
CEN-5079: 7.February.2019 1

Week 5

User Authentication Protocols

CEN-5079: 7.February.2019 2

 The process of verifying an identity claimed by a
system entity

 Fundamental system security building block

 Basis of access control & user accountability

 Has two steps:

 Identification – provide claimed identity

 Authentication – verify validity of claim

 User authentication ≠ message authentication

User Authentication

CEN-5079: 7.February.2019 3

 Based on something the individual

 Knows - e.g. password, PIN

 Possesses - e.g. key, token, smartcard

 Is (static biometrics): fingerprint, retina

 Does (dynamic biometrics): voice, handwriting

 Can use alone or combined

 All can provide user authentication

 All have issues

User Authentication: How ?

CEN-5079: 7.February.2019 4

 Convince parties of each others identity

 Also exchange session keys

 May be one-way or two-way (mutual)

Key issues:

1. Confidentiality

 Protect session keys

 Prior keys or secrets need to exist

2. Timeliness

 Prevent replay attacks

Authentication Protocols

CEN-5079: 7.February.2019 5

 Valid signed message is copied and later re-sent

 Simple replay

 Copy message; replay later

 Repetition that can be logged

 Replay timestamped message within validity interval

 Repetition that cannot be detected

 Suppress original message

 Backward replay without modification

 Send the replay message back to its sender

Replay Attacks

CEN-5079: 7.February.2019 6

 Sequence numbers

 Attach sequence number seqno to message

 Accept message if seqno follows previous value

 Not always practical

 Timestamps

 Message needs to contain timestamp

 Accept message if timestamp is within validity window

 Need synchronized clocks

Replay Attacks: Countermeasures

CEN-5079: 7.February.2019 7

 Challenge/response

 Ensures message freshness

 Challenger sends random nonce R

 Responder’s message needs contain a function of R

Countermeasures (cont’d)

Alice
Trent T
(Host)

Challenge: R
1

Response:
contains F(R)

2

CEN-5079: 7.February.2019 8

 One-way authentication

 Mutual: two-way authentication

 Using symmetric key crypto

 Using public-key crypto

Authentication

CEN-5079: 7.February.2019 9

One-Way Authentication

Alice

Mallory

Trent T
(Host)

Login A
1

How can T know it’s

Alice and not Mallory

impersonating Alice ?

Login A
1’

CEN-5079: 7.February.2019 10

 Password

 Host stores Alice’s password

 Alice sends password

 Host verifies password

 Problem:

 Trent stores all passwords in clear

 Whoever breaks into Trent can steal passwords

 Solutions

 One-Way Functions

 Dictionary Attacks and Salts

Authentication Approaches

CEN-5079: 7.February.2019 11

Authentication Using Hashes

Alice Trent T
(Host)

Login A, pwd

1

User ID H(pwd)

Password

file

Alice HA

T: Compare

H(pwd) to HA

 Roger Needham and Mike Guy

 T does not need to know password

 Only differentiate between valid and invalid ones

Problem ?

CEN-5079: 7.February.2019 12

Password Vulnerabilities

 One-way hashes are vulnerable

 Which password is better ?

 Barney

 9(hH/A.

 Which one is easier to remember ?

 Dictionary attack

 Compile list of most probable passwords

 Apply hash function to each

 Compare against the password file

 If match, password has been found !

CEN-5079: 7.February.2019 13

Defending with Salts!

Alice Trent T
(Host)

Login A, pwd

1

H(s, pwd) == HA

Salt: per user random value

User ID H(salt, pwd)

Password

file

Alice HA

salt

s

CEN-5079: 7.February.2019 14

Example: Linux

 Passwords stored in /etc/shadow

 Root readable only

 carbunar:6lGHQQKZn$8.eJLvAaJiDTFAauGVbFlmn
AcjIKyLtH6GiO0mVgra8weKJ1igU2BmgdDQAalynFQ0
QuezQr7mDTWEPD7sDrW

 $6: hash algorithm
 $1 = MD5 hashing algorithm.

 $2 =Blowfish Algorithm is in use.

