
Supporting Application-Tailored Grid File System Sessions with
WSRF-Based Services

Ming Zhao Vineet Chadha Renato J. Figueiredo
Advanced Computing and Information Systems Laboratory (ACIS)

Electrical and Computer Engineering
University of Florida, Gainesville, Florida

{ming, chadha, renato}@acis.ufl.edu

Abstract

This paper presents novel service-based Grid data
management middleware that leverages standards
defined by WSRF specifications to create and manage
dynamic Grid file system sessions. A unique aspect of
the service is that the sessions it creates can be
customized to address application data transfer needs.
Application-tailored configurations enable selection of
both performance-related features (block-based partial
file transfers and/or whole-file transfers, cache
parameters and consistency models) and reliability
features (file system copy-on-write checkpointing to
aid recovery of client-side failures; replication,
autonomous failure detection and data access
redirection for server-side failures). These
enhancements, in addition to cross-domain user
identity mapping and encrypted communication, are
implemented via user level proxies managed by the
service, requiring no changes to existing kernels.
Sessions established using the service are mounted as
distributed file systems and can be used transparently
by unmodified binary applications. The paper analyzes
the use of the service to support virtual machine based
Grid systems and workflow execution, and also reports
on the performance and reliability of service managed
wide-area file system sessions with experiments based
on scientific applications (NanoMOS/Matlab, CH1D,
GAUSS and SPECseis).

1. Introduction

Grid systems that allow the provisioning of general-
purpose computing as a utility have the potential to
enable on-demand access to unprecedented computing
power [14]. A key middleware functionality required
from such systems is data management – how to
seamlessly provide data to applications that execute in
wide-area environments crossing administrative

domain boundaries. This paper addresses the challenge
of data provisioning through the use of a service-
oriented architecture for establishing application-
tailored Grid file system sessions.

The approach taken in this paper focuses on two
application-centric data needs. First, application
transparency is desirable to facilitate the Grid-enabling
of a wide range of programs. Second, application-
tailored performance and reliability enhancements are
desirable because applications have diverse
requirements, for example in terms of their data access
patterns, acceptable caching and consistency policies,
and fault tolerance requirements. These two needs are
not conflicting, however, and can be addressed by
building upon a virtualization layer (providing
application-transparent data access [11]) and by
enforcing isolation among independent virtualized
sessions (allowing for per-application customization).
To this end, this paper makes two contributions.

First, we describe a novel WSRF [12] based service
middleware architecture that enables the provisioning
of data to applications by controlling the configuration,
creation and tear-down of virtualized file system data
access sessions. The architecture also supports data
transfers based on file uploads/downloads. A novel
aspect of this approach is the flexibility it provides in
controlling caching, consistency and reliability
requirements tailored to application needs. The three
proposed data management services (data scheduling,
file system and data replication) allow Grid users and
job schedulers to:

• Create, customize, monitor and destroy virtual
distributed file system [11] sessions for
applications with complex data access patterns.
Specifically, sessions that leverage unmodified,
widely available Network File System (NFS [25])
implementations can be configured by the
middleware to support: cross-domain identity
mapping, encrypted communication, user-level

client caching and weak consistency models;
autonomous session redirection to replica servers
in the event of a server failure; and checkpointing
of file system modifications for consistent
application restarts in the event of a client failure.

• Coordinate the movement of whole files for
applications with well-defined file transfer
patterns, using protocols such as GridFTP [3].

Second, this paper analyzes the performance and
reliability enhancements from using this architecture
through experiments with a prototype service and
benchmark applications. In one experiment, a user-
level weak consistency model that overlays NFS kernel
clients/servers is investigated. It is shown to improve
the performance of read-biased wide-area NFS
sessions by speedup factors of up to 5 (CH1D coupled-
hydrodynamics simulation and post-processing) and 23
(MATLAB-based NanoMOS nano-electronics
simulator with network-mounted software repository).

An experiment using the GAUSS computational
chemistry tool shows that user-level copy-on-write
(COW), in combination with virtual machine (VM)
technologies, supports consistent checkpoint and roll-
back of legacy programs that operate on NFS-mounted
file systems, a fault-tolerance capability unique to this
approach. Another experiment shows that a running
application (SPECseis96) is able to continue execution
and complete successfully while a server failure is
handled by the service transparently via redirection.

The rest of this paper is organized as follows.
Section 2 discusses background and related work.
Section 3 describes the service architecture. Sections 4
and 5 describe the application-tailored enhancements
and usage examples. Section 6 presents analyses of
experimental results and Section 7 concludes the paper.

2. Background and Related Work

Currently there are three main approaches to Grid
data management: (a) the use of middleware to
explicitly transfer files prior to (and after) application
execution [6], (b) the use of application programming
interfaces (APIs) that allow an application to explicitly
control transfers [3], and (c) the use of mechanisms to
intercept and handle data-related events (e.g. system
calls [4][22][28] or distributed file system calls
[11][30]) implicitly and transparently from
applications.

