
Copyright 1998 by Addison-Wesley Publishing Company 71

Chapter 7

Recursion

Copyright 1998 by Addison-Wesley Publishing Company 72

Stack of activation records

main()

s(4)

s(3)

s(2)TOP:

Copyright 1998 by Addison-Wesley Publishing Company 73

1 private void
2 drawRuler(Graphics g, int left, int right, int level)
3 {
4 if(level < 1)
5 return;
6
7 int mid = (left + right) / 2;
8
9 g.drawLine(mid, 80, mid, 80 - level * 5);

10
11 drawRuler(g, left, mid - 1, level- 1);
12 drawRuler(g, mid + 1, right, level - 1);
13 }

Ruler

Copyright 1998 by Addison-Wesley Publishing Company 74

1 // Draw picture above (left)
2 private void drawFractal(Graphics g, int xCenter,
3 int yCenter, int boundingDim)
4 {
5 int side = boundingDim / 2;
6
7 if(side < 1)
8 return;
9

10 // Compute corners
11 int left = xCenter - side / 2;
12 int top = yCenter - side / 2;
13 int right = xCenter + side / 2;
14 int bottom = yCenter + side / 2;
15
16 // Recursively draw four quadrants
17 drawFractal(g, left, top, boundingDim / 2);
18 drawFractal(g, left, bottom, boundingDim / 2);
19 drawFractal(g, right, top, boundingDim / 2);
20 drawFractal(g, right, bottom, boundingDim / 2);
21
22 // Draw central square, overlapping quadrants
23 g.fillRect(left, top, right - left, bottom - top);
24 }

Fractal star outline

Copyright 1998 by Addison-Wesley Publishing Company 75

Trace of the recursive calculation of the Fibonacci numbers

F1

F2

F0

F3

F1

F4

F1

F2

F0

F5

F1

F2

F0

F3

F1

Copyright 1998 by Addison-Wesley Publishing Company 76

• Divide: Smaller problems are solved recursively (except, of course, base
cases).

• Conquer: The solution to the original problem is then formed from the solu-
tions to the subproblems.

Divide-and-conquer algorithms

Copyright 1998 by Addison-Wesley Publishing Company 77

First Half Second Half

4 -3 5 -2 -1 2 6 -2 Values

4* 0 3 -2 -1 1 7* 5 Running Sums

Running Sum from the Center (*denotes maxi-
mum for each half)

Dividing the maximum contiguous subsequence problem
into halves

Copyright 1998 by Addison-Wesley Publishing Company 78

Trace of recursive calls for recursive maximum contiguous
subsequence sum algorithm

N

N

N

N

Copyright 1998 by Addison-Wesley Publishing Company 79

Assum ing N i s a power o f 2 , the so lu t i on to the equa t ion
, w i th in i t i a l cond i t i on i s

.

Basic divide-and-conquer running time theorem

T N() 2T N 2⁄() N+= T 1() 1=
T N() N log N N+=

Copyright 1998 by Addison-Wesley Publishing Company 80

The so lu t i on to the equa t ion
, where and ,

is

if

if

if

General divide-and-conquer running time theorem

T N() AT N B⁄() O Nk()+= A 1≥ B 1>

T N()

=

O N ABlog() A Bk>

O Nk Nlog() A Bk=

O Nk() A Bk<

Copyright 1998 by Addison-Wesley Publishing Company 81

Some of the subproblems that are solved recursively in
Figure 7.15

1

1 1

125 25 10 1 21 10

21 10

21 21

21

21 21 10 1062

2

61

21

42

31

32

 1

Copyright 1998 by Addison-Wesley Publishing Company 82

Alternative recursive algorithm for coin-changing problem

+

+

+

+

+

1

5

10

21

25

21 21 10 10

25 21 10 1 1

21 21 10 1

21 21

25 10 1 1 1

Copyright 1998 by Addison-Wesley Publishing Company 83

Chapter 8

Sorting Algorithms

Copyright 1998 by Addison-Wesley Publishing Company 84

• Words in a dictionary are sorted (and case distinctions are ignored).
• Files in a directory are often listed in sorted order.
• The index of a book is sorted (and case distinctions are ignored).
• The card catalog in a library is sorted by both author and title.
• A listing of course offerings at a university is sorted, first by department and

then by course number.
• Many banks provide statements that list checks in increasing order (by check

number).
• In a newspaper, the calendar of events in a schedule is generally sorted by

date.
• Musical compact disks in a record store are generally sorted by recording art-

ist.
• In the programs that are printed for graduation ceremonies, departments are

listed in sorted order, and then students in those departments are listed in
sorted order.