 $2a=eksblowfish Algorithm

 $5 =SHA-256 Algorithm

 $6 =SHA-512 Algorithm

CEN-5079: 7.February.2019 15

Example: Linux

 Passwords stored in /etc/shadow

 Root readable only

 carbunar:6lGHQQKZn$8.eJLvAaJiDTFAauGVbFlmn
AcjIKyLtH6GiO0mVgra8weKJ1igU2BmgdDQAalynFQ0
QuezQr7mDTWEPD7sDrW

 salt

 hash

CEN-5079: 7.February.2019 16

The Goal of Salts

 Ensure that attacker cannot use the same dictionary
to break all passwords

 Instead, attacker has to do a per-user dictionary +
computation …

CEN-5079: 7.February.2019 17

Improved Dictionary Attack [D. Klein]

1. Copy the password file

2. For each user A with salt s and hash HA

1. Collect dictionary DA of tentative passwords

2. Hash all items in DA using salt s

3. Compare result against HA

3. If match exists, found password

 40% of passwords were guessed on average system !

CEN-5079: 7.February.2019 18

Building the Dictionary

1. Name, initials, account name

 Example: Daniel V. Klein, account – klone

 klone0, klone1, …, dvk, dklein, DKlein, dvklein, etc

2. Words from databases

 Men and women names, nicknames (also famous)

 Places

 Variations of the above (capitalizations, plurals, etc)

3. Foreign language words

4. Word pairs

CEN-5079: 7.February.2019 19

Conclusions

 Never use your personal information

 Do not use words (dictionary)

 Use combination of words and characters

 Do not use same passwords for all systems

 Change your password frequently

 Use passphrases

 Example:

”My Password is not easy to crack”

 mpine2C.

CEN-5079: 7.February.2019 20

SKEY: Authentication for Machines

Use hash-chains

Alice Trent T
(Host)

Compute

x1= H(R)

x2= H2(R)=H(H(R))

x3= H3(R)=H(H(H(R)))

…

x100= H100(R)

Init, A, x100

1

Generate R
Store x100

Login, A, x99

2

Compare

H(x99) to x100

Login, A, x98

3

Discard x100 Store x99

CEN-5079: 7.February.2019 21

 One-way authentication

 Mutual: two-way authentication

 Using symmetric key crypto

 Using public-key crypto

Authentication

CEN-5079: 7.February.2019 22

What is Mutual Authentication ?

Alice

Mallory

1

Authenticate

1’

Make sure they don’t talk

to Mallory !

Bob B

Exchange keys

CEN-5079: 7.February.2019 23

 One-way authentication

 Mutual: two-way authentication

 Using symmetric key crypto

 Using public-key crypto

Authentication

CEN-5079: 7.February.2019 24

Using Symmetric Keys

Alice

Exchange keys

1

Authenticate

1’

Bob B

Trent T
(Host)

Assume T shares a key

with A (KA) and B (KB)

EA(M) :encryption with

key shared by A and T

CEN-5079: 7.February.2019 25

Wide-Mouth Frog

Alice
Bob B

Trent T
(Host)

Simplest Authentication/Key Exchange

A, EA(TA,B,K)
2 Generate random K

1

Decrypt message

using KA

3

EB(TT,A,K)
4

EK (M)

5

CEN-5079: 7.February.2019 26

Wide-Mouth Frog Observations

 Alice and Bob trust each other because of Trent

 Timestamps prevent replay attacks (Why ?)

 Trent is single point of failure/bottleneck

 Assumption:

 Alice is able to generate good random numbers

CEN-5079: 7.February.2019 27

Yahalom

Alice

A, RA

1

Bob B

Trent T
(Host)

Assume T shares a key

with A (KA) and B (KB)

EB(A,K)
4’

B, EB(A, RA, RB)
2

EA(B, K, RA, RB)
4

Equal ?

EB(A,K), EK(RB)

5

Equal ?

Generate random K
3

CEN-5079: 7.February.2019 28

Yahalom Observations

 This time the protocol is initiated by B (not T)

 T chooses the key K to be shared by A and B

 A and B trust each other

 Because of RA and RB

 Only T and B have access to RB

 Problem in step 1 -- RA is sent in clear

 Can Mallory impersonate B ?