Approach (a) is traditionally taken for applications
with well-defined datasets and flows, such as
uploading of standard input and downloading of
standard output. Approach (b) is taken for applications
where the development cost of incorporating
specialized APIs is justifiable from a performance

standpoint. Approach (c) is chosen when applications
do not have well-defined datasets and access patterns,
and when application modifications are not possible.

Experience with network-computing environments
has shown that there are many applications that need
solutions based on approach (c) [1][18]. In particular,
distributed file system-based techniques are key to
supporting applications that must be deployed without
modifications to source code, libraries or binaries.
Examples include commercial, interactive scientific
and engineering tools and VM monitors that operate on
large, sparse datasets [10][19][26][31].

Wide-area distributed file systems for shared Grid
environments are desirable, but need to be considered
in a context where modifications tailored to Grid
applications are unlikely to be implemented in kernels.
Nonetheless, recent work has shown the feasibility of
applying user-level loop-back proxies to build wide-
area file systems on top of existing O/S kernel
implementations [15][24]. Examples of systems that
use NFS distributed file system clients to mount Grid
data are found in the middleware of PUNCH [11][18],
In-VIGO [31][1], Legion [30] and Avaki’s Data Grid
Access Servers (DGAS) [16].

This paper builds upon related developments in
NFS proxy-based Grid-wide distributed Virtual File
Systems (GVFS). Previous work has investigated the
core mechanisms within a GVFS session to support
Grid-enabled data flow. This paper, in contrast,
focuses on a service-oriented model to control creation,
configuration and management of customized
independent data sessions.

NeST [5] is a related storage appliance that services
requests for data transfers supporting a variety of
protocols, including NFS and GridFTP. However, only
a restricted subset and anonymous accesses for NFS
are available. Furthermore, the system does not
integrate with unmodified kernel NFS clients, a key
requirement for application transparency. The BAD-FS
system [4] has also recognized the advantages of
exposing caching, consistency and fault tolerance to
middleware for application-tailored decisions.
However, because it is based on libraries and
interposition agents, it does not support important
applications, including binaries that are not
dynamically-linked or POSIX-compliant. In contrast,
the techniques described in this paper enable NFS-
mounted application-tailored Grid file systems.

WSRF-based Grid middleware has also been
implemented in [29][8]. The system described in this
paper focuses on data management and is unique in
support for dynamic and customizable sessions.

3. Services for Session Management
3.1 Overview

Figure 1 illustrates the overall architecture proposed
in this paper. It supports on-demand creation of data
access sessions by means of WS-Resources (the
control flow, dashed lines), and virtualized distributed
file systems 1 (the data flow, shaded regions). The
figure shows examples of data sessions established by
the data management services. Sessions are
independently configured and mounted on separate
directories at the client. Multiple sessions can share the
same dataset (e.g., sessions II and III in Figure 1).

Fundamentally, the goal of this architecture is to
enable flexible, secure resource sharing. This involves
the establishment of relationships between providers
and users that are complex (and often conflicting) in
distributed environments. From a user’s standpoint,
resources should ideally be customizable to their needs,
regardless of their location. From a provider’s
standpoint, resources should ideally be configured in a

1 The service also supports file-based data transfers for the data flow,
as described in Section 4.

single, consistent way. Otherwise, sharing is hindered
by a provider’s inability to accommodate individual
user needs (and associated security risks) and by the
user’s inability to effectively use systems over which
they have limited control.

To this end, the proposed service-oriented approach
builds upon two key aspects of the WS-Resource
framework: interoperability in the definition,
publishing, discovery and interactions of services
[13][12][20], and state management for controlling
data access sessions that persist throughout the
execution of an application. It also builds upon a
virtualized data access layer that supports user-level
customization. As a result, the services are deployed
once by the provider, and can then be accessed by
authorized users to create and customize independent
data access sessions.

The services are intended for use by both end-users
and middleware brokers (e.g. job schedulers) acting on
their behalf. In either case, it is assumed that the client
can authenticate to the service host, directly or
indirectly through delegation, leveraging
authentication support at the WSRF layer, and obtain
access to a local user identity on the host (e.g. via GSI-

Proxy

Job

C2

Proxy

Proxy

Job
Scheduler

F2

cache

cache

F1

Proxy

Proxy

DRS

cache

Proxy

C1

1

25

6

3

4

7

data

replica

I

II

III

IV

Proxy
cache

FSS

FSS

DSS

FSS

Job

Job Job

FSS

Figure 1: Example of Grid file system sessions established by the data management services on compute
servers (C1, C2) and file servers (F1, F2). In step 1, the job scheduler requests the DSS (Data Scheduler
Service) to start a session between C1 and F1; step 2, the DSS queries the DRS (Data Replication Service)
for replica information; it then requests in step 3 the FSS (File System Service) on F1 to start the proxy
server (step 4). The DSS also requests the FSS on C1 to start the proxy client and mount the file system
(steps 5, 6). The job scheduler can then start a task in C1 (step 7), which will have access to data from
server F1 through session I. Sessions II, III and IV are isolated from session I.

based Grid-to-local account mappings, or via
middleware-allocated, “logical” user accounts [17][2]).

