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draw. Consequently, it cannot be an improvement oyeWe therefore do not need to
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significant secondary clustering in quadratic probing (bottom); long lines represent occu-
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A complete binary tree and its array representatk#8

Heap-order property229

Two complete trees (only the left tree is a he&30

Attempt to insert 14, creating the hole and bubbling the hol@8p

The remaining two steps to insert 14 in previous hea2
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Final arrangement for top-down splayin2b8

Steps in top-down splay (accessing 19 in top tréép

Chapter 22 Merging Priority Queues 260
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nodes in both direction265
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child of the smaller root tree: (a) the resulting trees; (b) after the first pass; (c) after the first
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A graphG (left) and its minimum spanning tre70

Kruskal's algorithm after each edge is consider2dl

The nearest common ancestor for each request in the pair sequgnéa®), (w,x), (Zw), (w,y),
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