List of Transparencies

Chapter 1 Primitive Java 1

A simple first program 2

The eight primitve types in Javd

Program that illustrates operato#s

Result of logical operators$

Examples of conditional and looping construdis
Layout of aswitch statement7

lllustration of method declaration and cal&

Chapter 2 References 9

An illustration of a reference: THeoint object stored at memory location 1000 is refer-
enced by botipointl andpoint3 . ThePoint object stored at memory location
1024 is referenced Ipoint2 . The memory locations where the variables are
stored are arbitraryl0

The result oboint3=point2 : point3 now references the same objecpamt2 11

Simple demonstration of array&2

Array expansion: (a) starting poirt:references 10 integers; (b) after stepriginal
references the 10 integers; (c) after steps 2 aad&ferences 12 integers, the first
10 of which are copied frowriginal ; (d) afteroriginal exits scope, the orig-
inal array is unreferenced and can be reclainisd

Common standard run-time exceptiorisg}

Common standard checked exceptiohS

Simple program to illustrate exceptiornkb

lllustration of thethrows clause 17

Program that demonstrates the string tokeniz&r

Program to list contents of a fild9

Chapter 3 Objects and Classes 20

Copyrightd 1998 by Addison-Wesley Publishing Company ii

A complete declaration of dntCell class 21

IntCell membersread andwrite are accessible, betoredValue is hidden 22

A simple test routine to show hdwtCell objects are accessed3

IntCell declaration withavadoccomments 24

javadocoutput forintCell 25

A minimal Date class that illustrates constructors anddfeals andtoString methods 26
Packages defined in this tex27

A classExiting with a single static method, which is part of the pack&agmorting 28
Aliasing example 29

Aliasing fixed 29

Example of a static initializer30

Chapter 4 Inheritance 31

Part of theException hierarchy 32

General layout of public inheritanc83

Constructor for new exception clddederflow ; usessuper 34

Partial overriding 35

The hierarchy of shapes used in an inheritance exarfle

Summary of final, static, abstract, and other meth&ds

Programmer responsibilities for derived cla38

Basic action of insertion sort (shaded part is sortd€)

Closer look at action of insertion sort (dark shading indicates sorted area; light shading is where
new element was placed30

Basics of Interfaces41

GenericMemoryCell class; implemented via inheritancé2

Using the generiMemoryCell class 43

Chapter 5 Algorithm Analysis 44

Running times for small inputst5

Running time for moderate input46

Functions in order of increasing growth ratey

The subsequences used in Theorem 88

The subsequences used in Theorem 5.3. The sequencgetisagphas sum at most that of the sub-
sequence fromto g. On the left, the sequence frano q is itself not the maximum (by
Theorem 5.2). On the right, the sequence froéoq has already been seed9

Growth rates defined50

Meanings of the various growth functiorsl

Observed running times (in seconds) for various maximum contiguous subsequence sum algo-
rithms 52

Empirical running time foN binary searches in aitem array 53

Chapter 6 Data Structures 54
Stack model: input to a stack is pysh , output is bytop , deletion is bypop 55

Copyrightl 1998 by Addison-Wesley Publishing Company il

Sample stack program; output is
Contents: 43210 56
Queue model: input is ehqueue , output is bygetFront |, deletion is bydequeue 57
Sample queue program; output is
Contents:01 234 58
Link list model: inputs are arbitrary and ordered, any item may be output, and iteration is support-
ed, but this data structure is not time-efficieb®
Sample list program; output is
Contents: 4321 0end 60
A simple linked list 61
Atree 62
Expression tree fa@a+b)*(c-d) 63
Binary search tree model; the binary search is extended to allow insertions and defgtions
Sample search tree program;
output isFound Becky; Mark not found; 65
The hash table model: any named item can be accessed or deleted in essentially consént time
Sample hash table program;
output isFound Becky; 67
Priority queue model: only the minimum element is accesstie
Sample program for priority queues;
output isContents: 012 3 4 69
Summary of some data structur@®

Chapter 7 Recursion 71

Stack of activation record¥’2

Ruler 73

Fractal star outline74

Trace of the recursive calculation of the Fibonacci numbé&ss
Divide-and-conquer algorithm&6

Dividing the maximum contiguous subsequence problem into hales
Trace of recursive calls for recursive maximum contiguous subsequence sum alg@&thm
Basic divide-and-conquer running time theorer

General divide-and-conquer running time theor&

Some of the subproblems that are solved recursively in Figure 115
Alternative recursive algorithm for coin-changing proble32