The following techniques are used to enforce
isolation among data sessions established by the
service. On the server side, the kernel server “exports”
one or more base directories to the service’s loop-back
proxies. Per-session export files are created by the
service; proxies use these files to enforce that only a
directory sub-tree authorized to be used for a session
can be exported. The server-side proxy authenticates
RPC requests based not only on RPC credentials (as
conventional NFS servers do) but also by matching a
128-bit session key that is piggy-backed by the client-
side proxy with an RPC payload. Finally, client/server
requests are encrypted and tunneled through SSH.
These techniques are in place to prevent IP spoofing
and snooping of file handles. More details on session
isolation techniques are presented in [9].

The prototype has been built using WSRF::Lite, a
Perl-based WSRF implementation that provides
transport layer security through HTTPS. Session
information databases (which are maintained
independently by each service) have been implemented
using MySQL. The remaining of this section presents
each service component in detail.

3.2 File System Service (FSS)

The File System Service runs on every compute and
file server and controls the local file system proxies. It
essentially implements the establishment and
customization of file system sessions. The proxy
processes are the resources to the service, and the
service provides the interface to start, configure,
monitor and kill them. Their properties are stored in
files on local disk. A client-side proxy is associated
with a single session; a server-side proxy, however,
can be involved in more than one session (Figure 1).

The service customizes a proxy via configurations
defined in a file and can signal it to dynamically
reconfigure itself by reloading the file. The
configuration file holds information including: disk
cache parameters, cache consistency model and data
replica location. They are represented as WS-Resource
Property and can be viewed and modified with
standard WSRF operations (getResourceProperty and
setResourceProperty). When the FSS receives a
request for a session’s status, it signals the proxy to
report the accumulated statistics (number of RPC calls,
resource usage etc.) and to issue an NFS NULL call to
the server to check whether the connection is alive.

3.3 Data Scheduler Service (DSS)
The Data Scheduler Service is in charge of creation

and management of Grid file system sessions. These
sessions are associated to the service as its WS-
Resources, and their properties are stored in a database.
The service supports the operations of creating,
configuring, monitoring and tearing down of a session.

A request to create a session needs to specify the
two endpoint locations (IP address, client mount point,
server file system export path) and the desired
configurations of the session (e.g. caching
enabled/disabled, copy-on-write enabled/disabled,
weak consistency model timeouts, as described in
Section 4). The DSS firstly checks its information
about other sessions to resolve sharing conflicts. For
example, if the same dataset is accessed by another
session with write-delay enabled at its client side, the
service interacts with the corresponding FSS to force
the session to write back and disable write delay.

When there is no conflict, the DSS can proceed to
start the session (Figure 1). It asks the server-side FSS
to start the proxy server and the client-side FSS to start
the proxy client and then establishes the connection.
Before sending a request to the client-side FSS, the
DSS also queries the DRS (a service described below).
If there are replicas for the dataset, their locations are
also sent along with the request, so that in case of
failure the session can be redirected to a backup server.

Note that a session is set up for a particular task. If
there is an irresolvable conflict when scheduling a
session (e.g. the dataset is currently under exclusive
access by another session), the DSS does not establish
the session and returns an error to the requestor. Cache
parameters and consistency models can be
reconfigured during a session. Upon such a request,
the DSS also needs to resolve possible conflicts with
other sessions. The DSS associates the endpoint
reference (EPR) of a session with the EPRs of the
proxies. When a request to monitor the session is
received, the DSS asks the FSSs to monitor the proxies.

3.4 Data Replication Service (DRS)

The Data Replication Service is responsible for
managing data replication. Its WS-Resources are data
replicas. The service exposes interfaces for creating,
destroying and querying a given dataset’s replicas. The
state of resources is implemented with a relational
database, which facilitates the query and manipulation
of information about replicas. The service can be
queried with the location of a dataset (primary or
backup one), and it returns the locations of the replicas.

A request to create a replica needs to specify the
location of the data and the desired replica. If a replica
does not already exist at the requested location, the
DRS then interacts with the DSS to schedule a session
between the source and the destination, and have the
data replicated. Whenever a replica is created or
destroyed, the DRS updates the database accordingly.

4. Application-Tailored Data Sessions

The data management services are capable of
creating and managing dynamic Grid file system
sessions. Unlike traditional distributed file systems
which are statically set up for general-purpose data
access, each Grid file system session is established for
a particular task. Hence the services can apply
application tailored customizations on these sessions to
enhance Grid data access in the aspects of performance,
consistency and fault tolerance (Figure 2). The
following three subsections describe the choices that
can currently be made on a per-application basis.

