
An architectural blueprint
for autonomic computing.

Autonomic Computing
White Paper

June 2005
Third Edition

An architectural blueprint for autonomic computing
Page 2

Contents

1. Introduction 3

 Autonomic computing 4

 Self-management attributes of system components 4

 Delegated IT processes can deliver self-managing capabilities 6

 Customer value 8

 Motivation for a blueprint 9

2. Autonomic computing architecture concepts 9

 Autonomic computing system 10

 Managed resource 11

 Touchpoints 11

 Touchpoint autonomic managers 12

 Orchestrating autonomic managers 14

 Manual Managers 14

3. Autonomic computing architecture details 15

 Autonomic manager 16

 Autonomic manager internal structure 18

 Knowledge Source 20

 Touchpoints 22

 Manageability Interface 23

 Manual Manager 24

 Enterprise Service Bus 25

4. Evolving maturity and sophistication 25

 Autonomic Computing Adoption Model 26

5. Standards for autonomic computing 28

 Recent Standards Developments 30

6. Summary 31

An architectural blueprint for autonomic computing
Page 3

An architectural blueprint for autonomic computing
Page 4

Autonomic - Pertaining to an on

demand operating environment that

responds automatically to problems,

security threats, and system failures.

Highlights
1. Introduction

In an on demand business, information technology (IT) professionals must

strengthen the responsiveness and resiliency of service delivery—improving

quality of service—while reducing the total cost of ownership (TCO) of

their operating environments. Yet, IT components produced by high-tech

companies over the past decades are so complex that IT professionals are

challenged to effectively operate a stable IT infrastructure. It’s the complexity

of the IT components themselves that have helped fuel this problem. As

networks and distributed systems grow and change, system deployment

failures, hardware and software issues, and human error can increasingly

hamper effective system administration. Human intervention is required to

enhance the performance and capacity of the components in an IT system,

driving up overall costs—even as technology component costs continue to

decline.

We do not see a slowdown in Moore’s law as the main obstacle to further

progress in the IT industry. Rather, it is the industry’s exploitation of the

technologies that have been developed in the wake of Moore’s law that has led

us to the verge of a complexity crisis. Software developers have fully exploited

a 4-to-6 order-of-magnitude increase in computational power—producing

ever more sophisticated software applications and environments. Exponential

growth has occurred in the number and variety of systems and components.

The value of database technology and the Internet have fueled significant

growth in storage subsystems, which now are capable of holding petabytes

of structured and unstructured information. Networks have interconnected

distributed, heterogeneous systems. Our information society has created

unpredictable and highly variable workloads for these networked systems.

And these increasingly valuable, complex systems require highly skilled IT

professionals to install, configure, operate, tune and maintain them.

Previous versions of this Blueprint have described the overall Autonomic

Computing architecture. In this latest version, we describe not only the latest

advances in the architecture but also offer more detailed discussions of

several important topics, including:

• Architectural building blocks

• The Autonomic Computing Adoption Model

• The role of the human in autonomic systems, including delegation of

tasks

• New developments in standardization

Autonomic computing - A computing

environment with the ability to manage

itself and dynamically adapt to change

in accordance with business policies

and objectives. Self-managing envi-

ronments can perform such activities

based on situations they observe or

sense in the IT environment rather than

requiring IT professionals to initiate

the task. These environments are self-

configuring, self-healing,

self-optimizing, and self-protecting.

Quality of Service - A measure of

system performance and system

availability.

An architectural blueprint for autonomic computing
Page 3

An architectural blueprint for autonomic computing
Page 4

Highlights
Autonomic Computing

Autonomic Computing helps to address complexity by using technology to

manage technology. The term autonomic is derived from human biology. The

autonomic nervous system monitors your heartbeat, checks your blood sugar

level and keeps your body temperature close to 98.6°F without any conscious

effort on your part. In much the same way, self-managing autonomic

capabilities anticipate IT system requirements and resolve problems with

minimal human intervention. As a result, IT professionals can focus on tasks

with higher value to the business.

However, there is an important distinction between autonomic activity in the

human body and autonomic activities in IT systems. Many of the decisions

made by autonomic capabilities in the body are involuntary. In contrast, self-

managing autonomic capabilities in computer systems perform tasks that

IT professionals choose to delegate to the technology according to policies.

Adaptable policy—rather than hard-coded procedure—determines the types

of decisions and actions that autonomic capabilities perform. This topic is

explored in more detail later.

Self-managing capabilities in a system accomplish their functions by taking

an appropriate action based on one or more situations that they sense in the

environment. The function of any autonomic capability is a control loop

that collects details from the system and acts accordingly. Although there

can be numerous types of control loops in a system, this paper organizes

these control loops into four categories: self-configuring, self-healing, self-

optimizing and self-protecting. This paper also describes two fundamental

ways in which the control loops for these functions can be constructed in

an IT infrastructure (within an autonomic manager or embedded within a

managed resource).

Self-management attributes of system components

In a self-managing autonomic environment, system components—from

hardware (such as storage units, desktop computers and servers) to software

(such as operating systems, middleware and business applications)—can

include embedded control loop functionality. Although these control loops

consist of the same fundamental parts, their functions can be divided into

four broad embedded control loop categories. These categories are considered

to be attributes of the system components and are defined as:

• Self-configuring–Can dynamically adapt to changing environments

 -Self-configuring components adapt dynamically to changes in

Policy - A set of considerations that are

designed to guide the decisions that

affect the behavior of a managed

resource task. These environments are

self-configuring, self-healing, self-

optimizing, and self-protecting.

Self-Heal - To discover, diagnose and

act to prevent disruptions.

Managed Resource - An entity that

exists in the run-time environment

of an IT system and that can be

managed.

Self-Protect - To anticipate, detect,

identify and protect against threats.

An architectural blueprint for autonomic computing
Page 5

An architectural blueprint for autonomic computing
Page 6

Self-Optimize - To tune resources and

balance workloads to maximize the use

of information technology resources.

Highlights
the environment, using policies provided by the IT professional.

Such changes could include the deployment of new components

or the removal of existing ones, or dramatic changes in the system

characteristics. Dynamic adaptation helps ensure continuous strength

and productivity of the IT infrastructure, resulting in business growth

and flexibility.

• Self-healing–Can discover, diagnose and react to disruptions

Self-healing components can detect system malfunctions and initiate

policy-based corrective action without disrupting the IT environment.

Corrective action could involve a product altering its own state or

effecting changes in other components in the environment. The IT

system as a whole becomes more resilient because day-to-day operations

are less likely to fail.

• Self-optimizing–Can monitor and tune resources automatically

Self-optimizing components can tune themselves to meet end-user or

business needs. The tuning actions could mean reallocating resources—

such as in response to dynamically changing workloads—to improve

overall utilization, or ensuring that particular business transactions

can be completed in a timely fashion. Self-optimization helps provide a

high standard of service for both the system’s end users and a business’s

customers.

Without self-optimizing functions, there is no easy way to divert excess

server capacity to lower priority work when an application does not fully

use its assigned computing resources. In such cases, customers must buy

and maintain a separate infrastructure for each application to meet that

application’s most demanding computing needs.