Examples of sorting

Copyright 1998 by Addison-Wesley Publishing Company 85

Original 81 94 11 96 12 35 17 95 28 58 41 75 15

After 5-sort 35 17 11 28 12 41 75 15 96 58 81 94 95

After 3-sort 28 12 11 35 15 41 58 17 94 75 81 96 95

After 1-sort 11 12 15 17 28 35 41 58 75 81 94 95 96

Shellsort after each pass, if increment sequence is {1, 3, 5}

Copyright 1998 by Addison-Wesley Publishing Company 86

N Insertion
sort

Shellsort

Shell’s Odd gaps only Dividing by 2.2

1,000 122 11 11 9
2,000 483 26 21 23
4,000 1,936 61 59 54
8,000 7,950 153 141 114

16,000 32,560 358 322 269
32,000 131,911 869 752 575
64,000 520,000 2,091 1,705 1,249

Running time (milliseconds) of the insertion sort and
Shellsort with various increment sequences

Copyright 1998 by Addison-Wesley Publishing Company 87

Linear-time merging of sorted arrays (first four steps)

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 13 24 26 2 15 27 38

BptrAptr Cptr

1

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2 13

Copyright 1998 by Addison-Wesley Publishing Company 88

Linear-time merging of sorted arrays (last four steps)

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2 13 15

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2 13 15 24

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2 13 15 24 26

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2 13 15 24 26 27 38

Copyright 1998 by Addison-Wesley Publishing Company 89

The basic algorithm Quicksort(S) consists of the following four steps:

1. If the number of elements in S is 0 or 1, then return.
2. Pick any element v in S. This is called the pivot.
3. Partition S – {v} (the remaining elements in S) into two disjoint groups: L =

 and R = .
4. Return the result of Quicksort(L) followed by v followed by Quicksort(R).

Basic quicksort algorithm

x S v{ }– x v≤∈{ } x S v{ }–∈ x v≥{ }

Copyright 1998 by Addison-Wesley Publishing Company 90

The steps of quicksort

13

81

92

43

65

31
57

26
75

0

Select pivot

13

81

92

43

65

31
57

26
75

0

Partition

13
0

26
43

57

31 65
92

75
81

Quicksort Quicksort

0 13 26 31 43 57 65 75 81 92

 0 13 26 31 43 57 65 75 81 92

large itemssmall items

Copyright 1998 by Addison-Wesley Publishing Company 91

Because recursion allows us to take the giant leap of faith, the correctness of the
algorithm is guaranteed as follows:

• The group of small elements is sorted, by virtue of the recursion.
• The largest element in the group of small elements is not larger than the pivot,

by virtue of the partition.
• The pivot is not larger than the smallest element in the group of large ele-

ments, by virtue of the partition.
• The group of large elements is sorted, by virtue of the recursion.

Correctness of quicksort

Copyright 1998 by Addison-Wesley Publishing Company 92

8 1 4 9 0 3 5 2 7 6

Partitioning algorithm: pivot element 6 is placed at the end

8 1 4 9 0 3 5 2 7 6

Partitioning algorithm: i stops at large element 8; j stops
at small element 2

2 1 4 9 0 3 5 8 7 6

Partitioning algorithm: out-of-order elements 8 and 2 are
swapped

2 1 4 9 0 3 5 8 7 6

Partitioning algorithm: i stops at large element 9; j stops
at small element 5

2 1 4 5 0 3 9 8 7 6

Partitioning algorithm: out-of-order elements 9 and 5 are
swapped

2 1 4 5 0 3 9 8 7 6

Partitioning algorithm: i stops at large element 9; j stops
at small element 3

2 1 4 5 0 3 6 8 7 9

Partitioning algorithm: swap pivot and element in position i

Copyright 1998 by Addison-Wesley Publishing Company 93

8 1 4 9 6 3 5 2 7 0

Original array

0 1 4 9 6 3 5 2 7 8

Result of sorting three elements (first, middle, and last)