4.1 Grid Data Access and File Transfer

FTP-based tools can often achieve high
performance for large-size file movements [3], but the
application’s data access pattern needs to be well
defined to employ such utilities. For applications
which have complex data access patterns and for those
that operate on sparse datasets, the generic file system
interface and partial-data transfer supported by GVFS
are advantageous. Both models are supported by the
data management services.

The FSS can configure data access sessions based
on file system proxies. According to the information
about the logical user accounts provided by the DSS,
the FSS dynamically sets up cross-domain identity
mappings (e.g. remote-to-local Unix IDs) on a per-
session basis. The FSS can also configure the GVFS
session with disk caching to exploit data locality, and
SSH tunneling to provide encrypted data transfer. It is
capable of dynamically reconfiguring a file system
session based on changed data access patterns, for
example, when a session’s dataset becomes shared by
multiple sessions, as discussed in the next section.

The services can also employ high-performance
data transfer mechanisms (e.g. GridFTP, SFTP/GSI-
OpenSSH) if it is known in advance that applications
use whole-file transfers. This scenario can be dealt
with in two different ways. In the conventional way, a
user authenticates through the DSS, which requests the
FSS to transfer files on behalf the user: downloading
the required inputs and presenting them to the

application before the execution; uploading the
specified outputs to the server after the execution.

The FTP-style data transfer can also be exploited by
GVFS while maintaining the generic file system
interface. The proxy client uses this functionality to
fetch the entirely needed large files to a local cache,
but the application still operates on the files through
the kernel NFS client and the proxy client in a block-
based fashion. In this way, the selection of data
transfer mechanism becomes transparent to
applications and can be leveraged by unmodified
applications. Such an application-selective data
transfer session has been shown to improve the
performance of instantiating Grid VMs [31] and can
also be used to support other applications through the
use of DSS/FSS services.

4.2 Cache Consistency Models

Different applications can benefit from the
availability of different caching policies and
consistency models. The DFS and FSS services enable
applications to select well-suited strong or weak
consistency models by dynamically customizing file
system sessions. Different cache consistency models
are overlaid upon the native NFS client polling
mechanism by the user-level proxies. For instance, an
overlay invalidation polling mechanism can
substantially improve performance of wide-area GVFS
sessions by handling attribute revalidation requests at
the client side. Other models that focus on stronger
consistency guarantees rather than higher performance
can also be realized in this overlay model, e.g. through
the use of inter-proxy call-backs for cache invalidation.

Figure 2. Application tailored customizations for a
GVFS session. Read requests are satisfied from
the remote server or the proxy cache. Writes are
forwarded to the loopback COW server and stored
in shadow files. When a request to the remote
server fails it is redirected to the backup server.

Typical NFS clients use per-file and per-directory
timers to determine when to poll a server. This can
lead to unnecessary traffic if files do not change often
and timers are set to too small a value on one hand,
and long delays in updates if timers have large values
on the other hand. Across wide-area networks,
revalidation calls contribute to long application-
perceived latencies. In contrast, the overlaid model
customizes the invalidation frequency or disables the
consistency checks on a per file system session basis.

Because the data management services dynamically
establish sessions that can be independently configured,
the overlaid consistency model can be selected to
improve performance when it is applicable. Two
examples where overlaid consistency models can
improve performance are described below:

Single-client sessions: when a task is known to the
scheduler to be independent (e.g. in high-throughput
task farm jobs), client-side caching can be enabled for
both read and write data, and write-back caching can
be used to achieve the best possible performance. As
writes are delayed on the client, the data may become
inconsistent with the server. But from the session’s
point of view, its data can be guaranteed to be
consistent by the DSS. Consistency actions that apply
to a session are initiated through the DSS in two
occasions: 1) when the task finishes and the session is
to be terminated, the cached dirty data is automatically
submitted to the server; 2) when the data is to be
shared with other sessions, the DSS reconfigures the
session by forcing it to write back cache contents and
disable write-delay henceforth. In either case, the DSS
waits for the write-back to complete before it starts
another session on the same data.

Multiple-client, read-biased sessions: For file
system sessions where exclusive write access to data is
not necessary, the scheduler can apply relaxed cache
consistency models on these sessions to improve
performance. One approach currently implemented by
GVFS proxies is based on an invalidation polling
scheme. The basic idea is to have the proxy server
record the file handles of potentially modified files in
an invalidation buffer, and the proxy clients poll the
buffer periodically. Then a proxy client can find out
what files have possibly been modified by the other
clients during the last period, and invalidates the
cached contents of these files.

Such a model proves effective when modifications
to the file system are infrequent and need to be quickly
propagated to clients, for instance, in a scenario where
a software repository is shared among clients. For
sessions where data changes more often, the
invalidation frequency can be set to a higher value; the
frequency can also adaptively self-adjust in a specified

range. Such polling time parameters can be customized
on a per-session basis through the FSS.