• Self-optimizing–Can anticipate, detect, identify and protect against

threats from anywhere Self-protecting components can detect hostile

behaviors as they occur and take corrective actions to make themselves

less vulnerable. The hostile behaviors can include unauthorized access

and use, virus infection and proliferation, and denial-of-service attacks.

Self-protecting capabilities allow businesses to consistently enforce

security and privacy policies.

An architectural blueprint for autonomic computing
Page 5

An architectural blueprint for autonomic computing
Page 6

Figure 1. Typical IT processes

When system components have these attributes, it is possible to automate the

tasks that IT professionals must perform today to configure, heal, optimize

and protect the IT infrastructure. Systems management software then can

orchestrate the systemwide actions performed by these embedded control

loops.

Delegated IT processes can deliver self-managing capabilities

Self-managing system components can make adjustments only within their

own scope. For example, a self-optimizing autonomic manager dedicated to

a single server can optimize only that server’s operation. However, this is not

the only area within an IT environment that self-managing capabilities can

exist. The tasks associated with control loops that configure, heal, optimize

and protect also can be found in the best practices and processes used to

operate an IT organization.

IT businesses organize these tasks as a collection of best practices and

processes such as those defined in the IT Infrastructure Library (ITIL, from

the Office of Government Commerce in the United Kingdom) and the IBM

IT Process Model (developed by IBM Global Services). Figure 1 shows some

example process flows for incident management, problem management and

change management. The more these tasks can be automated, the more

opportunity for IT professionals to delegate the management of the IT

infrastructure to itself.

Change Management - The process of

planning (for example, scheduling) and

controlling (for example, distributing,

installing and tracking) software

changes over a network.

Highlights

Is it a
query?

Can help
desk solve ?

Incident
Management

Problem
Management

Change
Management

Record details in
incident report

Incident Filter and
Prioritize Request

Incident Control Asses Change
Impact

Create Problem Create Plan
Change

Diagnose
Problem

Verify and Test
Change

Plan

Known Error Implement Chnage

Resolution Veriify Change

Transfer to
Change

Assign
Impact Code,

Incident #

Access
Incident
details

Provide Customer
with resolution

advice

Transfer
to

Problem
Management

Code and
close incident

An architectural blueprint for autonomic computing
Page 7

An architectural blueprint for autonomic computing
Page 8

The actual implementations of these processes in a particular IT organization

vary, but their goals and functions are similar. It is possible to categorize the

activities for these processes into four common functions: collect the details

to identify a need, analyze the details to determine what should done to

fulfill the need, create a plan to meet the need, and execute that plan. For the

system itself to manage these processes, the following conditions must exist:

(1) The tasks involved in configuring, healing, optimizing and

protecting the IT system need to be automated.

(2) It must be possible to initiate these processes based on situations

that can be observed or detected in the IT infrastructure.

(3) The autonomic manager must possess sufficient knowledge to take

on the delegated task that is to be automated.

When these conditions exist in the IT infrastructure, IT professionals can

configure the automated functions in a set of composed IT processes to allow

the IT system to manage itself. These autonomic capabilities typically are

delivered as management tools or products.

Automating these tasks involves an IT professional delegating the

automatable task to the system. The manual manager building block

(detailed later) is the architectural representation of the human activity

and typically involves a human using a management console. As the IT

professional observes situations within the IT infrastructure, he or she may

take certain actions to affect the behavior of the system.

Over time, as autonomic monitoring of the IT system is introduced, an IT

professional might find that he or she is observing the same conditions and

performing the same actions repeatedly. Such cases are good candidates for

automation, and the IT professional might choose to delegate these tasks to

an autonomic manager that has the requisite knowledge and capabilities to

recognize the situations and perform the appropriate actions.

For example, consider the “implement change” task in the change

management process in Figure 1. One type of change that might be affected

on a system is to provision new resources. The IT professional might choose

to delegate some such tasks to a provisioning system. This system could

automate the provisioning of servers and network resources, as well as the

distribution and installation of software, and hence could automate the

“implement change” task in the change management process.

For an IT professional to be willing to delegate management tasks to

the system, he or she must have a high degree of trust in the autonomic

management functions. As described in Chapter 4, moving toward higher

Manual Manager - An implementation

of the user interface that enables a

human to perform some management

function manually.

Console - A user interface for one or

more administrative tasks. For exam-

ple, the IBM Integrated Solutions

Console integrates the administrative

tasks for multiple products and solu-

tions into a single console.

Highlights

An architectural blueprint for autonomic computing
Page 7

An architectural blueprint for autonomic computing
Page 8

degrees of autonomic maturity is an evolutionary process. One phase of

this process involves management functions that can monitor the IT system

for situations of interest, perform analysis of those situations, generate

recommended changes to the IT system and present those changes to a

manual manager (IT professional) for evaluation. This phase is an important

one, as it enables the IT professional to build trust in the autonomic

management functions – that is, if the autonomic manager consistently

recommends actions that the IT professional routinely performs, then the

IT professional is likely to become willing to automate those actions by

delegating the corresponding tasks to the autonomic manager. This, in turn,

enables continued evolution to a “closed loop” degree of autonomic maturity

as described in Chapter 4.

Customer value

The efficiency and effectiveness of typical IT processes are measured using

metrics such as elapsed time to complete a process, percentage executed

correctly and the cost to execute a process. Self-managing systems can

positively affect these metrics, improving responsiveness and quality of

service, reducing TCO and enhancing time to value through:

• Rapid process initiation–typically, implementing these processes

requires an IT professional to initiate the process, create the request

for change, collect incident details and open a problem record. In a

self-managing system, components can initiate these processes based

on information derived directly from the system. This helps reduce

the manual labor and time required to respond to critical situations,

resulting in two immediate benefits: more timely initiation of the

process and more accurate data from the system.

• Reduced time and skill requirements–these processes include tasks or

activities that are skill-intensive, long lasting and difficult to complete

correctly because of system complexity. In a change management

process, one such activity is the “assess change impact” task. In a

problem management process, one such activity is the “diagnose

problem” task. In self-managing systems, resources are created such

that the expertise required to perform these tasks can be encoded

within the system and the task can be automated. This helps to reduce

the amount of time and the degree of skill required to perform these

tedious tasks. Hence, IT professionals are freed to perform higher value

tasks, such as establishing business policies that the IT system needs to

fulfill.

An architectural blueprint for autonomic computing
Page 9

An architectural blueprint for autonomic computing
Page 10

Highlights
These intuitive and collaborative characteristics of the self-management

capabilities enable businesses (large enterprises as well as small and

medium-sized companies) to operate their business processes and IT

infrastructure more efficiently with less human intervention, decreasing costs

and enhancing the organization’s ability to react to change. For instance, a

self-managing system could simply deploy a new resource and then tune the

environment to optimize the services delivered by the new resource. This is

a notable shift from traditional processes that require a significant amount

of analysis before and after deployment to ensure that the resource operates

effectively and efficiently.

Motivation for a blueprint

The idea of using technology to manage technology is not new—many

companies in the IT industry have developed and delivered products

based on this concept. Self-managing autonomic computing can result

in a significant improvement in system management efficiency. However,

this is possible only when the disparate technologies that manage the IT

environment work together to deliver performance results systemwide. For

this to happen in a multi-vendor infrastructure, IBM and other vendors must

agree on a standards-based approach for autonomic systems.