0 1 4 9 7 3 5 2 6 8

Result of swapping the pivot with next-to-last element

Copyright 1998 by Addison-Wesley Publishing Company 94

• We should not swap the pivot with the element in the last position. Instead, we
should swap it with the element in the next to last position.

• We can start i at low+1 and j at high-2 .
• We are guaranteed that, whenever i searches for a large element, it will stop

because in the worst case it will encounter the pivot (and we stop on equality).
• We are guaranteed that, whenever j searches for a small element, it will stop

because in the worst case it will encounter the first element (and we stop on
equality).

Median-of-three partitioning optimizations

Copyright 1998 by Addison-Wesley Publishing Company 95

1. If the number of elements in S is 1, then presumably k is also 1, and we can
return the single element in S.

2. Pick any element v in S. This is the pivot.
3. Partition S – {v} into L and R, exactly as was done for quicksort.
4. If k is less than or equal to the number of elements in L, then the item we are

searching for must be in L. Call Quickselect(L, k) recursively. Otherwise, if
k is exactly equal to one more than the number of items in L, then the pivot is
the kth smallest element, and we can return it as the answer. Otherwise, the
kth smallest element lies in R, and it is the (k – |L| – 1)th smallest element in
R. Again, we can make a recursive call and return the result.

Quickselect algorithm

Copyright 1998 by Addison-Wesley Publishing Company 96

Chapter 9

Randomization

Copyright 1998 by Addison-Wesley Publishing Company 97

Winning Tickets 0 1 2 3 4 5

Frequency 0.135 0.271 0.271 0.180 0.090 0.036

Distribution of lottery winners if expected number of
winners is 2

Copyright 1998 by Addison-Wesley Publishing Company 98

An important nonuniform distribution that occurs in simulations is the Poisson
distribution. Occurrences that happen under the following circumstances satisfy the
Poisson distribution:

• The probability of one occurrence in a small region is proportional to the size
of the region.

• The probability of two occurrences in a small region is proportional to the
square of the size of the region and is usually small enough to be ignored.

• The event of getting k occurrences in one region and the event of getting j
occurrences in another region disjoint from the first region are independent.
(Technically this statement means that you can get the probability of both
events simultaneously occurring by multiplying the probability of individual
events.)

• The mean number of occurrences in a region of some size is known.

Then if the mean number of occurrences is the constant a, then the probability of
exactly k occurrences is .

Poisson distribution

ake a– k!⁄

Copyright 1998 by Addison-Wesley Publishing Company 99

Chapter 10

Fun and Games

Copyright 1998 by Addison-Wesley Publishing Company 100

0 1 2 3
0 t h i s

1 w a t s

2 o a h g

3 f g d t

Sample word search grid

Copyright 1998 by Addison-Wesley Publishing Company 101

for each word W in the word list
 for each row R
 for each column C
 for each direction D
 check if W exists at row R, column C
 in direction D

Brute-force algorithm for word search puzzle

Copyright 1998 by Addison-Wesley Publishing Company 102

for each row R
 for each column C
 for each direction D
 for each word length L
 check if L chars starting at row R column C
 in direction D form a word

Alternate algorithm for word search puzzle

Copyright 1998 by Addison-Wesley Publishing Company 103

for each row R
 for each column C
 for each direction D
 for each word length L
 check if L chars starting at row R column
 C in direction D form a word
 if they do not form a prefix,
 break; // the innermost loop

Improved algorithm for word search puzzle; incorporates a
prefix test

Copyright 1998 by Addison-Wesley Publishing Company 104

1. If the position is terminal (that is, can immediately be evaluated), return its
value.

2. Otherwise, if it is the computer’s turn to move, return the maximum value of
all positions reachable by making one move. The reachable values are calcu-
lated recursively.