Chapter 8 Sorting Algorithms 83

Examples of sorting84

Shellsort after each pass, if increment sequence is {1, 3%}

Running time (milliseconds) of the insertion sort and Shellsort with various increment sequences
86

Linear-time merging of sorted arrays (first four stef&)

Linear-time merging of sorted arrays (last four steg$)

Basic quicksort algorithm89

Copyrightd 1998 by Addison-Wesley Publishing Company iv

The steps of quicksor©90

Correctness of quicksorfl

Partitioning algorithm: pivot element 6 is placed at the €t

Partitioning algorithmi stops at large elementj8stops at small element 82
Partitioning algorithm: out-of-order elements 8 and 2 are swapizd
Partitioning algorithm:i stops at large elementj9;stops at small element 92
Partitioning algorithm: out-of-order elements 9 and 5 are swagfizd
Partitioning algorithmi stops at large elementj9stops at small element 32
Partitioning algorithm: swap pivot and element in positior92

Original array 93

Result of sorting three elements (first, middle, and 1&33)

Result of swapping the pivot with next-to-last elemé&g

Median-of-three partitioning optimization94

Quickselect algorithm95

Chapter 9 Randomization 96

Distribution of lottery winners if expected number of winners i92
Poisson distribution98

Chapter 10 Fun and Games 99

Sample word search grid.00

Brute-force algorithm for word search puzzi1

Alternate algorithm for word search puzz(E02

Improved algorithm for word search puzzle; incorporates a prefix 168

Basic minimax algorithm104

Alpha-beta pruning: After b} is evaluated, & which is the minimum of the 45, is at best a
draw. Consequently, it cannot be an improvement oyeWe therefore do not need to
evaluate Hg, Hoc, and Hyp, and can proceed directly tg C105

Two searches that arrive at identical positioh86

Chapter 11 Stacks and Compilers 107

Stack operations in balanced symbol algoritHr68
Steps in evaluation of a postfix expressidg9
Associativity rules 110

Various cases in operator precedence parsidg
Infix to postfix conversion 112

Expression tree fa@a+b)*(c-d) 113

Chapter 12 Utilities 114

A standard coding schemé&15
Representation of the original code by a tré#6
A slightly better tree 117

Copyrightl 1998 by Addison-Wesley Publishing Company %

Optimal prefix code treell8

Optimal prefix code 119

Huffman’s algorithm after each of first three merg#&20
Huffman’s algorithm after each of last three mergeal
Encoding table (numbers on left are array indic&p

Chapter 13 Simulation 123

The Josephus probleni24

Sample output for the modem bank simulation: 3 modems; a dial-in is attempted every minute; av-
erage connect time is 5 minutes; simulation is run for 19 mind@s

Steps in the simulationl26

Priority queue for modem bank after each st&p7

Chapter 14 Graphs and Paths 128

A directed graph 129

Adjacency list representation of graph in Figure 14.1; nodes inréptesent vertices adjacent to
I and the cost of the connecting edd80

Information maintained by the Graph tabl31

Data structures used in a shortest path calculation, with input graph taken from a file: shortest
weighted path from\to Cis: AtoBtoEtoDto C (cost 76) 132

If w is adjacent tov and there is a path to then there is a pathwo 133

Graph after marking the start node as reachable in zero etiges

Graph after finding all vertices whose path length from the starti83

Graph after finding all vertices whose shortest path from the startlid3&

Final shortest pathsl37

How the graph is searched in unweighted shortest path computa88n

Eyeball is aw; w is adjacentD,, should be lowered to 6139

If D, is minimal among all unseen vertices and all edge costs are nonnegative, then it represents
the shortest pathl40

Stages of Dijkstra’s algorithml41

Graph with negative cost cycld42

Topological sort 143

Stages of acyclic graph algorithrh44

Activity-node graph 145

Top: Event node grap; Bottom: Earliest completion time, latest completion time, and slack (addi-
tional edge item) 146

Chapter 15 Stacks and Queues 147

How the stack routines work: empty staglish(A) , push(B) ,pop 148
Basic array implementation of the queuel9

Array implementation of the queue with wraparoud&0

Linked list implementation of the stack51

Linked list implementation of the queu&52

Copyrightd 1998 by Addison-Wesley Publishing Company Vi

enqueue operation for linked-list-based implementatidrb3

Chapter 16 Linked Lists 154

Basic linked list 155

Insertion into a linked list: create new notlaf), copy inx, settmp’s next reference, set
current s next reference 156

