
Algebraic Methods for Interactive Proof Systems

CARSTEN LUND, LANCE FORTNOW, AND HOWARD KARLOFF

Unu>ersity of Clucago, Chicago, Il[mois

AND

NOAM NISAN

Hebrew Unuemi@ Jen{salern, Israel

Abstract. A new algebraic technique for the construction of interactive proof systems is presented.

Our technique is used to prove that every language in the polynomial-time hierarchy has an
interactive proof system. This technique played a pivotal role in the recent proofs that 1P=
PSPACE [28] and that MIP = NEXP [4].

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of Computa-
tion—Interactive computation; probabilistic computation; relations ar?lo?zg modes; relutitized cot?zpata-

tton; F. 1.3 [Computation by Abstract Devices]: Complexity Classes —Complexi@ hierarchies; rela-

tions among complexi@ clusses

General Terms: Theory

Additional Key Words and Phrases: Interactive proof systems

1. Introduction

NP can be viewed as the set of languages L with this property: There is a

deterministic polynomial-time verifier (Vanna) and an infinitely powerful prover

(Pat) such that for all x, if x is in L, then in polynomial time Pat can persuade
Vanna that x is in L, and if x is not in L, then no prover (Pat or any other)

can persuade Vanna that x is in L. Pat and Vanna communicate on a two-way

channel (though two-way communication is not necessary here). For example,

Pat can convince Vanna that a graph G is 3-colorable by exhibiting a 3-

C. Lund’s work was supported by a fellowship from the ~rhus University, ~rhus, Denmark.

L. Fortnow’s work was supported by National Science Foundaton (NSF) grant CCR 90-09936.

H. Karloffs work was supported by NSF grant CCR 88-07534.

N. Nisan’s work was partially performed at the Massachusetts Institute of Technology (MIT),
Cambridge, Mass., and was supported by NSF grant CCR 86-5727 and Army Research OffIce

(ARO) grant DLL03-86-K-017.

Authors’ addresses: C. Lund, L. Fortnow, and H. Karloff, Department of Computer Science,

University of Chicago, 1100 East 58th Street, Chicago, IL 60637; N. Nisan, Department of
Computer Science, Hebrew University, Jerusalem, Israel.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the tide

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy othervvise. or to republish, requires a fee and/or
specific permission.
@ 1992 ACM 0004-541 1/92/1000-0859 $01.50

JmmMl of the Assomitmn for Comput]ng Machmmv, Vol 39, No 4, Octohcr 1992, pp 859-8h8

860 C. LUND ET AL.

coloring. If G is not 3-colorable, no prover will ever succeed in persuading

Vanna that G is 3-colorable. (Of course, co-NP-complete languages are not

thought to be in NP. No prover is known who can convince a skeptical

deterministic verifier that G is not 3-colorable, if it is not 3-colorable.)

We can extend this idea of “provability” by allowing Vanna to flip coins and

by requiring instead that if x is in L, with probability at least 2/3 Pat

persuades Vanna that x is in L, and if x is not in L, no prover can convince

Vanna that x is in L with probability more than 1/3. Babai [2] and Gold-

wasser et al. [21] developed this interactizle proof system model. A summary of

previous results on interactive proof systems can be found in [51.

Although certain problems such as graph nonisomorphism, which are not

known to be in NP, were known to have interactive proof systems [10],

theoretical computer scientists generally believed that the class 1P of languages

accepted by interactive proof systems was not much larger than NP. In

particular, it was believed that co-NP-complete languages did not have interac-

tive proof systems.

We prove that interactive proof systems have far greater power than origi-

nally believed. Our main result is an interactive proof system for the language

{(A, S)1Sis the permanent of 0-1 matrix A}. When combined with the fact that
the permanent O–1 matrices is #P-complete [33] and the fact that #P is hard

for the polynomial-time hierarchy [32], the existence of an interactive proof

system for the permanent implies that every language in the polynomial-time

hierarchy has an interactive proof system. In particular, this means that every

language in CO-NP has an interactive proof system, even the complement of

3-COLORABILITY, for example.