3. Otherwise, it is the human’s turn to move. Return the minimum value of all
positions reachable by making one move. The reachable values are calcu-
lated recursively.

Basic minimax algorithm

Copyright 1998 by Addison-Wesley Publishing Company 105

Alpha-beta pruning: After H2A is evaluated, C2, which is the
minimum of the H2’s, is at best a draw. Consequently, it
cannot be an improvement over C1. We therefore do not
need to evaluate H2B, H2C, and H2D, and can proceed
directly to C3

C1 C3

DRAW

...

Use best result

Use worst result

C2

H2A

DRAW

H2B

?

H2C

?

H2D

?

Copyright 1998 by Addison-Wesley Publishing Company 106

Two searches that arrive at identical positions

X

X O X

X O X

O X

X O

X

Copyright 1998 by Addison-Wesley Publishing Company 107

Chapter 11

Stacks and Compilers

Copyright 1998 by Addison-Wesley Publishing Company 108

Stack operations in balanced symbol algorithm

(
[
((

([] }*)*

[

[eof*

Errors (indicated by *):
 } when expecting)
) with no matching opening symbol
 [unmatched at end of input

Copyright 1998 by Addison-Wesley Publishing Company 109

Steps in evaluation of a postfix expression

1
2
1 -1

4
-1

1 2 - 4

5
4
-1
5

1024
-1
^

3
1024

-1
3

3072
-1
*

6
3072

-1
6

18432
-1
*

7
18432

-1
7

2
7

18432
-1
2

2
2
7

18432
-1
2

4
7

18432
-1
^

2401
18432

-1
^

7
-1
/

-8
-

Postfix Expression: 1 2 - 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / -

Copyright 1998 by Addison-Wesley Publishing Company 110

Infix expression Postfix expression Associativity

2 + 3 + 4 2 3 + 4 + Left associative: Input + is
lower than stack +

2 ^ 3 ^ 4 2 3 4 ^ ^ Right associative: Input ^ is
higher than stack ^

Associativity rules

Copyright 1998 by Addison-Wesley Publishing Company 111

• Operands: Immediately output.
• Close parenthesis: Pop stack symbols until an open parenthesis is seen.
• Operator: Pop all stack symbols until we see a symbol of lower precedence or

a right associative symbol of equal precedence. Then push the operator.
• End of input: Pop all remaining stack symbols.

Various cases in operator precedence parsing

Copyright 1998 by Addison-Wesley Publishing Company 112

Infix to postfix conversion

Infix: 1 - 2 ^ 3 ^ 3 - (4 + 5 * 6) * 7

1

1

-

-

2

-
2

^

^
-

3

^
-

3

^

^
^
-

3

^
^
-

3

-

-
^^-

(

(
-

4

(
-

4

+

+
(
-

5

+
(
-

5

*

*

+
(
-

*

6

+
(
-

6

)

-
* +

*

*

*

7

*

-
7 * -

Postfix: 1 2 3 3 ^ ^ - 4 5 6 * + - 7 * -

Copyright 1998 by Addison-Wesley Publishing Company 113

Expression tree for (a+b)*(c-d)