Deletion from a linked list 157

Using a header node for the linked 1i468

Empty list when header node is usdd9

Doubly linked list 160

Empty doubly linked list 161

Insertion into a doubly linked list by getting new node and then changing references in order indi-
cated 162

Circular doubly linked list 163

Chapter 17 Trees 164

Atree 165

Tree viewed recursivelyl66

First child/next sibling representation of tree in Figure 1187

Unix directory 168

The directory listing for tree in Figure 17.469

Unix directory with file sizes170

Trace of thesize method 171

Uses of binary trees: left is an expression tree and right is a Huffman codinfyiee
Result of a naivenerge operation 173

Aliasing problems in thenerge operationT1 is also the current objeci74
Recursive view used to calculate the size of a Bge:§ + K+ 1 175
Recursive view of node height calculatiéty = max(H +1,Hg+1) 176
Preorder, postorder, and inorder visitation routes’

Stack states during postorder traversai8

Chapter 18 Binary Search Trees 179

Two binary trees (only the left tree is a search tr&8p

Binary search trees before and after inserting &L

Deletion of node 5 with one child, before and afte82

Deletion of node 2 with two children, before and afte83

Using thesize data field to implemerfindkKth 184

Balanced tree on the left has a depth ofNognbalanced tree on the right has a depti+-df 185

Binary search trees that can result from inserting a permutation 1, 2, and 3; the balanced tree in the
middle is twice as likely as any othet86

Two binary search trees: the left tree is an AVL tree, but the right tree is not (unbalanced nodes are
darkened) 187

Minimum tree of heighH 188

Copyrightl 1998 by Addison-Wesley Publishing Company vii

Single rotation to fix case 1189

Single rotation fixes AVL tree after insertion of 190

Symmetric single rotation to fix case 491

Single rotation does not fix case 292

Left-right double rotation to fix case 293

Double rotation fixes AVL tree after insertion of 594

Left-right double rotation to fix case 395

Red-black tree propertied96

Example of a red-black tree; insertion sequence is 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5,
55) 197

If Sis black, then a single rotation between the parent and grandparent, with appropriate color
changes, restores property Xifs an outside grandchildL98

If Sis black, then a double rotation involviXgthe parent, and the grandparent, with appropriate
color changes, restores property Xi6 an inside grandchild199

If Sis red, then a single rotation between the parent and grandparent, with appropriate color chang-
es, restores property 3 betweeandP 200

Color flip; only if X's parent is red do we continue with a rotati@®1

Color flip at 50 induces a violation; because it is outside, a single rotation fix232it

Result of single rotation that fixes violation at node 303

Insertion of 45 as a red nod204

Deletion:X has two black children, and both of its sibling’s children are black; do a colo2@&p

Deletion:X has two black children, and the outer child of its sibling is red; do a single ro2@®n

Deletion:X has two black children, and the inner child of its sibling is red; do a double roion

Xis black and at least one child is red; if we fall through to next level and land on a red child, ev-
erything is good; if not, we rotate a sibling and par&g

AA-tree properties 209

AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 23,85

skew is a simple rotation betweefiandP 211

split is a simple rotation betweetandR; note thaR'’s level increases212

After inserting 45 into sample tree; consecutive horizontal links are introduced starting?a835

After split at 35; introduces a left horizontal link at 5213

After skew at 50; introduces consecutive horizontal nodes starting 249

After split at 40; 50 is now on the same level as 70, thus inducing an illegal left horizontal link
214

After skew at 70; this introduces consecutive horizontal links atZi34

After split at 30; insertion is complet®14

When 1 is deleted, all nodes become level 1, introducing horizontal left Bdks

Five-ary tree of 31 nodes has only three levalk

B-tree of order 5217

B-tree properties218

B-tree after insertion of 57 into tree in Figure 18.209

Insertion of 55 in B-tree in Figure 18.71 causes a split into two le@a8s

Insertion of 40 in B-tree in Figure 18.72 causes a split into two leaves and then a split of the parent
node 221

B-tree after deletion of 99 from Figure 18.7222

Copyrightd 1998 by Addison-Wesley Publishing Company viii

Chapter 19 Hash Tables 223

Linear probing hash table after each insertia®4

lllustration of primary clustering in linear probing (middle) versus no clustering (top) and the less
significant secondary clustering in quadratic probing (bottom); long lines represent occu-
pied cells; Load factor is 0.7225