For the proof, we develop a new technique for reducing the problem of

veri~ing the value of a low-degree polynomial at two given points to veri~ing

the value at one new point. Shamir [28] has used this technique to prove that

all languages in PSPACE have interactive proof systems. From the fact that

1P c PSPACE [15], it follows that 1P = PSPACE. Babai et al. [4] have also

used this technique in their proof that every language in nondeterministic

exponential time has a two-prover interactive proof system in which the provers

cannot communicate with one another.

Our results also have implications for program checking, verification and

self-correction in the context of Blum and Kannan [9], Blum et al. [10], and

Lipton [25]. In fact, the Blum–Luby–Rubinfeld and Lipton papers inspired our

result.

Our result does not relativize. Fortnow and Sipser [18] have created an

oracle under which CO-NP does not have an interactive proof system. To our
knowledge this is the first result to “go contrary” to a previously published

oracle. Subsequent to the announcement of our result, Chor et al. [13] proved
the same relativized result for a random oracle.

2. Definitions

A verfier V is a polynomial-time, probabilistic Turing machine with a special

communication tape. A prol~er P is an arbitrary map f from each finite

sequence x, ql, ql, q~. ..., where x G {O, 1}* and each q, G {O, l}*, to a O–1

string.

The computation proceeds as follows. Both P and V get x G {O, 1}*. V then
computes for a while, and writes a query ql = {O, 1}* on her communication

Algebraic Methods for Interactille Proof Systems 861

tape. P responds by replacing the ql with f (x, ql). V computes, overwrites

f(x,ql) with a query q, c {O, l}*,and awaits P’s response, f(x, q,, q,). This
process continues until V halts and accepts or rejects x. A round is a query

from V followed by a response from P.

The pair (P, V) forms an interactive proof system for a language L if for all

.x E {o, l}*:

(1) If x ● L, then Pr(V accepts input x when interacting with P) > ~.
(2) ~,)x<@lL, then for all provers P‘, Pr(V accepts x when interacting with

— 3.

1P is the class of all languages which have interactive proof systems.

The class #P consists of all functions f: {O, 1}* -+ N for which there exists a

polynomial-time, nondeterministic Turing machine M such that for all inputs

x, the number of accepting computations of M on x equals f(x). Pxp is the

class of languages recognized by a polynomial-time oracle Turing machine with

an oracle for some function f in #P. Given x, the oracle Turing machine can

learn f(x) in one time step by querying its oracle.

3. The Protocol

We prove

THEOREM 1. ELley language in P #P has an interactil)e proof system.

Together with Toda’s result that P#p contains all the languages of the

polynomial-time hierarchy [32], Theorem 1 implies:

COROLLARY 2. Euey language in the pobnomial-time hierarchy has an inter-

actille proof system. In particular, every language in CO-NP has an interactive proof

system.

We list some facts about the permanent of a matrix A that will be crucial in

the proof of Theorem 1. If A = (a,]) is r x r, the permanent per(A) =

Zaala(l)azm(z) .“. arm(r), where the sum is over all permutations u of

{1,2,..., r}. We can equivalently define the permanent recursively as per(A) =

~1 < Ls rail oPer(~llL) where J41127 the (17 Z)-minor of ~, is the matrix ~ without
the first row and the ith column. The number of perfect matchings in an

N-boy, N-girl bipartite graph G is equal to the permanent of G’s adjacency

matrix.

We exhibit an interactive proof system for verifying the permanent of a O– 1

matrix. The following lemma implies that this is sufficient to prove Theorem 1.

LEMMA 3. If L = {(A, s)IA is a O–1 matrix andper(A) = s} has an interac-

tiLle proof system, then every language in P ‘p has an interoctiue proof system.

PROOF SKETCH. From the fact that computing the permanent of O-1

matrices is #P-complete [33], we can reduce the membership problem for a

language L’ = P #p to that of verifying the permanents of O– 1 matrices. Given

an interactive proof system for L, it is easy to construct one for L‘. ❑

Throughout most of this paper we work with the permanent over 27P of an

N X N matrix A with entries in ZP, where p is a prime in (N!,2N!).