4.3 Fault Tolerance

Reliable execution is crucial for many applications,
especially long-running computing and simulation
tasks. The data management services currently provide
two techniques for improved fault tolerance: client-
side COW assisted checkpointing, and server
replication and session redirection.

Copy-on-write file system: The services can enable
COW on a file system session, so all file system
modifications produced by the client are transparently
buffered in local stable storage. In such a session, the
client proxy splits the data requests across two servers:
reads go to the remote main server, and writes are
redirected to a local COW server2. The approach relies
on the opaque nature of NFS file handles to allow for
virtual handles that are always returned to the client,
but map to physical file handles at the main and COW
servers. A file handle hash table stores such mappings,
as well as information about client modifications made
to each file handle. Files whose contents are modified
by the client have “shadow” files created by the COW
server in a sparse file, and block-based modifications
are inserted in-place in the shadow file.

When an application is checkpointed, the FSS can
request the checkpointing of all buffered modifications
in the shadow file system. Then, when recovery from a
client-side failure is needed, as the application is rolled
back to the previous saved state, the FSS can also roll
back the corresponding data state. Without the COW
mechanism, when the application rolls back the
modifications on the files since the last checkpointing
are already reflected on the server. Thus the data state
becomes inconsistent with the application state, and
the recovery may not proceed correctly. For instance,
files deleted on the server may be touched by the client
when a checkpointed application is rolled back,
causing the application to fail. A number of
checkpointing techniques can be employed in this
approach, including [23][7]. One particular case is
checkpointing of an entire VM when the application is
inside it, which is discussed in details in Section 5.1.

Server replication and session redirection:
Replication is a common practice for fault tolerance.
The data management services can support replication
at the server-side, and transparent failure detection and
recovery for GVFS sessions as follows. When the DSS

2 Reads of file objects that have been modified by the client are
routed to the COW server, instead of the main server.

requests the FSS to start a proxy client, it also asks the
DRS for information about existing data replicas (the
address of a replica server and the file handle of a
replica) and passes it to the FSS. During the session, if
the proxy client notices a RPC times out (the timeout
value is adjustable at the proxy), it then decides on
whether to redirect the call to the replica server.

The proxy tries at first to reestablish the connection
to the server, in case the failure is caused by a transient
network or server error, or a closed SSH tunnel. If it
still fails, the proxy then connects to the replica server,
and forwards the failed call and the following ones
through the new connection. It is important to handle
NFS clients that cache file handles in memory. Hence,
for each redirected RPC call, the proxy client maps the
old file handle inside the message to the new one3.
Therefore the application does not even notice the
failure4, and the recovery is handled transparently.

The consistency among the replicas can be dealt
with in two ways. An active-style replication scheme
can be used, where each modification request on the
data is processed by all the replicas. The advantage is
that recovery can be very fast but it causes extra traffic
and load on each server. Another scheme is to integrate
the COW technique described above with the
replication scheme, so no propagation of modifications
is necessary, and server failure can be quickly
recovered by switching to the replica server.

5. Usage Examples
5.1 VM Based Grid Computing

VMs have been demonstrated as an effective way to
provide secure and flexible application execution
environments in Grids [10]. The dynamic instantiation
of VMs requires efficient data management: both VM
state and user/application data need to be provided to
the machine running a VM, and may be stored in
remote data servers. Previous work has described a
VMPlant Grid service to support the selection, cloning
and instantiation of VMs [21]. The data management
services provide functionality that complements
VMPlant to support VM-based Grid systems.

In this model, the VMPlant service is in charge of
managing and instantiating VMs, including the VMs
used for computing (execution of applications), and
data (storage of application and user data). To
instantiate a compute VM, the VMPlant service

3 Proxy has a file handle to path mapping on stable storage. An old
file handle is mapped to the new one by the proxy parsing the path
with LOOKUP calls to the replica server.
4 The session is hard-mounted.

requests the DSS to schedule a GVFS session between
the VM state server and the VM host, and the VM state
can be transferred in the way discussed in [31]. After
the VM is instantiated, the VMPlant service requests
the DSS to schedule another session between the
compute VM and the data VM, for access to the
application and user data. Then the application can be
started inside the compute VM.

The DRS allows for replication of data VMs for
improved reliability. VM instances can be
checkpointed/resumed using the techniques available
in existing VM monitors (e.g. VMware
suspend/resume, scrapbook UML, Xen 2.0). With
COW enabled in the GVFS session, buffered data
modifications introduced by the application are also
checkpointed as part of the VM’s saved state. Upon
failure of the compute VM, a session can be resumed
from the last checkpoint to a consistent state with
respect to the data server.

5.2 Workflow Execution

A workflow typically consists of a series of phases,
where in each phase a job is executed using inputs that
may be data-dependent on other phases. Workflow
data requirements can be managed by the DSS with a
file system session per phase, and each session can be
tailored to suit the corresponding job. Furthermore, the
control over enabling and disabling the consistency
models and synchronizing client/server write-back
copies is available via the service interface. Hence
scheduling middleware can select and steer
consistency models during the lifetime of a session.