This architectural blueprint for autonomic computing is an overview of the

fundamental concepts, constructs and behaviors for building self-managing

autonomic capability into an on demand computing environment. The

blueprint also describes the architectural building blocks used to construct

such autonomic capabilities and a model for adoption of those capabilities

in businesses. It also presents recent developments in industry standards

initiatives that enable autonomic computing within an open system

architecture for heterogeneous environments.

2. Autonomic computing architecture concepts
The architectural concepts presented in this blueprint define a common

approach and terminology for describing self-managing autonomic

computing systems. The autonomic computing architecture concepts provide

a mechanism for discussing, comparing and contrasting the approaches that

different vendors use to deliver self-managing capabilities in an IT system.

Autonomic Computing System - A

computing system that senses its

operating environment, models its

behavior in that environment, and

takes action to change the environ-

ment or its behavior. An autonomic

computing system has the properties

of self-configuration, self-healing, self-

optimization and self-protection.

An architectural blueprint for autonomic computing
Page 9

An architectural blueprint for autonomic computing
Page 10

Autonomic computing system

This blueprint organizes an autonomic computing system into the layers

and parts shown in Figure 2. These parts are connected using enterprise

service bus patterns that allow the components to collaborate using standard

mechanisms such as Web services. The enterprise service bus integrates the

various blueprint building blocks, which include:

• Touchpoints for managed resources

• Knowledge sources

• Autonomic managers

• Manual managers

The lowest layer contains the system components, or managed resources, that

make up the IT infrastructure. These managed resources can be any type

of resource (hardware or software) and may have embedded self-managing

attributes. The next layer incorporates consistent, standard manageability

interfaces for accessing and controlling the managed resources. These

standard interfaces are delivered through a touchpoint. Layers three and

four automate some portion of the IT process using an autonomic manager.

Autonomic Manager - A component

that manages other software or hard-

ware components using a control loop.

The control loop of the autonomic man-

ager includes monitor, analyze, plan

and execute functions.

Touchpoint - The interface to an

instance of a managed resource, such

as an operating system or a server. A

touchpoint implements sensor and

effector behavior for the managed

resource, and maps the sensor and

effector interfaces to existing

interfaces.

Web service - A self-contained, modu-

lar application that can be described,

published, located and invoked over a

network (generally the Internet). Web

services go beyond software compo-

nents, because they can describe their

own functionality, as well as look for

and dynamically interact with other

Web services. Web services use open

protocols and standards, such as

HTTP, SOAP and XML. Web services

provide a means for different organiza-

tions to connect their applications with

one another to conduct dynamic e-

business across a network, regardless

of their application, design or run-time

environment.

Highlights

Managed
Resources

Touchpoint

Touchpoint
Autonomic
Managers

Orchestrating
Autonomic
Managers

Manual
Manager

Servers

R
Servers

R
Storage

R
Storage

R
Network

R
Network

R
Database /
Middleware

R
Database /
Middleware

R
Application

R
Application

R

Self-HealingSelf-Healing Self-OptimizingSelf-Optimizing Self-ProtectingSelf-Protecting

Self-
Configuring

Self-
Configuring

Self-
Configuring

Orchestrating
Within a
Discipline

Self-Configuring

Self-
Configuring

Self-
Configuring

Self-
Configuring

Self-
Configuring

Self-
Configuring

Self-
Configuring

Self-
Configuring

Self-
Configuring

Self-
Configuring

Orchestrating
Within a
Discipline

Self-Configuring

Self-
Configuring

Self-
Optimizing

Self-
Healing

Self-
Protecting

Orchestrating
Across Disciplines

Self-
Configuring

Self-
Configuring

Self-
Optimizing

Self-
Optimizing

Self-
Healing

Self-
Healing

Self-
Protecting

Self-
Protecting

Orchestrating
Across Disciplines

Intelligent
Control
Loop

ISC ISC ISC

Knowledge
Sources

Figure 2. Autonomic computing reference architecture

An architectural blueprint for autonomic computing
Page 11

An architectural blueprint for autonomic computing
Page 12

A particular resource may have one or more touchpoint autonomic managers,

each implementing a relevant control loop. Layer 3 in Figure 2 illustrates

this by depicting an autonomic manager for the four broad categories that

were introduced earlier (self-configuring, self-healing, self-optimizing and

self-protecting). Layer four contains autonomic managers that orchestrate

other autonomic managers. It is these orchestrating autonomic managers that

deliver the systemwide autonomic capability by incorporating control loops

that have the broadest view of the overall IT infrastructure. The top layer

illustrates a manual manager that provides a common system management

interface for the IT professional using an integrated solutions console.

The various manual and autonomic manager layers can obtain and share

knowledge via knowledge sources.

The remainder of this chapter describes the function of each of these parts of

an autonomic computing system. Chapter 3 then details these architectural

concepts.

Managed resource

A managed resource is a hardware or software component that can be

managed. A managed resource could be a server, storage unit, database,

application server, service, application or other entity. As shown in Figure

2, a managed resource might contain its own embedded self-management

control loop, in addition to other autonomic managers (described later in this

chapter) that might be packaged with a managed resource.

Intelligent control loops can be embedded in the run-time environment of

a managed resource. These embedded control loops are one way to offer

self-managing autonomic capability. The details of these embedded control

loops may or may not be externally visible. The control loop might be deeply

embedded in a resource so that it is not visible through the manageability

interface. When any of the details for the control loop are visible, the control

loop is configured through the manageability interface (described in Chapter

3) that is provided for that resource (for example, a disk drive).

Touchpoints

A touchpoint is an autonomic computing system building block that

implements sensor and effector behavior for one or more of a managed

resource’s manageability mechanisms. It also provides a standard

manageability interface. Deployed managed resources are accessed and

controlled through these manageability interfaces. Manageability interfaces

Touchpoint Autonomic Manager - An

autonomic manager that works with

managed resources through their

touchpoints.

Integrated Solutions Console - A

technology that provides a common,

consistent user interface, based on

industry standards and component

reuse, and can host common system

administrative functions. The IBM

Integrated Solutions Console is a core

technology of the IBM Autonomic

Computing initiative that uses a portal-

based interface to provide these

common system administrative func-

tions for IBM server, software or

storage products.

Orchestrating Autonomic Manager -

An autonomic manager that works with

other autonomic managers to provide

coordination functions.

Manageability Interface - A service of

the managed resource that includes

the sensor and effector used by an

autonomic manager. The autonomic

manager uses the manageability inter-

face to monitor and control the

managed resource.

Highlights

An architectural blueprint for autonomic computing
Page 11

An architectural blueprint for autonomic computing
Page 12

employ mechanisms such as log files, events, commands, application

programming interfaces (APIs) and configuration files. These mechanisms

provide various ways to gather details about and change the behavior of the

managed resources. In the context of this blueprint, the mechanisms used

to gather details are aggregated into a sensor for the managed resource and

the mechanisms used to change the behavior of the managed resources are

aggregated into an effector for the resource.