(Bertrand’s Postulate [26] guarantees the existence of such a prime.) If A is

O–1, then the permanent of A over ZP coincides with its permanent as an

862 ~. LUND ET AL.

integer matrix, since the permanent of an N x N O– 1 matrix cannot exceed
N!. W/e use the cr~~ial fact that if B is an r X r matrix over ~P ~h~se entries

are linear polynomials over ZP, then per(B) is a polynomial of degree at most r

over 2P. Compared to p, any r s N is minuscule.
The verifier Vanna will use this fact to “trip up” a cheating prover. She will

maintain a list of pairs & = ((ill, ql), (13z, qj), ..., (lIf, q,)), where the B,’s are

square matrices of the same size and q, = ZP. Initially -!%= ((A, s)). If

s = per(A), then a prover who truthfully answers all of Vanna’s questions will

induce Vanna eventually to shrink the list to a single pair (B, q), where B is

1 x 1 and q = per(B). At that point, Vanna will correctly accept the input.

If s # per(A), then however the prover answers Vanna’s questions, with very

high probability Vanna will maintain this “invariant”: the list contains at least

one pair (B,, q,) such that q, # per(B,). (“Invariant” appears in quotes because

with extremely low probability, at some point every q, might equal per(B,).)

When the list shrinks to one pair (B, q) where B is 1 x 1 and q # per(B),

Vanna will reject the input (if not earlier).

How Vanna manipulates the list is the crux of the protocol. When

S’= ((B,q)) (B = (b,,), 1 < i, j < r, and r > I), for each i = 1,2,..., r, Vanna

constructs the minor B, = Bill, asks Pat for the permanent of B,, and gets q, in

return. Vanna checks that q = Z;= ~bll q,; if not, she halts and rejects. If

q = ~~.lbltq,, she expands -Y by replacing L? by ((Bl, ql),

(Bz, qz),..., (B,, q,)). provided that q # per (B), q, + per(BZ) for some i.
When the list has more than one pair, Vanna shrinks the list by replacing the

first two pairs (C, c-), (D, d) by a new pair (E, e), in the following way. The

function ~(x) = per(C + x(D – C)) is a polynomial of degree at most r over

ZP. Vanna asks Pat for the r + 1 coefficients of ~ and constructs a polynomial

g from the responses. (Or Vanna could just ask for the value of ~ at r + 1

arbitrary points and interpolate herself.) If g(0) + c or g(1) + d, Vanna

rejects.

Vanna now uniformly chooses a random a = ZP,1 sends it to Pat, constructs

E = C + a(ll – C) and e = g(a), and replaces the pairs (C, c), (D, d) in S by

the one pair (E, e). The crucial fact is that if c # per(C) or d # per(D), then

with probability at least 1 – r/p, per(E) # e. This follows from Lemma 4.

LEMMA 4. Let C and D be r X r matrices ol)er ZP. Let g be a polynomial of

degree at most r oler ZP such that eitherg(0) # per(C) or g(1) + per(D). Then if

a is chosen uniformly at random from ZP,

Pr[per(C +a(D – C)) =g(a)] < ~.

PROOF. Let f(x) = per(C + x(D – C)), a polynomial of degree at most r

over ZP. Since f(0) = per(C) and f(1) = pm-(D), clearly f + g. But two non-

identical polynomials of degree at most r over ZP can coincide on at most r

1Throughout the paper, we assume that Vanna can choose elements of Z,, umformly at random,
despite the fact that she can only pick b~tAuniformly at random, In reality, she will pick integers a

uniformly at random from {O, 1, 2, ..., M – 1}, where Lf is the least power of two exceeding p,
until one is less than p. If enough trials fzail to fmd an a less than p, she wdl Just halt and accept

x. Thri increases the probability of erroneously accepting an x t?!L only slightly.

Algebraic Methods for Interactive Proof Systems 863

points. It follows that there are at most r values a such that

g(a) =f(a) = per(C + a(ll – C)). ❑

If 5= ((Bl, ql), (Bz, q2), .- .,(B/, q,)) and at least one i satisfies per(lll) #

q,, then with very high probability, after t – 1 shrinking S will consist of one
pair (L?, h) with h # per(H). The idea, then, is to replace the initial list

Y = ((A, s)) by lists of smaller and smaller matrices, until eventually % =

((B, q)) where B is 1 x 1. If q # per(B)—a condition Vanna can easily test
—Vanna will reject. Otherwise, she’ll accept.