For instance, a typical workflow in Monte-Carlo
simulations consists of executing large numbers of
independent jobs. Outputs are then post-processed to
provide summary statistics. This two-phase
workflow’s execution can be supported by the data
management services with a data flow (Figure 3) such

…Execute job 1 Execute job n

Barrier

Start

Post-processing

End

Session 1 Session n

Session
n+1

…

…

Create session 1 to n
with write-back caching

Force session 1 to n
to write back and

disable write delay

Create session n+1
with invalidation polling

Figure 3. A Monte-Carlo workflow and the
corresponding data flow supported by the data
management services.

that (1) a session is created for each independent
simulation job with an individual cache for read/write
data, (2) each session is forced to write back and then
disable write delay as the simulation jobs complete,
and (3) a new session with invalidation polling
consistency is created for running the post-processing
jobs that consume the data produced in step (1).

Such a workflow can be supported by the In-VIGO
system [1], where a configuration file is provided by
the installer to specify the data requirement and
preferred consistency model for each phase. When it is
requested by a user via the In-VIGO portal, the virtual
application manager interacts with the resource
manager to allocate the necessary resources, interacts
with the data management services to prepare the
required file system session, and then submits and
monitors the execution, for each phase of the workflow.

6. Evaluation

The service-managed Grid file system sessions have
been investigated with experiments based on the
execution of applications in Grid VMs. The VMs are
based on VMware GSX 2.5; detailed configurations
are shown in Table 1. The “Compute VM” is the data
client, and the “Data VM” is the file system server.
Wide-area setups between University of Florida (UFL)
and both Northwestern University (NWU) and
Louisiana State University (LSU) are considered.

The choice of VM-based environments is motivated
by two factors. First, experiments in wide- and local-
area networks with consistent execution environments
can be easily set up by transferring VMs. Second, file
system checkpointing is a powerful complement to a
VM monitor’s native checkpointing capability.

6.1 Overlay Weak Cache Consistency

Two benchmarks are considered in this experiment
with the VMs described in Setup 1 of Table 1. The
NanoMOS benchmark models the usage of a shared
software repository. It runs the parallel version of
NanoMOS, a 2-D simulator for n-MOSFET transistors.
The execution requires MATLAB, including the MPI
toolbox (MPITB), which is read-shared among WAN

users and also maintained by a LAN user, the
administrator. A WAN user runs NanoMOS for 8
iterations, while between the 4th and 5th run the
administrator performs an update in the repository.

0
100
200
300
400
500
600
700

1 2 3 4 5 6 7 8

R
un

ti
m

e
(s

ec
on

ds
)

NFS
GVFS
LOCAL

0
100
200
300
400
500
600
700

1 2 3 4 5 6 7 8
Execution iterations

R
un

ti
m

e
(s

ec
on

ds
)

NFS
GVFS
LOCAL

Figure 4. NanoMOS benchmark runtimes of 8
iterations performed across WAN via native NFS,
and GVFS with 30 seconds invalidation period, and
on local disk. Between the 4th and 5th run another
user updates the software, where in (a) (top graph)
the entire MATLAB is updated, and in (b) (bottom
graph) only the MPITB is updated.

0

10

20

30
40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
Execution iterations

R
un

ti
m

e
(s

ec
on

ds
)

NFS GVFS

Figure 5. CH1D benchmark runtimes for 10
iterations on the input data accessed across WAN
via native NFS, and GVFS with 30s invalidation
period. Each run has a new data directory
generated on the data VM and consumed by the
post-processing program on the compute VM.

Table 1. Experimental Setup
 VM VM Configuration Host Configuration Network Between the VMs

Compute VM Dual-2GHz Xeon processors,
1.5 GB memory 1

Data VM
256MB memory, 4GB disk,

Linux RedHat 7.3 Dual-2.4GHz Xeon processors,
1.5 GB memory

WAN between NWU and UFL,
VNET[27] used between the VMs

Compute VM 2 Data VM
256MB memory, 4GB disk,

Linux RedHat 7.3
Compute VM 3 Data VM

256MB memory, 3GB disk,
Linux Debian 3.1

Dual-3.2GHz Xeon processors,
2.5 GB memory

WAN between LSU and UFL,
SSH tunneling used

Two situations are considered: a major update, where
the entire MATLAB is updated, and a minor update,
where only the MPITB is updated.

Figure 4 shows the runtimes of the benchmark
when the repository is mounted from the data VM via
NFS/GVFS, or stored on local disk. With the relaxed
cache consistency model the GVFS session achieves
23-fold speedup when its caches are warm, compared
to native NFS. When updates happen, performance is
affected depending on the amount of necessary
invalidations: in (a), the invalidations triggered by the
major update almost completely flush the cache, so
iteration 5 only performs 3% better than iteration 1. In
(b), the iteration after the minor update is still 14-fold
faster than native NFS. In the common case (in the
absence of updates), the performance of conventional
NFS over the WAN is very poor, while the
performance of the GVFS session with weak
consistency is very close to local-disk performance.