*

+ -

a b a b

Copyright 1998 by Addison-Wesley Publishing Company 114

Chapter 12

Utilities

Copyright 1998 by Addison-Wesley Publishing Company 115

Character Code Frequency Total Bits

a 000 10 30
e 001 15 45
i 010 12 36
s 011 3 9
t 100 4 12

sp 101 13 39
nl 110 1 3

Total 174

A standard coding scheme

Copyright 1998 by Addison-Wesley Publishing Company 116

Representation of the original code by a tree

a e i s t sp nl

Copyright 1998 by Addison-Wesley Publishing Company 117

A slightly better tree

a e i s t sp

nl

Copyright 1998 by Addison-Wesley Publishing Company 118

Optimal prefix code tree

t

a

sp

nl

e

s

i

Copyright 1998 by Addison-Wesley Publishing Company 119

Character Code Frequency Total Bits

a 001 10 30
e 01 15 30
i 10 12 24
s 00000 3 15
t 0001 4 16

sp 11 13 26
nl 00001 1 5

Total 146

Optimal prefix code

Copyright 1998 by Addison-Wesley Publishing Company 120

Huffman’s algorithm after each of first three merges

i s nle ta sp
10 15 12 3 4 13 1

i te spa
10 15 12 4 13

T1

nls

4

i spea
10 15 12 13

t

T2

T1

nls

8

spie
15 12 13

t

aT2

T3

T1

nls

18

Copyright 1998 by Addison-Wesley Publishing Company 121

Huffman’s algorithm after each of last three merges

e
15

sp

T4

i

25

t

aT2

T3

T1

nls

18

sp

T4

i

25

t

T5

aT2

T3

T1

nl

e

s

33

t

T5

aT2

spT3

T1

T6

nl

e

s

T4

i

58

Copyright 1998 by Addison-Wesley Publishing Company 122

Character Weight Parent Child Type

0 a 10 9 1
1 e 15 11 1
2 i 12 10 0
3 s 3 7 0
4 t 4 8 1
5 sp 13 10 1
6 nl 1 7 1
7 T1 4 8 0
8 T2 8 9 0
9 T3 18 11 0

10 T4 25 12 1
11 T5 33 12 0
12 T6 58 0

Encoding table (numbers on left are array indices)

Copyright 1998 by Addison-Wesley Publishing Company 123

Chapter 13

Simulation

Copyright 1998 by Addison-Wesley Publishing Company 124

1. At the start, the potato is at player 1; after one pass it is at player 2.
2. Player 2 is eliminated, player 3 picks up the potato, and after one pass it is at

player 4.
3. Player 4 is eliminated, player 5 picks up the potato and passes it to player 1.
4. Player 1 is eliminated, player 3 picks up the potato, and passes it to player 5.
5. Player 5 is eliminated, so player 3 wins.

The Josephus problem

1 2 3

45

1 3

45

31

5

3

5

3

(a) (b) (c) (d) (e)

Copyright 1998 by Addison-Wesley Publishing Company 125

1 User 0 dials in at time 0 and connects for 1 minutes
2 User 0 hangs up at time 1
3 User 1 dials in at time 1 and connects for 5 minutes
4 User 2 dials in at time 2 and connects for 4 minutes
5 User 3 dials in at time 3 and connects for 11 minutes
6 User 4 dials in at time 4 but gets busy signal
7 User 5 dials in at time 5 but gets busy signal
8 User 6 dials in at time 6 but gets busy signal
9 User 1 hangs up at time 6

10 User 2 hangs up at time 6
11 User 7 dials in at time 7 and connects for 8 minutes
12 User 8 dials in at time 8 and connects for 6 minutes
13 User 9 dials in at time 9 but gets busy signal
14 User 10 dials in at time 10 but gets busy signal
15 User 11 dials in at time 11 but gets busy signal
16 User 12 dials in at time 12 but gets busy signal
17 User 13 dials in at time 13 but gets busy signal
18 User 3 hangs up at time 14
19 User 14 dials in at time 14 and connects for 6 minutes
20 User 8 hangs up at time 14
21 User 15 dials in at time 15 and connects for 3 minutes
22 User 7 hangs up at time 15
23 User 16 dials in at time 16 and connects for 5 minutes
24 User 17 dials in at time 17 but gets busy signal
25 User 15 hangs up at time 18
26 User 18 dials in at time 18 and connects for 7 minutes
27 User 19 dials in at time 19 but gets busy signal

Sample output for the modem bank simulation: 3 modems;
a dial-in is attempted every minute; average connect time
is 5 minutes; simulation is run for 19 minutes

Copyright 1998 by Addison-Wesley Publishing Company 126

1. The first DIAL_IN request is inserted
2. After DIAL_IN is removed, the request is connected resulting in a HANGUP

and a replacement DIAL_IN request
3. A HANGUP request is processed
4. A DIAL_IN request is processed resulting in a connect. Thus both a

HANGUP and DIAL_IN event are added (three times)
5. A DIAL_IN request fails; a replacement DIAL_IN is generated (three

times)
6. A HANGUP request is processed (twice)
7. A DIAL_IN request succeeds, HANGUP and DIAL_IN are added.