How likely is it that Vanna will be able to maintain the “invariant”? A

sequence of one expansion step followed by r – 1 shrinking steps will replace

5?= ((B, q)), where B is r x r, by -!3= ((B’, q’)), where B’ is (r – 1) X

(r – 1). Thus fewer than iV2 steps (of either kind) suffice to reduce &=

((A, s)) to 1% = ((B, q)), where B is 1 X 1. It follows that the probability that
a cheating prover can induce Vanna to erroneously accept (A,s) is less than

IV2 times the minuscule probability (at most IV/p) that a given expand or

shrink step first violates the “invariant .“

Now we give the full proof of Theorem 1.

PROOF OF THEOREM 1. By Lemma 3, it suffices to exhibit an interactive

proof system for

L = {(A,s)IA isa O-lmatrix and per(A) = s}.

Here is a formal description of the protocol. A is an lV X N O–1 matrix and

O< S< N!.

begin
Let --%= ((A, s)). Pat picks an integer in p in (N!, 2N) and provides a short proof to

Vanna that p is prime [27]. Afl arithmetic in this protocol is done module p.
Repeat until S?= ((B, q)) for some 1 x 1 matrix B:

if %= ((B, q)), then do
Expand: Suppose that B = (b,,) is r X r. Vanna constructs B, = B1,, for 1< i < r. She

asks Pat for the permanents of B,, 1 s i < r, and gets q, for the permanent of B,. If

X:= ~blZq, *q, Vanna rejects. Otherwise, she sets ~= ((BI, g,), (B,, %),..., (B,, %)).
else (5? has two or more pairs) do

Shrink: Vanna chooses the first two pairs (C, c) and (D, d) from $%, asks Pat for the
r + 1 coefficients of ~(x) = per(C + x(D – C)) (where C and D are r X r), and

constructs g(x) from them. If g(0) + c or g(1) + d, Vanna rejects. Otherwise, she

chooses a random a = Z!P, sends it to Pat, and replaces the pairs (C, c), (D, d) in -%
by (C + a(D – C), g(a)).

When LF = ((B, q)) and B is 1 X 1, Vanna accepts if q = per(B) and rejects if q + per(B).

end

The protocol contains exactly N – 1 Expand steps and (N – 1) + (N – 2)

+ “”. + 2 + 1 Shrink steps if Vanna accepts (A, s).

We prove:

(1) There is a prover Pat such that for all N and all N x N O-1 matrices A, if
s = per(A), then Pr[Vanna accepts (A, s)] = 1.

(2) Ifs + per(A), then for all powers, Pr[Vanna accepts (A, s)1 < N3/P < 1/3
(if N > 6).

It is easy to see that a prover who truthfully answers all of Vanna’s questions

when per(A) = s induces Vanna with probability one to reduce & to ((B, q))

864 C. LUND ET AL.

with B 1 x 1 and q = per(n). At this point Vanna accepts. This completes the

proof of (l).

For (2), let s # per(~). Fix any prover Pat. If Vanna accepts (~, s), then, at

some time, 5?= ((B, q)) with q = per(B); initially --Y= ((A, s)) with s #

per(A). We say that Pat succeeds in iteration m if the repeat loop is executed in

full at least m times, and

q = per(B) for all (B, q) in L?

first occurs just after the repeat loop has been executed exactly m times.

Pat succeeds in some iteration if Vanna accepts. Since there are only N +

(N- 1)+ ““” + 2< N ~ iterations, it suffices to prove that Pr[Pat succeeds in

iteration m] < N/p.

Fix an m. Without loss of generality, we may assume that Pat never induces

Vanna to reject until & consists of only one pair, in which the matrix is 1 x 1.

(Othemke, we may replace Pat by another prover Pat’ who, instead of
inducing Vanna to reject early, answers the remaining questions in a way that

is consistent with his earlier responses, as long as possible. Against such a

prover Vanna will not halt until the last stage of the protocol. The probability

that Pat succeeds in iteration m is no greater than the probability that Pat’

does.)