Another benchmark used is based on CH1D, a
hydrodynamics modeling application. It models a
scenario where real-time data are generated on coastal
observation sites and processed on off-site computing
centers. CH1D outputs data into a sequence of
directories on the data VM, which become the inputs
to a post-processing program executed on the compute
VM. The program runs 10 iterations, where in each run
a new data directory is generated and then consumed
by the post-processing program. The experiment
results are shown in Figure 5. It is evident that as the
input dataset grows the penalty caused by consistency
checks also grows almost linearly in native NFS, but it
remains practically constant in GVFS. The 10th run of
GVFS is already 5 times faster than native NFS.

6.2 File System Checkpointing/Recovery

This experiment models a scenario where a VM
running an arbitrary application is checkpointed,
continues to execute, and later fails. Before failing, the
application changes the state of the file server
irreversibly – e.g. by deleting temporary files. This
case is tested with the Gaussian computational
chemistry application running on the compute VM and
data mounted from the data VM (Setup 2 in Table 1).
The experiments show that, in native NFS, when the
compute VM is resumed to its previous checkpointed
state, the NFS reports a stale file handle error and the
application aborts. In contrast, with the application-
tailored checkpointing GVFS session, the application
has been recovered successfully after the VM is
resumed from the same checkpoint.

Although it is arguable that for this particular
example, saving the temporary files on the compute

VM’s local disk instead of on GVFS can also include a
consistent data state in the checkpointed VM, it is
difficult for applications whose temporary data
generation pattern is not explicitly available or
controllable. The COW assisted checkpointing is
important because it can be applied to provide failover
from client failure for a more general scenario. In fact,
in combination with a VM, it supports checkpointing
of legacy programs using data from NFS-mounted file
systems, a capability unique to this approach.

6.3 Error Detection and Data Redirection

In this section, the application of the FSS-based
error detection and data redirection is evaluated with a
data session established for the SPECseis96
benchmark application. During its execution, a failure
is injected by powering off the data VM. The failure is
detected when a RPC call times out, and is
immediately recovered by establishing a new
connection to the replica VM and redirecting the calls.

The experiment is conducted with the VMs
described in Setup 3 (Table 1). The benchmark
finishes successfully, without being aware of the server
failure and recovery during its execution. The elapsed
time of such a run (268 seconds) is compared with the
execution time of the benchmark in a normal GVFS
session (without injected failure, 258 seconds), and the
results show that the overhead of the error detection
and the redirection setup is 5 seconds (plus the timeout
value - 5 seconds, specified on the proxy). Considering
a long-running application, the overhead is negligible.

7. Conclusions and Future Work

Application-transparent data management and the
capability of improving upon a native distributed file
system at the user level are key to supporting a variety
of applications in Grid environments. Previous work
has shown that virtualization techniques provide a
framework for establishing isolated data access
sessions dynamically. This paper shows that a WSRF-
oriented architecture can be used to provide an
interoperable interface for managing such sessions,
while supporting configuration of data access/transfer
styles, caching and consistency, checkpointing and
replication based on application requirements. Results
show that performance enhancements due to user-level
caching and consistency policies, and reliability
enhancements due to file system checkpointing and
redirection are enabled by the service.

The current service framework can collect
application profiling information such as NFS RPC
call statistics. Future work will further leverage this

information to help optimize Grid data sessions with
application-tailored consistency models, replication
management and load balancing schemes.

Acknowledgements

Effort sponsored by the National Science
Foundation under grants EIA-0224442, ACI-0219925,
EEC-0228390 and NSF Middleware Initiative (NMI)
grants ANI-0301108 and SCI-0438246. The authors
also acknowledge a gift from VMware Inc., SUR
grants from IBM, and resources available from the
SCOOP prototype Grid. Any opinions, findings and
conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of NSF, IBM, or VMware. The
authors would like to thank Peter Dinda at
Northwestern University for providing access to
resources, and Justin Davis and Peter Sheng for
providing access to resources and applications.

References
[1] S. Adabala et al., “From Virtualized Resources to

Virtual Computing Grids: The In-VIGO System”,
Future Generation Computing Systems, special issue on
Complex Problem-Solving Environments for Grid
Computing, Vol 21 No. 6 (April 2005).

[2] S. Adabala et al., “Single Sign-On in In-VIGO: Role-
based Access via Delegation Mechanisms Using Short-
lived User Identities”, In Proc. of 18th IPDPS, 2004.

[3] B. Allcock et al., “Secure, Efficient Data Transport and
Replica Management for High-Performance Data-
Intensive Computing”, IEEE Mass Storage Conf., 2001.