Steps in the simulation

Copyright 1998 by Addison-Wesley Publishing Company 127

Priority queue for modem bank after each step

1 HANGUP
User 0, Len 1 1 DIAL_IN

User 1, Len 5

1 DIAL_IN
User 1, Len 5 3

0 DIAL_IN
User 0, Len 1 3

2

6 HANGUP
User 1, Len 5 22 DIAL_IN

User 2, Len 4

6 HANGUP
User 1, Len 5 16 HANGUP

User 2, Len 4 3 DIAL_IN
User 3, Len 11

6 HANGUP
User 1, Len 5 6 HANGUP

User 2, Len 4 14 HANGUP
User 3, Len 11 4 DIAL_IN

User 4, Len ?

6 HANGUP
User 1, Len 5 6 HANGUP

User 2, Len 4 14 HANGUP
User 3, Len 11 5 DIAL_IN

User 5, Len ?

6 HANGUP
User 1, Len 5 6 HANGUP

User 2, Len 4 14 HANGUP
User 3, Len 11 6 DIAL_IN

User 6, Len ?

6 HANGUP
User 2, Len 4 14 HANGUP

User 3, Len 11 7 DIAL_IN
User 7, Len 8 1

6 HANGUP
User 1, Len 5 6 HANGUP

User 2, Len 4 14 HANGUP
User 3, Len 11 7 DIAL_IN

User 7, Len 8

14 HANGUP
User 3, Len 11 7 DIAL_IN

User 7, Len 8 2

14 HANGUP
User 3, Len 11 15 HANGUP

User 7, Len 8 18 DIAL_IN
User 8, Len 6

Copyright 1998 by Addison-Wesley Publishing Company 128

Chapter 14

Graphs and Paths

Copyright 1998 by Addison-Wesley Publishing Company 129

A directed graph

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10 31 4

5 8 4 6

Copyright 1998 by Addison-Wesley Publishing Company 130

Adjacency list representation of graph in Figure 14.1;
nodes in list i represent vertices adjacent to i and the cost
of the connecting edge

4 (10)

0 (4)

4 (2)

6 (6)

1 (2)

5 (1)

3 (3)

5 (5)

6 (4) 5 (8) 2 (2)

3 (1)0

1

2

3

4

5

6

Copyright 1998 by Addison-Wesley Publishing Company 131

• dist : The length of the shortest path (either weighted or unweighted,
depending on the algorithm) from the starting vertex to this vertex. This value
is computed by the shortest path algorithm.

• prev : The previous vertex on the shortest path to this vertex.
• name: The name corresponding to this vertex. This is established when the

vertex is placed into the dictionary and will never change. None of the shortest
path algorithms examine this member. It is only used to print a final path.

• adj : A list of adjacent vertices. This is established when the graph is read.
None of the shortest path algorithms will change the pointer or the linked list.

Information maintained by the Graph table

Copyright 1998 by Addison-Wesley Publishing Company 132

Data structures used in a shortest path calculation, with
input graph taken from a file: shortest weighted path from A
to C is: A to B to E to D to C (cost 76)

D C 10
A B 12
D B 23
A D 87
E D 43
B E 11
C A 19

Input

0

3

4

1

2

dist prev name

D

C

A

B

E

adj

3 (23), 1 (10)

2 (19)

0 (87), 3 (12)

4 (11)

0 (43)

Dictionary

D (0)

B (3)
A (2)

C (1)