Pat simply cannot succeed in an Expand step: If .&= ((B, q)) with q +

per(n) becomes S?= ((Bl, ql),..., (B,, q,)) with q, = per(B,) for all i, Vanna
immediately rejects.

If iteration m is a Shrink step, & contains (C, c) and (D, d) before the step

and (E, e) afterward. If c = per(C) and d = per(D), then L?’ contained a pair

(H, h) with h + per(H). It still does. So we may assume that either c + per(C)
or d # per(D). In this case, Lemma 4 tells us that Pr[e = per(E)l < N/P.

Thus,

N
Pr[Pat succeeds in iteration m] < —. n

P

4. Extensions

The protocol above requires O(N 2) rounds of prover–verifier communication

when the input matrix is N X N. Babai has suggested the following scheme to

reduce the number of rounds to 0(N). His idea makes it possible to shrink a

list _%’ with r pairs into a list 5’ with one pair in one round. For 1 < i < r, let

f,(x) = n
(x -j)

,.j~l.l~j~, (i -j)

Note that ~(x) is a polynomial over ZP of degree r – 1 with f,(i) = 1, and if

j + i, then f,(j) = O. Let 1%= ((Bl, q,), (Bz, qz),. . . ,(B,, q,)) and define

C(x) = Z;., ~(x) B,. The matrix C(x) has entries consisting of polynomials of

degree at most r – 1. Now f(x) = per(C(x)) is a polynomial of degree at most

r(r – 1) with f(i) = per(C(i)) = per(B,) for all i, 1 < i < r. This gives us an

alternative Shrink procedure:

Shrink: Vanna asks Pat for the r(r – 1) + 1 coefficients of f(x) =

per(C(x)) and constructs g(x) from them. If g(i) # q, for some 1 < i < r,

Algebraic Methods for Interactive Proof Systems 865

then Vanna rejects. Otherwise, she chooses a random a G ZP, sends it to

Pat and replaces & by ((C(a), g(a))).

The proof of correctness is similar to that of Theorem 1 and is omitted here.

Because the number of rounds of an interactive proof system can be reduced

by a constant factor [5], for any e >0 there is a variant of our permanent

protocol running in at most EN rounds. A bounded-round protocol for the

permanent would imply that the polynomial-time hierarchy collapses, since

Boppana et al. [11] have shown that if all CO-NP languages have bounded-round

protocols, then the hierarchy collapses. To our knowledge, this is the first

example of an interactive proof system that appears to require an unbounded

number of rounds.

Babai and Fortnow [3] and Shamir [28] have provided alternate interactive

proof systems for veri&ing the values of #P functions by counting the number

of assignments satisfying a CNF formula, thus circumventing the need for

Valiant’s result on the completeness of the permanent. They have shown how

to “arithmetize” a formula as a low-degree polynomial so that Pat and Vanna

can use a protocol similar to that of Section 3 to veri& the number of satisfying

assignments.

Shamir [28] has shown how to arithmetize a QBF formula, using dummy

variables to keep the degree low. Using a protocol similar to that in Section 3,

he then proves that every language in PSPACE has an interactive proof system.

Shen [29] later provided a “degree-reduction operator” as an alternate tech-

nique to keep the degree low.

Babai et al. [4] have applied the techniques of this paper to multiple-prover

interactive proof systems, defined by Ben-Or et al. [8] as interactive proof

systems having a polynomial number of provers unable to communicate among

themselves or to see the conversation between any other prover and the

verifier. Babai, Fortnow, and Lund have proven that any language computable

in nondeterministic exponential time has a multiple-prover interactive proof

system. Their proof uses ideas similar to those of [3] and [28] in order to reduce

the problem to that of testing the multilinearity of a function.

Cai et al. [12] have used the protocols of this paper and of Shamir [28] to

prove that every PSPACE language has a bounded-round multiple-prover

integrative proof system.

Fortnow and Lund [16] have extended the techniques from this and Shamir’s

paper [28] to exhibit a polynomial equivalence between time-space complexity

of alternating Turing machines and the time–space complexity of the verifier

in a public-coin interactive proof system. In particular, they prove that every

language in NC has an interactive proof system with a public-coin, polynomial-

time, logarithmic-space verifier.