Quadratic probing hash table after each insertion (note that the table size is poorly chosen because
it is not a prime number)226

Chapter 20 A Priority Queue: The Binary Heap 227

A complete binary tree and its array representatk#8

Heap-order property229

Two complete trees (only the left tree is a he&30

Attempt to insert 14, creating the hole and bubbling the hol@8p

The remaining two steps to insert 14 in previous hea2

Creation of the hole at the rod233

Next two steps inleleteMin 234

Last two steps ideleteMin 235

Recursive view of the heaf236

Initial heap (left); aftepercolateDown(7) (right) 237

After percolateDown(6) (left); afterpercolateDown(5) (right) 237

After percolateDown(4) (left); afterpercolateDown(3) (right) 238

After percolateDown(2) (left); afterpercolateDown(1) andfixHeap terminates (right)
238

Marking of left edges for height-one nodex39

Marking of first left and subsequent right edge for height-two no2893

Marking of first left and subsequent two right edges for height-three n@dés

Marking of first left and subsequent right edges for height-four n2deé

(Max) Heap aftefixHeap phase 241

Heapsort algorithm (in principle242

Heap after firsteleteMax 243

Heap after secondeleteMax 243

Initial tape configuration 244

Distribution of length 3 runs onto two tape5

Tapes after first round of merging (run length = 845

Tapes after second round of merging (run length = 22%

Tapes after third round of merging45

Initial distribution of length 3 runs onto three tap@46

After one round of three-way merging (run length =236

After two rounds of three-way mergin@46

Number of runs using polyphase mer@e7

Example of run constructior248

Chapter 21 Splay Trees 249
Rotate-to-root strategy applied when node 3 is acce il

Copyrightl 1998 by Addison-Wesley Publishing Company ¢

Insertion of 4 using rotate-to-roo251

Sequential access of items takes quadratic ti262

Zig case (normal single rotation253

Zig-zag case (same as a double rotation); symmetric case on2i§ad

Zig-zig case (this is unigue to the splay tree); symmetric case oni#h&d

Result of splaying at node 1 (three zig-zigs and a g%

Theremove operation applied to node 6: First 6 is splayed to the root, leaving two subtrees; a
findMax on the left subtree is performed, raising 5 to the root of the left subtree; then the
right subtree can be attached (not showah5

Top-down splay rotations: zig (top), zig-zig (middle), and zig-zag (bott@%6

Simplified top-down zig-zag257

Final arrangement for top-down splayin2b8

Steps in top-down splay (accessing 19 in top tréép

Chapter 22 Merging Priority Queues 260

Simplistic merging of heap-ordered trees; right paths are meg&fsd

Merging of skew heap; right paths are merged, and the result is made a leGth

Skew heap algorithm (recursive viewpoin263

Change in heavy/light status after a mergé4

Abstract representation of sample pairing hezb

Actual representation of above pairing heap; dark line represents a pair of references that connect
nodes in both direction265

Recombination of siblings afterdgleteMin ; in each merge the larger root tree is made the left
child of the smaller root tree: (a) the resulting trees; (b) after the first pass; (c) after the first
merge of the second pass; (d) after the second merge of the secorizbpass

compareAndLink merges two trees267

Chapter 23 The Disjoint Set Class 268

Definition of equivalence relatior269

A graphG (left) and its minimum spanning tre70

Kruskal's algorithm after each edge is consider2dl

The nearest common ancestor for each request in the pair sequgnéa®), (w,x), (Zw), (w,y),
isA, C, A B, andy, respectively 272

The sets immediately prior to the return from the recursive cBIl © is marked as visited and
NCA(D, v) isv’s anchor to the current patR73

After the recursive call fror® returns, we merge the set anchore®hyto the set anchored by
C and then compute &NCA(C, v) for nodesr that are marked prior to completiQgs re-
cursive call 274

Forest and its eight elements, initially in different s&85

Forest afteunion of trees with roots 4 and 275

Forest afteunion of trees with roots 6 and 276

Forest afteunion of trees with roots 4 and 76

Forest formed by union-by-size, with size encoded as a negative nu2ier

Worst-case tree fdd =16 278

Copyrightd 1998 by Addison-Wesley Publishing Company

Forest formed by union-by-height, with height encoded as a negative nuamer
Path compression resulting fronfied (14) on the tree in Figure 23.1280
Ackermann’s function and its invers281

Accounting used in union-find proo282

Actual partitioning of ranks into groups used in the union-find pr@8B