Touchpoint autonomic managers

Autonomic managers implement intelligent control loops that automate

combinations of the tasks found in IT processes. Touchpoint autonomic

managers are those that work directly with the managed resources through

their touchpoints. These autonomic managers can perform various self-

management tasks, so they embody different intelligent control loops. Some

examples of such control loops, using the four self-managing categories

introduced earlier in this paper, include:

• Performing a self-configuring task such as installing software when it

detects that some prerequisite software is missing

• Performing a self-healing task such as correcting a configured path so

installed software can be correctly located

• Performing a self-optimizing task such as adjusting the current

workload when it observes an increase or decrease in capacity

• Performing a self-protecting task such as taking resources offline if it

detects an intrusion attempt

Most autonomic managers use policies (goals or objectives) to govern the

behavior of intelligent control loops. Touchpoint autonomic managers use

these policies to determine what actions should be taken for the managed

resources that they manage.

A touchpoint autonomic manager can manage one or more managed

resources directly, using the managed resource’s touchpoint or touchpoints.

Figure 3 illustrates four typical arrangements. The primary differences

among these arrangements are the type and number of managed resources

that are within the autonomic manager’s scope of control. The four typical

arrangements are:

• A single resource scope is the most fundamental because an autonomic

manager implements a control loop that accesses and controls a single

managed resource, such as a network router, a server, a storage device,

an application, a middleware platform or a personal computer.

Highlights

Event - Any significant change in the

state of a system resource, network

resource or network application. An

event can be generated for a problem,

for the resolution of a problem or for

the successful completion of a task.

Sensor - An interface that exposes

information about the state and state

transitions of a managed resource.

Effector -An interface that enables

state changes for a managed resource.

Enterprise Service Bus - An implemen-

tation that assists in integrating other

building blocks (for example, auto-

nomic managers and touchpoints) by

directing the interactions among these

building blocks.

Knowledge Source - An implementa-

tion of a registry, dictionary, database

or other repository that provides

access to knowledge according to the

interfaces prescribed by the architec-

ture.
.

An architectural blueprint for autonomic computing
Page 13

An architectural blueprint for autonomic computing
Page 14

• A homogeneous group scope aggregates resources of the same type. An

example of a homogeneous group is a pool of servers that an autonomic

manager can dynamically optimize to meet certain performance and

availability thresholds.

• A heterogeneous group scope organizes resources of different types. An

example of a heterogeneous group is a combination of heterogeneous

devices and servers, such as databases, Web servers and storage

subsystems that work together to achieve common performance and

availability targets.

• A business system scope organizes a collection of heterogeneous

resources so an autonomic manager can apply its intelligent control

loop to the service that is delivered to the business. Some examples are

a customer care system or an electronic auction system. The business

system scope requires autonomic managers that can comprehend the

optimal state of business processes—based on policies, schedules and

service levels—and drive the consequences of process optimization back

down to the resource groups (both homogeneous and heterogeneous)

and even to individual resources.

These resource scopes define a set of decision-making contexts that are

used to classify the purpose and role of a control loop within the autonomic

computing architecture.

The touchpoint autonomic managers shown previously in Figure 2 are each

dedicated to a particular resource or a particular collection of resources.

Touchpoint autonomic managers also expose a sensor and an effector,

Symptom

Change
Request

Change
Plan

Analyze Plan

Monitor

Knowledge

Execute

Single Resource Homogeneous Group Business SystemHeterogeneous Group

Figure 3. Four common managed resource arrangements

An architectural blueprint for autonomic computing
Page 13

An architectural blueprint for autonomic computing
Page 14

just like the managed resources in Figure 3 do. As a result, orchestrating

autonomic managers (described next) can interact with touchpoint autonomic

managers by using the same style of standard interface that touchpoint

autonomic managers use to interact with managed resources.

Orchestrating autonomic managers

A single touchpoint autonomic manager acting in isolation can achieve

autonomic behavior only for the resources that it manages. The self-

managing autonomic capabilities delivered by touchpoint autonomic

managers need to be coordinated to deliver systemwide autonomic computing

behavior. Orchestrating autonomic managers provide this coordination

function. There are two common configurations:

• Orchestrating within a discipline–An orchestrating autonomic manager

coordinates multiple touchpoint autonomic managers of the same type

(one of self-configuring, self-healing, self-optimizing or self-protecting).

• Orchestrating across disciplines–An orchestrating autonomic manager

coordinates touchpoint autonomic managers that are a mixture of self-

configuring, self-healing, self-optimizing and self-protecting.

An example of an orchestrating autonomic manager is a workload manager.

An autonomic management system for workload might include self-

optimizing touchpoint autonomic managers for particular resources, as well

as orchestrating autonomic managers that manage pools of resources. A

touchpoint autonomic manager can optimize the utilization of a particular

resource based on application priorities. Orchestrating autonomic managers

can optimize resource utilization across a pool of resources, based on

transaction measurements and policies. The philosophy behind workload

management is one of policy-based, goal-oriented management.

Tuning servers individually using only touchpoint autonomic managers

cannot ensure the overall performance of applications that span a mix of

platforms. Systems that appear to be functioning well on their own may not,

in fact, be contributing to optimal systemwide end-to-end processing.

Manual Managers

A manual manager provides a common system management interface for

the IT professional using an integrated solutions console. Self-managing

autonomic systems can use common console technology to create a consistent

human-facing interface for the autonomic managers of IT infrastructure

components. As indicated earlier, autonomic capabilities in computer systems

perform tasks that IT professionals choose to delegate to the technology,

An architectural blueprint for autonomic computing
Page 15

An architectural blueprint for autonomic computing
Page 16

according to policies. In some cases, an administrator might choose for

certain tasks to involve human intervention, and the human interaction with

the system can be enhanced using a common console framework, based on

industry standards, that promotes consistent presentation to IT professionals.

The primary goal of a common console is to provide a single platform that

can host all the administrative console functions in server, software and

storage products to allow users to manage solutions rather than managing

individual components or products. Administrative console functions range

from setup and configuration to solution run-time monitoring and control.

The customer value of an integrated solutions console includes reduced cost of

ownership— attributable to more efficient administration—and shorter learning

curves as new products and solutions are added to the autonomic system envi-

ronment. The shorter learning curve is achieved by using standards and a

Web-based presentation style. By delivering a consistent presentation format

and behavior for administrative functions across diverse products, the common

console creates a familiar user interface, reducing the need for staff to learn a

different interface each time a new product is introduced.

The common console architecture is based on standards (such as standard Java

APIs and extensions including JSR168, JSR127 and others), so that it can be

extended to offer new management functions or to enable the development of

new components for products in an autonomic system.

A common console instance consists of a framework and a set of console-spe-

cific components provided by products. Administrative activities are executed

as portlets. Consistency of presentation and behavior is essential to improving

administrative efficiency, and requires ongoing effort and cooperation among

many product communities.

3. Autonomic computing architecture details
This chapter provides additional details about the architectural concepts intro-

duced in the previous chapter and details the architectural building blocks.

The five building blocks for an autonomic system are:

• Autonomic manager

• Knowledge source

• Touchpoint

• Manual manager

• Enterprise service bus

An architectural blueprint for autonomic computing
Page 15

An architectural blueprint for autonomic computing
Page 16

These building blocks are the architectural representations of the

components in an autonomic system and they work together to provide self-

managing capabilities. Each of the five building blocks is detailed next.