5. Implications

Goldwasser and Sipser [22] have shown that one can convert any integrative
proof system to one in which the verifier uses public coins, that is, the verifier

juxtaposes her coin tosses and her query message q, on her communication

tape. Furer et al. [19] have shown how to modi~ an interactive proof system so

that for true instances the verifier is convinced with probability one. Both of

these properties already hold for our protocol.

866 C. LUND ET AL.

Some simple corollaries that follow from these results:

COROLLARY 5. If c~ptographic one-way functions exist, then elery language in

the polynomial-time hierarchy has a zero-knowledge interactive proof system.

PROOF. Every language with an interactive proof system has a zero-

knowledge interactive proof system if one-way functions exist [7, 23]. ❑

From Shamir [28], we infer that all languages computable in polynomial

space have zero-knowledge interactive proof systems if cryptographic one-way

functions exist.

COROLLARY 6. If euey language in IP has a bounded-round interactille proof

system, then the polynomial-time hierarchy collapses.

This is immediate from Boppana et al. [11]. Previously, Aiello et al. [1]

constructed an oracle relative to which the class of languages with unbounded-

round interactive proof systems differs from those with bounded-round interac-

tive proof systems.

Our theorem also has applications to program checking, verification and

self-correction. Lipton [25], using ideas of Beaver and Feigenbaum [6], showed

that the permanent function can be “tested.” Our protocols extend this idea

and show the permanent has a self-testing/correcting pair [10], a pair of

functions the first of which verifies that a program computes the permanent

correctly on most inputs and the second of which converts a program that

passes the first test into one that correctly computes the permanent on all

inputs with high probability.

Theorem 1 also provides a program correctness checker [9] for the perma-

nent:

COROLLARY 7. There exists a probabilistic polynomial-time machine M that,

giuen access to a program P and a matrix A, will output with a high degree of

confidence either ‘(P outputs the correct ualue of the permanent of A” or ‘<P does

not correctly compute the permanent of some matrix. ”

PROOF. In the proof of Theorem 1, the prover need only answer questions

about the permanents of various matrices. We can have &l simulate the

verifier and use P as the prover. ❑

A further discussion of the relationship between interactive proof systems

and program testing can be found in [4].

MA is the class of languages accepted by an interactive proof system

consisting of a single message from the prover to the verifier followed by

probabilistic verification by the verifier. We can think of this class as the set of
“publishable proofs,” “proofs” that can be written down now and randomly

verified years later without any help from the prover. Babai has proven that

MA c E; fl H ~ [2]. Corollary 8 implies that if #P has polynomial-size circuits,
then P#p, and hence the polynomial-time hierarchy, lies in MA.

COROLLARY 8. If #P has polynomial-size circuits, then P#p c ikL4.

PROOF. The prover gives the verifier a circuit computing the permanent.

She uses this circuit as the prover in the protocol in Section 3. R

A general discussion of Corollary 8 appears in [4] where it is shown that a

similar result holds for PSPACE and EXP. Contrast Corolla~ 8 with the result

Algebraic Methods for Interactive Proof Systems 867

of Karp and Lipton [24] that if NP has polynomial-size circuits, then the

polynomial-time hierarchy collapses to Z;.

6. Further Research

We have proven that every language reducible to a #P-complete problem

has an interactive proof system, and thus, so does every language in the

polynomial-time hierarchy. In particular, every language in CO-NP has an

interactive proof system. However, even for a co-NP-complete language, in the

protocol above the prover must answer #P-complete questions. Is there an

interactive proof system for co-SAT where the prover need only answer

questions about the satisfiability of CNF formulas? Such a proof system would

give an instance checker for NP-complete languages.

We believe that one should study why this result does not relativize. One

simple answer is that we have exhibited an interactive proof system for a very

specific #P-complete function—the permanent—which is not #P-complete

relative to any sufficiently complex oracle (since the permanent does not

depend on the oracle). Babai and Fortnow [3] have exhibited a simple charac-

terization of #P functions by polynomials and have used this characterization

to prove the main theorem of this paper without any reference to permanents.

