl.gov/mpi/mpich2/

[12] http://www.globus.org/toolkit/

[13] http://www.unicore.org/

[14] http://www.cs.wisc.edu/condor/