Autonomic manager

An autonomic manager is an implementation that automates some

management function and externalizes this function according to the

behavior defined by management interfaces. The autonomic manager is

a component that implements the control loop (described earlier in the

Autonomic Computing section of the Introduction). For a system component

to be self-managing, it must have an automated method to collect the details

it needs from the system; to analyze those details to determine if something

needs to change; to create a plan, or sequence of actions, that specifies the

necessary changes; and to perform those actions. When these functions can

be automated, an intelligent control loop is formed.

As shown in Figure 4, the architecture dissects the loop into four parts that

share knowledge:

• The monitor function provides the mechanisms that collect, aggregate,

filter and report details (such as metrics and topologies) collected from a

managed resource.

• The analyze function provides the mechanisms that correlate and model

complex situations (for example, time-series forecasting and queuing

models). These mechanisms allow the autonomic manager to learn

about the IT environment and help predict future situations.

• The plan function provides the mechanisms that construct the actions

needed to achieve goals and objectives. The planning mechanism uses

policy information to guide its work.

• The execute function provides the mechanisms that control the

execution of a plan with considerations for dynamic updates.

These four parts work together to provide the control loop functionality.

Figure 4 shows a structural arrangement of the parts rather than a control

flow. The four parts communicate and collaborate with one another and

exchange appropriate knowledge and data, as shown in Figure 4.

As illustrated in Figure 4, autonomic managers, in a manner similar to

M
A

E
P

M
A

E
P

M
A

E
P

M
A

E
P

An architectural blueprint for autonomic computing
Page 17

An architectural blueprint for autonomic computing
Page 18

touchpoints, provide sensor and effector manageability interfaces for other

autonomic managers and manual managers to use. Using standard sensor

and effector interfaces enables these components to be composed together

in a manner that is transparent to the managed resources. For example,

an orchestrating autonomic manager can use the sensor and effector

manageability interfaces of touchpoint autonomic managers to accomplish

its management functions (that is, the orchestrating autonomic manager can

manage touchpoint autonomic managers), as illustrated previously in

Figure 2.

Even though an autonomic manager is capable of automating the monitor,

analyze, plan and execute parts of the loop, partial autonomic managers that

perform only a subset of the monitor, analyze, plan and execute functions

can be developed, and IT professionals can configure an autonomic manager

to perform only some of the automated functions it is capable of performing.

In Figure 4, four profiles (monitoring, analyzing, planning and executing)

are shown. An administrator might configure this autonomic manager to

perform only the monitoring function. As a result, the autonomic manager

would surface notifications to a common console for the situations that it

recognizes, rather than automating the analysis, planning and execution

functions associated with those actions. Other configurations could allow

additional parts of the control loop to be automated. Autonomic managers

Symptom

Change
Request

Change
Plan

Analyze Plan

Monitor

Knowledge

Execute

Monitoring

Planning

Executing

Analyzing

M

M

M

M

E

E

E

E

A

A

A

A

P

P

P

P

Policy

Sensor

Sensor

Effector

Effector

Figure 4. Functional details of the autonomic manager

An architectural blueprint for autonomic computing
Page 17

An architectural blueprint for autonomic computing
Page 18

that perform only certain parts of the control loop can be composed together

to form a complete closed loop. For example, one autonomic manager

that performs only the monitor and analyze functions might collaborate

with another autonomic manager that performs only the plan and execute

functions to realize a complete autonomic control loop. An evolutionary

process for increasing autonomic function is described in Chapter 4.

Autonomic manager internal structure

The autonomic computing architecture does not prescribe the specific

implementation choices for the internal structure of an autonomic manager.

However, the architecture does organize the internal structure into a set of

capabilities or functions. These are illustrated in Figure 4 and described in

the following sections.

Monitor

The monitor function collects the details from the managed resources, via

touchpoints, and correlates them into symptoms that can be analyzed. The

details can include topology information, metrics, configuration property

settings and so on. This data includes information about managed resource

configuration, status, offered capacity and throughput. Some of the data

is static or changes slowly, whereas other data is dynamic, changing

continuously through time. The monitor function aggregates, correlates and

filters these details until it determines a symptom that needs to be analyzed.

For example, the monitor function could aggregate and correlate the content

of events received from multiple resources to determine a symptom that

relates to that particular combination of events. Logically, this symptom is

passed to the analyze function.

Autonomic managers must collect and process large amounts of data from the

touchpoint sensor interface of a managed resource (detailed in the Managed

resource section). An autonomic manager’s ability to rapidly organize and

make sense of this data is crucial to its successful operation.

Analyze

The analyze function provides the mechanisms to observe and analyze

situations to determine if some change needs to be made. For example,

the requirement to enact a change may occur when the analyze function

determines that some policy is not being met. The analyze function is

responsible for determining if the autonomic manager can abide by the

established policy, now and in the future. In many cases, the analyze

function models complex behavior so it can employ prediction techniques

Highlights

Correlation - The process of analyzing

event data to identify patterns, com-

mon causes and root causes. Event

correlation analyzes the incoming

events for known states, using rules

and relationships.

An architectural blueprint for autonomic computing
Page 19

An architectural blueprint for autonomic computing
Page 20

such as time-series forecasting and queuing models. These mechanisms

allow the autonomic manager to learn about the IT environment and help

predict future behavior.

Autonomic managers must be able to perform complex data analysis and

reasoning on the symptoms provided by the monitor function. The analysis is

influenced by stored knowledge data, described later.

If changes are required, the analyze function generates a change request and

logically passes that change request to the plan function. The change request

describes the modifications that the analyze component deems necessary or

desirable.

Plan

The plan function creates or selects a procedure to enact a desired alteration

in the managed resource. The plan function can take on many forms, ranging

from a single command to a complex workflow.

The plan function generates the appropriate change plan, which represents

a desired set of changes for the managed resource, and logically passes that

change plan to the execute function.

Execute
The execute function provides the mechanism to schedule and perform the

necessary changes to the system. Once an autonomic manager has generated

a change plan that corresponds to a change request, some actions may need

to be taken to modify the state of one or more managed resources. The

execute function of an autonomic manager is responsible for carrying out the

procedure that was generated by the plan function of the autonomic manager

through a series of actions. These actions are performed using the touchpoint

effector interface (detailed later) of a managed resource. Part of the execution

of the change plan could involve updating the knowledge that is used by the

autonomic manager (described next).

Highlights

Monitor Function - The autonomic

manager function that collects, aggre-

gates, filters and reports details (such

as metrics, topologies) that were col-

lected from managed resources.

Analyze Function -The autonomic man-

ager function that correlates and

models complex situations, such as

time-series forecasting or queuing

models, to understand the current sys-

tem state.

Plan Function - The autonomic man-

ager function that structures the

actions needed to achieve goals and

objectives.

Execute Function - The autonomic

manager function that changes the

behavior of the managed resource

using effectors, based on the actions

recommended by the plan function.