This algebraic formulation of #P does not hold in relativized worlds. Studying

the algebraic structure of well-known complexity classes may lead to yet more

exciting relationships among them.

REFERENCES

NOTE: References [17], [30], and [31] are not cited in text.

1. AIELLO, W., GOLDWASSER, S., AND H.&STAD, J. On the power of interaction. Combinatorics,

10>1 (1992), 3-25.

2. BABAI, L. Trading group theory for randomness. In Proceedings of the 17t}t Annaal ACM

Symposium on the Theory of Cornputmg (Providence, R. I., May 6-8). ACM, New York, 1985,
pp. 421-429.

3. BABAI, L., AND FORTNOW, L. Arithmetization: a new method in structural complexity theory.
Computat. Complex. 1 (1991), 41-66.

4. BABAI, L., FORTNOW, L. AND LUND, C. Non-deterministic exponential time has two-prover
interactive protocols. Computat. Complex. 1 (1991), 3–40.

5. BABAI, L., AND MORAN, S. Arthur–Merlin games: A randomized proof system, and a
hierarchy of complexity classes. J. Comput Syst. Sci. 362 (1988), 254-276.

6. BEAVER, D. AND FEIGENBAUM, J. Hiding instances in multioracle queries. In Proceedings of

the 7th S~mposiam on the Theoretical Aspects of Computer Sccencc. Lecture Notes in Computer

Science, vol. 415. Springer Verlag, New York, 1990, pp. 37-48.
7. BEN-OR, M., GOLDREICH, O., GOLDWASSE~, S., H&TAD, J., KILIAN, J., MICALI, S., AND

ROGAWAY, P. Everything provable is provable in zero-knowledge. In Proceedings of Cypto

88. Lecture notes in Computer Science, vol. 403. Springer-Verlag, New York, 1988, pp. 37-56.
8. BEN-OR, M., GOLDWASSER, S., KILIAN, J., AND WIGDERSON, A. Multi-prover interactive

proofs: How to remove intractability assumptions. In Proceedings of the 20th Annaal ACM

Symposmm on the Theoiy of Coi?tputing (Chicago, 111,May 2-4). ACM, New York, 1988, pp.
113-131.

9. BLUM, M., AND KANN.MN, S. Designing programs that check their work. In Proceedings of the

21th AnnualACM Symposium on the Theow of Cot?lputing (Seattle, Wash., May 15-17). ACM,
New York, 1989, pp. 86-97.

10. BLUM. M., LUBY, M.. AND RUBINFELD, R. Self-testing correcting with applications to numeri-
cal problems. In Proceedazgs of the 22nd Annwd A CM $mposnan on the Theory of Co??zputazg

(Baltimore, Md., May 14-16). ACM, New York, 1990. pp. 73-83.
11. BOPPANA, R., HLSTAD, J., AND ZACHOS, S. Does CO-NP have short interactive proofs? Znfi

Proc. Lett. 25, 2 (1987), 127-132.

868 C. LUND ET AL.

12.

13,

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

~4.

25.

Z6.

27.
28.
29.
30.

31.

32.

33.

CAT, J., CONDON, A., AND LIPTON, R. J. PSPACE E provable by two provers m one round. In

Proceedings of the 6th Annual Conference on Strzuture m Complexity Theory (Chicago, 111..June

30-July 3). IEEE, New York, 1991, pp. 110-115.
CHOR, B., GOLDREICH. O., AND HASTAD, J. The random oracle hypothesis N false.
Manuscript. Technion, Haifa, Israel, 1990.

CooK, S. A. The complexity of theorem-proving procedures. In Proceedwgs of the 3rd

Annual ACM Symposuun on the Theoy of Computmg (Shaker FIelghts, Oh., May 3-5). ACM,
New York, 1971, pp. 151-158.

FELDMAN, P. The optimum prover lives in PSPACE. Manuscript. M. I.T., Cambridge, Mass.,

1986.
FORTNOW, L., AND LUND, C. Interactive proof systems and alternating time-space complex-
ity. In Proccedmgs of the 8th Symposiuvz on Theoretical Aspects of Compatcr Science Lecture
Notes m Computer Science, vol. 480, Sprmger-Verlag, New York, 1991, pp. 263-274.