[4] J. Bent et al., “Explicit Control in a Batch-Aware
Distributed File System”, In Proc. of the First USENIX
Symposium on Network Systems Design and
Implementation (NSDI), pp365-378, 2004.

[5] J. Bent et al., “Flexibility, Manageability, and
Performance in a Grid Storage Appliance”, In Proc. of
HPDC-11, Edinburgh, Scotland, July 2002.

[6] J. Bester et al., “GASS: A Data Movement and Access
Service for Wide Area Computing Systems”, In Proc. of
6th IOPADS, Atlanta, GA, May 1999.

[7] M. Bozyigit and M. Wasiq, “User-Level Process
Checkpoint and Restore for Migration”, Operating
Systems Review, 35(2):86-95, 2001.

[8] P. V. Coveney et al., “Introducing WEDS: a WSRF-
based Environment for Distributed Simulation”, UK e-
Science Technical Report, number UKeS-2004-07.

[9] R. Figueiredo, “VP/GFS: An Architecture for Virtual
Private Grid File Systems”, In Technical Report TR-
ACIS-03-001, ACIS, ECE, Univ. of Florida, 05/2003.

[10] R. Figueiredo, P. Dinda, J. Fortes, “A Case for Grid
Computing on Virtual Machines”, In Proc. of 23rd IEEE
Intl. Conf. on Distributed Computing Systems, 2003.

[11] R. Figueiredo, N. Kapadia and J. Fortes, “The PUNCH
Virtual File System: Seamless Access to Decentralized

Storage Services in a Computational Grid”, In Proc. of
HPDC-10, San Francisco, CA, August 2001.

[12] I. Foster (ed) et al., “Modeling Stateful Resources using
Web Services”, White paper, March 5, 2004.

[13] I. Foster et al., “The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems
Integration”, OGSI WG, GGF, June 22, 2002.

[14] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations”, Intl.
J. Supercomputer Applications, 15(3), 2001.

[15] K. Fu, M. Kaashoek, D. Mazières, “Fast and Secure
Distributed Read-Only File System”, ACM Transactions
on Computer Systems (TOCS), 20(1), pp 1-24, Feb. 2002.

[16] A. S. Grimshaw, M. Herrick, M, A. Natrajan, “Avaki
Data Grid”, In Grid Computing: A Practical Guide To
Technology And Applications, Ahmar Abbas, editor.

[17] N. H. Kapadia et al., “Enhancing the Scalability and
Usability of Computational Grids via Logical User
Accounts and Virtual File Systems”, In Proc. of IEEE
Heterogeneous Computing Workshop (HCW), 2001.

[18] N. Kapadia, J. Fortes, “PUNCH: An Architecture for
Web-Enabled Wide-Area Network-Computing”, Cluster
Computing, 2(2), 153-164 (Sept. 1999).

[19] M. Kozuch, M. Satyanarayanan, "Internet
Suspend/Resume," Fourth IEEE Workshop on Mobile
Computing Systems and Applications, NY, 2002.

[20] H. Kreger, “Web Services Conceptual Architecture”,
White paper WSCA 1.0, IBM Software Group, 2001.

[21] I. Krsul et al., “VMPlants: Providing and Managing
Virtual Machine Execution Environments for Grid
Computing”, In Proc. of Supercomputing, 2004.

[22] M. Litzkow et al., “Condor: a Hunter of Idle
Workstations”, In Proc. of ICDCS-8, June 1988.

[23] M. Litzkow et al., “Checkpoint and Migration of Unix
Processes in the Condor Distributed Processing System”,
Technical Report 1346, U. of Wisconsin-Madison, 1997.

[24] D. Mazières, “A toolkit for user-level file systems”, In
Proc. of the 2001 USENIX Technical Conf., June, 2001.

[25] B. Pawlowski et al., “NFS Version 3 Design and
Implementation”, In Proc. of USENIX Summer
Technical Conference, 1994.

[26] C. Sapuntzakis et al., “Virtual Appliances for Deploying
and Maintaining Software”, In Proc. of the 17th Large
Installation Systems Administration Conf., October 2003.

[27] A. Sundararaj and P. Dinda, “Towards Virtual Networks
for Virtual Machine Grid Computing”, 3rd USENIX
Virtual Machine Research and Technology Sym., 2004.

[28] D. Thain et al., “The Kangaroo Approach to Data
Movement on the Grid”, In Proc. of HPDC-10, 2001.

[29] G. Wasson and M. Humphrey, “Exploiting WSRF and
WSRF.NET for Remote Job Execution in Grid
Environments”, In Proc. of 19th IPDPS, 2005.

[30] B. White et al., “LegionFS: A Secure and Scalable File
System Supporting Cross-Domain High-Performance
Applications”, In Proc. of Supercomputing, 2001.

[31] M. Zhao, J. Zhang and R. J. Figueiredo, “Distributed
File System Support for Virtual Machines in Grid
Computing”, In Proc. of HPDC-13, 06/2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