An architectural blueprint for autonomic computing
Page 19

An architectural blueprint for autonomic computing
Page 20

Knowledge Source

A knowledge source is an implementation of a registry, dictionary,

database or other repository that provides access to knowledge according

to the interfaces prescribed by the architecture. In an autonomic system,

knowledge consists of particular types of data with architected syntax and

semantics, such as symptoms, policies, change requests and change plans.

This knowledge can be stored in a knowledge source so that it can be shared

among autonomic managers.

The knowledge stored in knowledge sources can be used to extend the

knowledge capabilities of an autonomic manager. An autonomic manager

can load knowledge from one or more knowledge sources, and the autonomic

manager’s manager can activate that knowledge, allowing the autonomic

manager to perform additional management tasks (such as recognizing

particular symptoms or applying certain policies).

Knowledge
Data used by the autonomic manager’s four functions (monitor, analyze, plan

and execute) are stored as shared knowledge. The shared knowledge includes

data such as topology information, historical logs, metrics, symptoms and

policies.

The knowledge used by an autonomic manager is obtained in one of three

ways:

(1) The knowledge is passed to the autonomic manager.

An autonomic manager might obtain policy knowledge in this

manner. A policy consists of a set of behavioral constraints or

preferences that influence the decisions made by an autonomic

manager.

(2) The knowledge is retrieved from an external knowledge source.

An autonomic manager might obtain symptom definitions or

resource-specific historical knowledge in this manner. A knowledge

source could store symptoms that could be used by an autonomic

manager; a log file may contain a detailed history in the form of

entries that signify events that have occurred in a component or

system.

Knowledge - Standard data shared

among the monitor, analyze, plan and

execute functions of an autonomic

manager, such as symptoms and poli-

cies

Highlights

An architectural blueprint for autonomic computing
Page 21

An architectural blueprint for autonomic computing
Page 22

(3) The autonomic manager itself creates the knowledge.

The knowledge used by a particular autonomic manager could be

created by the monitor part, based on the information collected

through sensors. The monitor part might create knowledge based on

recent activities by logging the notifications that it receives from a

managed resource. The execute part of an autonomic manager might

update the knowledge to indicate the actions that were taken as a

result of the analysis and planning (based on the monitored data),

the execute part would then indicate how those actions affected the

managed resource (based on subsequent monitored data obtained

from the managed resource after the actions were carried out).

This knowledge is contained within the autonomic manager, as

represented by the “knowledge” block in Figure 4. If the knowledge

is to be shared with other autonomic managers, it must be placed

into a knowledge source.

Knowledge types

The Autonomic Computing blueprint identifies several types of system

knowledge. These include solution topology knowledge, policy knowledge,

and problem determination knowledge scenarios. Table 1 summarizes

various types of knowledge that may be present in a self-managing

autonomic system. Each knowledge type must be expressed using common

syntax and semantics so the knowledge can be shared.

Solution Topology Knowledge

Captures knowledge about the components

and their construction and configuration for

a solution or business system.

Installation and configuration knowledge

is captured in a common installable unit

format to eliminate complexity. The plan

function of an autonomic manager can

use this knowledge for installation and

configuration planning.

Policy Knowledge

A policy is knowledge that is consulted to
determine whether or not changes need
to be made in the system. An autonomic
computing system requires a uniform
method for defining the policies that
govern the decision-making for autonomic
managers. By defining policies in a standard
way, they can be shared across autonomic
managers to enable entire systems to be
managed by a common set of policies.

Highlights

Installable Unit - An entity that is

deployed into an IT system to create

new capabilities in that IT system. An

installable unit consists of a descriptor

and one or more artifacts that need to

be installed.

An architectural blueprint for autonomic computing
Page 21

An architectural blueprint for autonomic computing
Page 22

Problem Determination Knowledge

Problem determination knowledge includes

monitored data, symptoms and decision

trees. The problem determination process

also may create knowledge. As the system

responds to actions taken to correct

problems, learned knowledge can be

collected within the autonomic manager.

An autonomic computing system requires a

uniform method for representing problem

determination knowledge, such as monitored

data (common base events), symptoms and

decision trees.

Touchpoints

A touchpoint is the component in a system that exposes the state and

management operations for a resource in the system. An autonomic manager

communicates with a touchpoint through the manageability interface,

described next. A touchpoint, depicted in Figure 5, is the implementation

of the manageability interface for a specific manageable resource or a set

of related manageable resources. For example, there might be a touchpoint

implemented that exposes the manageability for a database server, the

databases that database server hosts, and the tables within those databases.

Highlights

Common Base Event - The standard

format and content specification for

the structure of events that are sent as

the result of a situation and subse-

quently used by enterprise

management and business applica-

tions. The common base event

includes logging, tracing, manage-

ment and business events.

Managed
Resource

Managed
Resource

Sensor Effector

Properties: Identification, Metrics,
State, Configuration

Relationships: Hosts, Users

Logs Events

Configuration Files

Commands APIs

Managed
Resource
Details

Managability
Interface
Mechanisms

Touchpoint

Figure 5. Managed resource touchpad

An architectural blueprint for autonomic computing
Page 23

An architectural blueprint for autonomic computing
Page 24

Manageability Interface

The manageability interface for controlling a manageable resource is

organized into its sensor and effector interfaces. A touchpoint implements

the sensor and effector behavior for specific manageable resource types

by mapping the standard sensor and effector interfaces to one or more

of the manageable resource’s manageability interface mechanisms. The

manageability interface reduces complexity by offering a standard interface

to autonomic managers, rather than the diverse manageability interface

mechanisms associated with various types of manageable resources.

A sensor consists of one or both of the following:

• A set of properties that expose information about the current state

of a manageable resource and are accessed through standard “get”

operations.

• A set of management events (unsolicited, asynchronous messages or

notifications) that occur when the manageable resource undergoes state

changes that merit reporting

These two parts of a sensor interface are referred to as interaction styles. The

“get” operations use the request-response interaction style; events use the

send-notification interaction style.

An effector consists of one or both of the following:

• A collection of “set” operations that allow the state of the manageable

resource to be changed in some way

• A collection of operations that are implemented by autonomic managers

that allow the manageable resource to make requests from its manager.

The “set” operations use the perform-operation interaction style; requests

use the solicit-response interaction style to allow the manageable resource to

consult with its manager.

The sensor and effector in the architecture are linked together. For example,

a configuration change that occurs through the effector should be reflected

as a configuration change notification through the sensor interface. The

linkage between the sensor and effector is more formally defined using the

concept of manageability capabilities.

An architectural blueprint for autonomic computing
Page 23

An architectural blueprint for autonomic computing
Page 24

A manageability capability refers to a logical collection of manageable

resource state information and operations. Some examples of manageability

capabilities are:

• Identification: state information and operations used to identify an

instance of a manageable resource

• Metrics: state information and operations for measurements of a

manageable resource, such as throughput, utilization and so on

• Configuration: state information and operations for the configurable

attributes of a manageable resource

For each manageability capability, the client of the manageability interface

must be able to obtain and control state data through the manageability

interface, including:

• Meta details (for example, to identify properties that are used for

configuration of a manageable resource, or information that specifies

which resources can be hosted by the manageable resource)

• Sensor interactions, including mechanisms for retrieving the current

property values (such as metrics, configuration) and available

notifications (what types of events and situations the manageable

resource can generate)

• Effector interactions, including operations to change the state (which

effector operations and interaction styles the manageable resource

supports) and call-outs to request changes to existing state (what types

of call-outs the manageable resource can perform)

Manual Manager

A manual manager is an implementation of the user interface that enables

an IT professional to perform some management function manually. The

manual manager can collaborate with other autonomic managers at the same

level or orchestrate autonomic managers and other IT professionals working

at “lower” levels.