FORTNOW, L., ROMPEL, J., AND SIPSER, M. On the power of multi-prover interactive

protocols. In Proceedings of tize 3rd Conference on Structure m CompletzQ Theory (Washington,

D. C., June 14-17). IEEE, New York, 1988, pp. 156-161.
FORTNOW, L., AND SIPSER, M. Are there interactive protocols for CO-NP languages? Irf

l’ro~. Lett. 28 (1988), 249–251.

FURER, M., GOLDREICH, 0,, MANSOUR, Y., SIPSER, M., AND ZACHOS, S. On completeness

and soundness m interactive proof systems. In S. Micah, ed. Randomness and Computation,

(volume 5 of Adc,ances m Compzttmg Research). JAI Press, Greenwich, Corm. 1989, pp.
429-442.

GOLDREICH, O., MIC.4LI, S., AND WIGDERSON, A. Proofs that yield nothing but their vahdity
and a methodology of cryptographic protocol design. In Proceedings of the 27tlz IEEE

Sy~~~ponZurZ on Foundations of Computer Science. IEEE, New York, 1986, pp. 174-187.
GOLDWWSER, S., MICALL S., AND R~CKOFE, C. The knowledge complexity of interactive

proof-systems, SZAM J. Comput. 18, 1 (1989), 186-208.

GOLDWASSER, S. AND SIPSER, M. Private corns versus public coins m interactive proof

systems. In S. Micali, ed. Randomness and Co}?zpatatzon, (volume 5 of AdLances w ConlPutL~lg

Research). JAI Pre~s, Greenwich, Corm. 1989, pp. 73-90.
lMP.AGLIAZZO, R., AND YuN~, M. Dn-ect mimmum-knowledge computation. In Proceedings

of Crypto 87. Lecture Notes in Computer Science, vol. 293, Springer-Verlag, New York, 1987,

pp. 40-51.
fQRP, R., JiND LIPTON, R. Some connection between nonumform and uniform complexity
classes. In Proceedings of the 12th Annuul A CM Sy??lposlzlm on the Theoy of Computmg (Los
Angeles, Calif., Apr. 28-30). ACM, New York, 1980, pp. 302-309.
LIPrON, R. New directions m testing. In J. Felgenbaum and M. Merritt, eds. Dtstrdmted

Computmg and Cgptogzap[l) (volume 2 oi DIMACS Scnes m Dzscrete Matherrzatlcs and

Theoretical Computer Science). American Mathematical Society, Providence, R. I., 1991, pp.

191-202.
NIVEN, I., AND ZUCfCERhfAN, H. S. An uztroductlon to the theory of ?zzlmbers 4th cd., Wdey,
New York, 1980, pp. 224-225.
PR.4Tr, V. Every prime has a succinct certificate. SIAM J. Cornput. 4 (1975), 214–220.

SHAMIR, A. 1P = PSPACE. J. ACM 39, 4 (Oct. 1992), 869-877.

SHFN, A. 1P = PSPACE: Simplified proof. J ACM 39, 4 (Oct. 1992), 878-880.
SIMON, J. On some central problems in computational complexity. PhD thesis, Cornell

University, Computer Science, 1975. Tech Report TR 75-224.
SOLOVAY, R,, AND STRASSEN,V. A fast Monte-Carlo test for primality. SIAM J. Con2pt4t. 6

(1977), 84-85. See also erratum 7 (1978), 118.
TODA, S. On the computational power of PP and @P. In Proceedmg~ of the 30t/z IEEE

Symposzu,,z on Foundations of Compzlter Scwzce. IEEE, New York, 1989, pp. 514-519.

VALIANT, L. The complexity of computmg the permanent. T/zeoret. Comput. Scz 8 (1979),

189-201.

RkCEIVED NO\’EMBkR 1990; REVISED NOVEMBER 1991 : ACCEPTED ~UGUST 1991

J~umd of the 4\.<,L,dt,<,nfa Cc,rnput,ng Mdch, ncr), Vd 39, NO 4, Oct~b.~ 1%12