 No !

 In step 4, T includes the identity of B - A will know who it is
talking to

CEN-5079: 7.February.2019 29

Needham-Schroeder

Alice
Bob B

Trent T
(Host)

A, B, RA
1

Generate random K
2

EA(RA, B, K, EB(K,A))
3

Equal ?

EB(K,A)

5

Extract key K
4

Extract key K
6

EK(RB)

8

Generate random RB

7

EK(RB-1)

9

Match ?

CEN-5079: 7.February.2019 30

Needham-Schroeder Observations

 What is the purpose of RA ?

 For A to prevent replay attacks

 Ensure it is talking to T

 What is the purpose of RB ?

 For B to prevent replay attacks

 And ensure that it is talking to A

 Weakness

 If Mallory gets hold of an old key K, it can impersonate A

 Solution: use timestamps

CEN-5079: 7.February.2019 31

Otway-Rees

Alice
Bob B

Trent T
(Host)

I,A,B,EA(RA,I,A,B)

1

EB(RB,I,A,B)
2

I,A,B,EA(RA,I,A,B)

2

Generate random K
3

I,EA(RA,K), EB(RB,K)

4

Match ?

I,EA(RA,K)

5

I – index number

“I” needs to be the same

across protocol !

CEN-5079: 7.February.2019 32

Kerberos - Simplified

Alice
Bob B

Trent T
(Host)

Kerberos 5: Variant of Needham-Schroeder

A, B
1

Generate timestamp t
2

Generate lifetime L
3

Generate random K
4

EA(t,L,K,B),
EB(t,L,K,A)

5

EK(A,t), EB(t,L,K,A)

6

EK(t+1)

7

CEN-5079: 7.February.2019 33

Kerberos Observations

 What is the goal of the timestamp and lifetime ?

 To prevent replay attacks

 The messages are valid only in [t,t+L]

 Major assumption:

 The clocks are synchronized !

 Not trivial (see Lamport’s clocks)

 In practice

 Use time servers

 Sync within a few minutes

CEN-5079: 7.February.2019 34

 One-way authentication

 Mutual: two-way authentication

 Using symmetric key crypto

 Using public-key crypto

Authentication

CEN-5079: 7.February.2019 35

Authentication with Public Keys

Alice
Bob B

Trent T
(Host)

Assume T has a database of

public keys for each participant

E(pkA, M): encryption with
A’s public key

SA(M): signature with A’s

private key

pKA: A’s public key

CEN-5079: 7.February.2019 36

Denning-Sacco

Alice
Bob B

Trent T
(Host)

A, B
1

ST(B, pkB), ST(A, pkA)
2

E(pkB, SA(K,TA)),

ST(B, pkB), ST(A, pkA)

5

Generate timestamp TA

3

Generate random K
4

Decrypt with its private key

Verify A’s signature

6

Recover key K
7

CEN-5079: 7.February.2019 37

Attacking Denning-Sacco !

Bob B

Trent T
(Host)

B, C
1

ST(B, pkB), ST(C, pkC)
2

E(pkC,SA(K,TA)),

ST(C, pkC), ST(A, pkA)

4

Decrypt with its private key

Verify A’s signature

5

Recover key K
6

From the previous
session

Bob can impersonate
Alice with Carol !

Reuse elements from

session with A

3

Carol C

CEN-5079: 7.February.2019 38

Denning-Sacco Fix

Alice
Bob B

Trent T
(Host)

A, B
1

ST(B, pkB), ST(A, pkA)
2

E(pkB,SA(A, B, K,TA)),

ST(B, pkB), ST(A, pkA)

5

Generate timestamp TA

3

Generate random K
4

Decrypt with its private key

Verify A’s signature

6

Recover key K
7

Add the names of

the parties

Verify names A and B

are in message

7

Cannot be re-used
with Carol !