The manual manager building block is the architectural representation of the

human activity and typically involves a human using a management console,

as described in Chapter 2. A manual manager can enable an IT professional

to delegate management functions to autonomic managers, as described in

Chapter 1.

ISC ISC ISC

An architectural blueprint for autonomic computing
Page 25

An architectural blueprint for autonomic computing
Page 26

Enterprise Service Bus

An enterprise service bus is an implementation that assists in integrating

other building blocks (for example, autonomic managers and touchpoints) by

directing the interactions among these building blocks.

The enterprise service bus can be used to “connect” various autonomic

computing building blocks. The role that a particular logical instance of the

enterprise service bus performs is established by autonomic computing usage

patterns such as:

• An enterprise service bus that aggregates multiple manageability

mechanisms for a single manageable resource;

• An enterprise service bus that enables an autonomic manager to

manage multiple touchpoints;

• An enterprise service bus that enables multiple autonomic managers to

manage a single touchpoint; and

• An enterprise service bus that enables multiple autonomic managers to

manage multiple touchpoints.

4. Evolving Maturity and Sophistication
Incorporating self-managing capabilities into an IT environment is an

evolutionary process. It is ultimately implemented by each organization

through the adoption of self-managing autonomic technologies, supporting

processes and skills. Throughout this evolution, the computer industry will

further develop self-managing technologies to help continue to improve

staff productivity, reduce operating costs and ultimately, increase business

resiliency.

This evolution toward more highly autonomic capabilities can be described

using the autonomic computing adoption model, discussed next.

An architectural blueprint for autonomic computing
Page 25

An architectural blueprint for autonomic computing
Page 26

Autonomic Computing Adoption Model

Figure 6 depicts the autonomic computing adoption model.

The Autonomic Computing Adoption Model, developed by IBM Global

Services, provides a methodology for businesses to calibrate the degree of

autonomic capability that their current infrastructure and organization has

and to develop action plans to increase the autonomic potential.

The “functionality” dimension, along the x-axis of Figure 6, characterizes

the extent of automation of the IT and business processes. Five levels of

automation are defined:

• At the manual level, IT professionals perform the management

functions.

• At the instrument and monitor level, systems management technologies

can be used to collect details from managed resources, helping to

reduce the time it takes for the administrator to collect and synthesize

information as the IT environment becomes more complex.

Entry Entry Entry Entry Entry

Complete
Adoption

Closed
Loop With
Business
Priorities

Closed
LoopAnalysisInstrument

& MonitorManual

1 2 3 4 5

Multiple of
same type CMultiple of
same type C

BSingle
Instance BSingle
Instance

Multiple of
different types DMultiple of
different types D

ASub-
component ASub-
component

Business
System EBusiness
System E

C
on

tr
ol

 S
co

pe

Increase Functionality

Entry Entry Entry Entry Entry

Complete
Adoption

Entry Entry Entry Entry Entry

Complete
Adoption

Service Flows

Figure 6. The autonomic computing adoption model

An architectural blueprint for autonomic computing
Page 27

An architectural blueprint for autonomic computing
Page 28

• At the analysis level, new technologies are introduced to provide

correlation among several managed resources. The management

functions can begin to recognize patterns, predict the optimal

configuration and offer advice about what course of action the

administrator should take. As these technologies improve and as people

become more comfortable with the advice and predictive power of these

systems, the technologies can progress to the closed loop level.

• At the closed loop level, the IT environment can automatically take

actions based on the available information and the knowledge about

what is happening in the environment.

• At the closed loop with business processes level, business policies and

objectives govern the IT infrastructure operation. Users interact with

the autonomic technology tools to monitor business processes, alter the

objectives or both.

Notice how five levels, depicted in Figure 6, correspond to the partial

autonomic management functions shown in Figure 4.

The “control scope” dimension, along the y-axis of Figure 6, characterizes

what is being managed. This dimension also defines five levels of resource

management scope:

• At the subcomponent level, portions of resources are managed, such

as an operating system on a server or certain applications within an

application server.

• At the single instance level, an entire standalone resource is managed,

such as a server or complete application server environment.

• At the multiple instances of the same type level, homogeneous resources

are managed, typically as a collection, such as a server pool or cluster of

application servers.

• At the multiple instances of different types level, heterogeneous are

managed as a subsystem, such as a collection of servers, storage units

and routers or a collection of application servers, databases and queues.

• At the business system level, a complete set of hardware and software

resources that perform business processes is managed from the business

process perspective, such as a customer relationship management

system or an IT change management system.

An architectural blueprint for autonomic computing
Page 27

An architectural blueprint for autonomic computing
Page 28

The “service flow” dimension, along the z-axis of Figure 6, captures the

combination of IT management process activities that are being performed.

These service flows do incorporate ITIL processes such as change

management, incident management, problem management and so on. Various

business and IT processes might demonstrate different maturity levels (in

terms of automation and control scope) at the same time, as various tasks and

activities within particular service flows are automated.

So autonomic maturity can evolve in three dimensions:

• automating more functions as the maturity level increases

• applying automated functions to broader resource scopes

• automating a range of tasks and activities in various IT management

processes

In addition to increasing levels of automation, the automation is applied

across broader scopes and within more processes as the organization

progresses to higher levels of autonomic maturity. Of course, increasing the

autonomic maturity could also involve changes in procedures, skills and

organization as more tasks and activities are handled by the technology

itself.

The adoption model supports autonomic computing evolution by enabling

incremental adoption of additional autonomic capabilities. The adoption

model structures a solution space so that a business can produce an

incremental action plan to take advantage of offered autonomic capabilities.

5. Standards for autonomic computing
The fundamental nature of autonomic computing systems precludes any

single company from delivering an entire autonomic solution. Businesses

have heterogeneous IT infrastructures and must deal with heterogeneous

environments outside of the enterprise. A proprietary implementation

would be like a heart that maintains a regular steady heartbeat but can

not adjust to the needs of the body when under stress. Self-managing

autonomic computing systems require autonomic managers to be deployed

across the IT infrastructure, managing various resources (including other

autonomic managers) from a diverse range of suppliers. Therefore, these

systems must be based on open industry standards. This blueprint identifies

relevant existing computing industry standards. New open standards will

be developed and shared in the industry to define the mechanisms for

An architectural blueprint for autonomic computing
Page 29

An architectural blueprint for autonomic computing
Page 30

interoperating in a heterogeneous system environment.

Examples of existing and emerging standards relevant to autonomic

computing are described in Table 2, followed by a discussion of two recent

developments in the area of new standards.