E (4)A B

C D E

12

11

4310

19 2387

Visual representation of graph

66

76

0

12

23

4

0

-1

2

3
Graph table

Copyright 1998 by Addison-Wesley Publishing Company 133

If w is adjacent to v and there is a path to v, then there is a
path to w

wv

S

Dv Dv+1

0

Copyright 1998 by Addison-Wesley Publishing Company 134

Graph after marking the start node as reachable in zero
edges

V1V0

V2 V3 V4

V5 V6

0

Copyright 1998 by Addison-Wesley Publishing Company 135

Graph after finding all vertices whose path length from the
start is 1

V1V0

V2 V3 V4

V5 V6

1

0

1

Copyright 1998 by Addison-Wesley Publishing Company 136

Graph after finding all vertices whose shortest path from
the start is 2

V1V0

V2 V3 V4

V5 V6

1 2

0

1

2

Copyright 1998 by Addison-Wesley Publishing Company 137

Final shortest paths

V1V0

V2 V3 V4

V5 V6

1 2

0 3

1 3

2

Copyright 1998 by Addison-Wesley Publishing Company 138

How the graph is searched in unweighted shortest path
computation

V1V0

V2 V3 V4

V5 V6

0

V1V0

V2 V3 V4

V5 V6

0

1

1

V1V0

V2 V3 V4

V5 V6

0

1

2

1 2

V1V0

V2 V3 V4

V5 V6

0

1

2

1 2

V1V0

V2 V3 V4

V5 V6

0 3

1 3

2

1 2

V1V0

V2 V3 V4

V5 V6

0 3

1 3

2

1 2

V1V0

V2 V3 V4

V5 V6

0 3

1 3

2

1 2

V1V0

V2 V3 V4

V5 V6

0 3

1

2

1 2

Copyright 1998 by Addison-Wesley Publishing Company 139

Eyeball is at v; w is adjacent; Dw should be lowered to 6

wv

S

3 8

0

3

2

u

6

Copyright 1998 by Addison-Wesley Publishing Company 140

If Dv is minimal among all unseen vertices and all edge
costs are nonnegative, then it represents the shortest path

v

S
0

Du

u

Dv

d 0≥

Copyright 1998 by Addison-Wesley Publishing Company 141

Stages of Dijkstra’s algorithm

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

1

0 0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

9 5

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

9 5

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

6 5

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

6 5

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

8 5

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

9 5

1

0 2

Copyright 1998 by Addison-Wesley Publishing Company 142

Graph with negative cost cycle

V1V0

V2 V3 V4

V5 V6

2

2 2

1

 -10 31 4

5 8 4 6

Copyright 1998 by Addison-Wesley Publishing Company 143

Topological sort

V1V0

V2 V3 V4

V5 V6

0 2

3 2

3

V1V0

V2 V3 V4

V5 V6

0 2

2 2

2

1 0 1

V1V0

V2 V3 V4

V5 V6

0 1

2 2

0

0 0

V1V0

V2 V3 V4

V5 V6

0 2

2 2

1

0 0

V1V0

V2 V3 V4

V5 V6

0 0

0 0

0

0 0

V1V0

V2 V3 V4

V5 V6

0 0

0 0

0

0 0

V1V0

V2 V3 V4

V5 V6

0 0

1 0

0

0 0

V1V0

V2 V3 V4

V5 V6

0 0

1 1

0

0 0

1

Copyright 1998 by Addison-Wesley Publishing Company 144

Stages of acyclic graph algorithm

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

1

0 0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

121

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3

6 5

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3

6 5

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3

9 5

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3

9 5

1

0 2

Copyright 1998 by Addison-Wesley Publishing Company 145

Activity-node graph

C 3

B 2

A 3

G 2

K 4

H 1

F 3

E 1

D 2 FinishStart

Copyright 1998 by Addison-Wesley Publishing Company 146

Top: Event node grap; Bottom: Earliest completion time,
latest completion time, and slack (additional edge item)

1 6d

3

2

8d

7d

5

4

6 1010d

9

8

7

A 3

B 2

0

0

C 3

D 2

E 1 K 4

F 3

G 2

0

0

0

0

0

0

0

H 1

1 6d

3

2

8d

7d

5

4

6 1010d

9

8

7

A 3 0

B 2 2

0

0

C 3 0

D 2 1

E 1 2 K 4 2

F 3 0

G 2 2

0

0

0

0

0

0

0

H 1 0

3 6 6 9

0 3 5 5 7 9 10

2 3 7

3 6 6 9

0 4 6 7 9 9 10

4 5 9