CEN-5079: 7.February.2019 39

Denning-Sacco Lessons

 Better be prudent than efficient

 Include more rather than less information

 Timestamps, random nonces, names of participants

CEN-5079: 7.February.2019 40

Woo-Lam

Alice
Bob B

Trent T
(Host)

A, B
1

ST(B, pkB)

2

A, E(pkB, A,RA)

5

3

Generate random RA

4

A, B, E(pkT, RA)
6

Generate random K
7

ST(A, pkA), E(pkB, ST(RA, K, A, B))
8

Verify T’s signatures

9

Generate random RB

10

E(pkA, ST(RA, K, A, B), RB)
11

Verify T’s signature

12

Verify RA

13

EK(RB)

14

CEN-5079: 7.February.2019 41

Oauth 2.0

CEN-5079: 7.February.2019 42

The Problems

 User authentication is difficult

 Passwords are hard to remember

 Many of them, for many sites and apps

 Users cannot port their data from a site to another

 Examples:

 Game would like to access user’s data from
Facebook

 Location based app would like to access user’s
data from Foursquare application

CEN-5079: 7.February.2019 43

OAuth 2.0

 Open authorization protocol

 Enable apps and websites to authenticate users with
their credentials for other trusted sites (Facebook,
Twitter …)

 Enables apps to access the user data of other systems

 Enable apps to call functions of other systems

 Post in Facebook, Twitter

https://gist.github.com/mziwisky/10079157

CEN-5079: 7.February.2019 44

OAuth 2.0

 The user accesses the app

 The app asks the user to login to the app via Facebook

 The user logs into Facebook, and is sent back to the app

 The app can now access the users data in Facebook
 Call functions in Facebook on behalf of the user: post status

updates)

Alice

1. Log into new app

via Facebook
2. Access Alice data

from Facebook

App

Service

CEN-5079: 7.February.2019 45

The Roles

 Resource owner: person or app that owns the data

 Resource server: server hosting the data

 Client: app needs access to data stored on the resource server

 Authorization server: authorizes client to access the data
 Can be same of different from resource server

Alice:
Resource

owner

Resource server

Authentication server

Client app

CEN-5079: 7.February.2019 46

Step 1: Client App Registration

 One time process

Service

Client app

1. Register, R_URI

2. IdC, passwordC

Store:

Oauth_clients: [

 Client_app: {

 client_id: IdC

 shared_secret: passwordC

 redirect_URI: R_URI

 }

 …] Store:

 [service_name: Service

 client_id: IdC

 shared_secret: passwordC

]

Example R_URI: app.com/oauth_response

All OAuth communications
are encrypted SSL/TLS

CEN-5079: 7.February.2019 47

Client app

Step 2: User Login

 User starts the app

 Click “Login thru Facebook/Gmail/ …”

 Redirect user to the authentication server

 Authentication server: display page saying “App wants to
access your data. Do you authorize?”

Alice:
Resource

owner

1. Login

2. IdC, URI

3. Login IdA, passwordA, IdC, R_URI

Authentication server

2: URI = facebook.com/oauth2/auth?client_id=IdC&redirect_uri=R_URI

CEN-5079: 7.February.2019 48

Client app

Step 2: User Login (cont’d)

 Authentication server:

 Associate one-time-use code RAC with app.com

 Redirects user to the “redirect URI” passing RAC to it

Alice:
Resource

owner

4: app.com/oauth_response?code=RAC

1. Login

2. IdC, URI

3. Login IdA, passwordA, IdC, R_URI

Authentication server

4. Generate
one-time-use

code RAC

4. RAC

CEN-5079: 7.February.2019 49

Step 2: User Login (cont’d)

 App takes the code and directly (i.e., not via a REDIRECT)
queries authentication server

 Server verifies and then invalidates the RAC
 Responds with an AccessToken

 App can use Access Token to access the user’s data

Client app Alice:
Resource

owner

1. Login

2. IdC, URI

3. Login IdA, passwordA, IdC, R_URI

Authentication server

4. RAC

5. IdC, pwdC, RAC

6. Access Token

5: GET facebook.com/oauth2/token?client_id=IdC&client_secret=passwordC&code=RAC

CEN-5079: 7.February.2019 50

Step 3: User Accesses App

Client app Alice:
Resource

owner

1. Access app

2. Display

user data Authentication server

2. Request user data

Access Token

3. Verify

Access Token

4. User data