Related to
Autonomic
Managers

Related to
Touchpoints

Distributed Management Task Force (DMTF)

Common Information Model (CIM),
Web Services Common Information Model (WS-CIM)

ü

Applications Working Group ü
Utility Computing Working Group ü
Server Management Working Group ü

Internet Engineering Task Force (IETF)

Policy - Core Information Model (RFC3060) ü
Simple Network Management Protocol (SNMP) ü

Organization for the Advancement of Structured Information Standards (OASIS)

Web Services Security (WS-Security) ü ü
Web Services Distributed Management (WS-DM) ü ü
Web Services Resource Framework (WS-RF) ü ü
Web Services Notification (WS-N) ü ü

Java™ Community Process

Java™ Management Extensions (JSR3, JMX) ü
Logging API Specification (JSR47) ü
Java™ Agent Services (JSR87) ü
Portlet Specification (JSR168) ü

Storage Networking Industry Association (SNIA)

Storage Management Initiative Specification (SMI-S) ü

Global Grid Forum (GGF)

Open Grid Services Architecture (OGSA) ü
Open Grid Services Infrastructure (OGSI) ü
Open Grid Services Common Management Model
(CMM-Working Group

ü ü

Grid Resource Allocation Agreement Protocol (GRAAP-
Working Group)

ü

The Open Group

Application Response Measurement (ARM) ü

World Wide Web Consortium (W3C)

Solution Install Schema ü

New standards to be developed ü ü

Table 2. Examples of standards related to autonomic computing

An architectural blueprint for autonomic computing
Page 29

An architectural blueprint for autonomic computing
Page 30

Open standards developed in the appropriate standards bodies are vital to

enable the evolution of autonomic computing.

This architecture does not prescribe a particular management protocol

or instrumentation technology because the architecture needs to work

with the various computing technologies and standards that exist in the

industry today—SNMP, Java™ Management Extensions (JMX), Distributed

Management Task Force, Inc. (DMTF)—as well as future technologies.

Given the diversity of these management technologies that already exist

in the IT industry, this architecture endorses Web services techniques

for sensors and effectors. These techniques encourage implementers to

leverage existing approaches and support multiple binding and marshalling

techniques.

Recent Standards Developments

One significant development in the area of autonomic computing

management standards was the March 9, 2005 announcement by OASIS of

the ratification of the WS-DM 1.0 specification (noted in Table 2). According

to that announcement:

OASIS, the international e-business standards consortium,

today announced that its members have approved Web Services

Distributed Management (WSDM) as an OASIS Standard, a status

that signifies the highest level of ratification. WSDM enables

management applications to be built using Web services, allowing

resources to be controlled by many managers through a single

interface.

The WS-DM 1.0 specification, available from OASIS, consists of two major

parts: management using Web services (MUWS) and management of Web

services (MOWS). The specification addresses a broad array of management

topics relevant for autonomic computing, including properties, operations,

events, capabilities and management interfaces. These WS-DM management

topics can be realized in touchpoint manageability interfaces, using sensor

and effector interfaces, described in Chapter 3.

Although Web services are not the only method for accomplishing

autonomic computing, as indicated earlier, they provide a standard basis

for management interfaces, and so the WS-DM 1.0 specification offers an

important standards basis for constructing autonomic systems.

An architectural blueprint for autonomic computing
Page 31

An architectural blueprint for autonomic computing
Page 32

Another significant development related to autonomic computing standards

is the launch of the OASIS Solution Deployment Descriptor technical

committee. According to this new committee’s call for participation at

http://lists.oasis-open.org/archives/sdd/200504/msg00000.html this

committee will “will define XML schema for [Solution Deployment

Descriptors (SDDs)], as well as a package format to associate SDDs,

resource content, and software artifacts. SDDs are intended to describe

the aggregation of installable units at all levels of the software stack.

The resulting XML schema shall be partitioned to allow for layered

implementations covering the range of applications from the definition of

atomic units of software (Smallest Installable Units) to complex, multi-

platform, heterogeneous solutions.”

This initiative is intended to result in an industry standard in the area of

solution topology knowledge as described in Table 2 in Chapter 3.

6. Summary
Autonomic computing is about shifting the burden of managing systems from

people to technologies. When the Self-Managing Autonomic Technology

and self-management capabilities delivered by IBM and other vendors

can collaborate, the elements of a complex IT system can work together

and manage themselves based on a shared view of systemwide policy and

objectives.

This paper has presented a high-level architectural blueprint to assist in

delivering autonomic computing in phases. The architecture reinforces that

self-management uses intelligent control loop implementations to monitor,

analyze, plan and execute, leveraging knowledge of the environment.

These control loops can be embedded in resource run-time environments

or delivered in management tools. The control loops collaborate using an

enterprise service bus (one of the five architectural building blocks) that

integrates the remaining four architectural building blocks: autonomic

managers, manual managers, touchpoints and knowledge sources.

Autonomic managers and manual managers communicate with managed

resources through the manageability interface, in the form of a touchpoint,

using sensor and effector interfaces. A sensor interface exhibits two

interaction styles, the retrieve-state interaction style (used to query

information from a managed resource) and the receive-notification

interaction style (used to send asynchronous event information from a

managed resource). The effector interface exhibits two interaction styles, the

perform-operation interaction style (used to set state data in the managed

An architectural blueprint for autonomic computing
Page 31

An architectural blueprint for autonomic computing
Page 32

resource) and the call-out request interaction style (used by a managed

resource to obtain services from some other external entity in the system).

The journey to a fully autonomic IT infrastructure is an evolution. The

Autonomic Computing Adoption Model offers a mechanism for characterizing

autonomic maturity in three dimensions: the degree of automation within

a given scope (in five stages, from fully manual to fully autonomic), the

scope within which automation is applied (also in five stages, from a sub-

component to an entire business system) and the IT management processes

that can be automated (such as incident management, change management,

and others that offer a model in which various tasks and activities within the

process can be automated).

Businesses—small, medium and large—want and need to reduce their IT

costs, simplify the management of complex IT resources, realize a faster

return on their IT investments, and ensure the highest possible levels of

system availability, performance, security and asset utilization. Autonomic

Computing addresses these issues—not just through new technology but also

through a fundamental, evolutionary shift in the way that IT systems are

managed. Moreover, autonomic computing will free IT staffs from detailed

mundane tasks, allowing them to focus on managing business processes.

True autonomic computing will be accomplished through a combination of

process changes, skills evolution, new technologies, architecture and open

industry standards.

For more information

Please contact your IBM marketing representative or an IBM Business

Partner, or call 1-800 IBM CALL within the United States

Visit us at ibm.com/autonomic

© Copyright IBM Corporation 2005

IBM Corporation
17 Skyline Drive
Hawthorne, NY 10532
U.S.A.
Published in the United States of America
06-05
All Rights Reserved

IBM and the IBM logo are
trademarks or registered trademarks of International
Business Machines Corporation in the
United States, other countries or both.

Java and all Java-based trademarks are trademarks
of Sun Microsystems, Inc. in the United
States, other countries or both.

Other company, product or service names may
be trademarks or service marks of others.

References in this publication to IBM products
or services do not imply that IBM intends to
make them available in all countries in which
IBM operates. Offerings are subject to change,
extension or withdrawal without notice.

All statements regarding IBM future direction or
intent are subject to change or withdrawal without
notice and represent goals and objectives only.

