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Inferring Propp’s Functions  
from Semantically Annotated Text

Vladimir Propp’s Morphology of the Folktale is a seminal work in folkloristics and 
a compelling subject of computational study. I demonstrate a technique for learning 
Propp’s functions from semantically annotated text. Fifteen folktales from Propp’s 
corpus were annotated for semantic roles, co-reference, temporal structure, event 
sentiment, and dramatis personae. I derived a set of merge rules from descriptions 
given by Propp. These rules, when coupled with a modified version of the model 
merging learning framework, reproduce Propp’s functions well. Three important 
function groups—namely A/a (villainy/lack), H/I (struggle and victory), and W 
(reward)—are identified with high accuracies. This is the first demonstration of a 
computational system learning a real theory of narrative structure.
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Introduction

Vladimir Propp’s Morphology of the Folktale, published in 1928 and first translated 
into English in 1958 (Propp [1928] 1968), is a seminal work in folkloristics, having 
ushered in an era of structuralism, provided a template for later studies of the narrative 
structure of folklore, and inspired generations of folklorists. One of the most precise 
formulations of narrative structure to date, Propp’s morphology presents a compelling 
subject of machine learning. It would be of wide-ranging interest if a morphology 
could be automatically and reliably extracted from a given set of folktales. For folklor-
ists and literary theorists, such a tool would be invaluable for comparison, indexing, 
and classification. For cultural anthropologists, it would provide a new technique for 
studying culture and its variations across time and space. For cultural psychologists, 
it would point the way to new experiments for investigating culture and its impact 
on thought. For cognitive scientists, it would serve as a model of understanding 
abstractions from texts, and the nature of narrative understanding. For computational 
linguists, it would be a step toward understanding the higher-level meaning of natural 
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language. And for researchers in artificial intelligence and machine learning, it would 
represent an advance in our ability to extract deep structure from complex datasets. 
Each of these fields would naturally also find advances in the others of interest.
	U nfortunately, the extraction of morphologies has until now remained a manual 
task, the purview of scholars such as A. J. Greimas, Claude Lévi-Strauss, Alan Dundes, 
and, of course, Vladimir Propp. Constructing a morphology for a particular set of 
folktales takes many years of reading and analysis. It is unclear how much the mor-
phology, once complete, owes to the folklorist’s personal biases or familiarity with 
other extant morphologies, rather than being a true reflection of the character of 
the tales under investigation. Furthermore, blind reproduction or validation of a 
morphological analysis is a prohibitively difficult endeavor, requiring a scholar with 
the necessary skills to retrace the years-long paths of reading, analysis, and synthesis 
required to generate a morphology by hand.
	I  demonstrate a technique that gives computational purchase on the problem of 
identifying a morphology from a given set of stories. The algorithm is a modification 
of a machine learning technique called model merging (Stolcke and Omohundro 
1994), and uses a set of rules derived from Propp’s descriptions of his own process for 
finding similarities between tales. In this technique, the algorithm runs over semanti-
cally annotated texts as data, folktales whose surface semantics have been encoded in 
a computer-readable representation. For this particular demonstration, the data are 
a selection of single-move Russian fairy tales analyzed by Propp, and translated into 
English. Importantly, the encoding of the surface semantics of the texts is human-
assisted; the actual learning of the identities of Propp’s function is done by computer.
	 The paper is organized as follows: First, I explain the machine learning problem at 
hand, pointing out those parts of Propp’s theory that I will target for learning. Second, 
I describe the structure of the learning technique used, and how it differs from regular 
model merging. Third, I describe the data used in the experiment, including the texts, 
the semantic annotation schemes, and the gold standard data (Propp’s analyses) against 
which the performance of the algorithm was measured. Fourth, I lay out the set of 
merge rules, derived from Propp’s descriptions, that work within the model-merging 
framework to reproduce a substantial portion of Propp’s functions. Finally, I describe 
the performance of the algorithm in extracting the identities of Propp’s functions.

Learning Target

Propp’s morphology comprises a set of character categories plus three levels of plot 
structure: gross structure (moves), intermediate structure (functions), and fine struc-
ture (what I will here call subtypes: Propp himself had no specific term for them). The 
character categories are called dramatis personae, of which Propp identified seven: 
Hero, Villain, Princess, Dispatcher, Donor, Helper, and False Hero. A move, made 
up of functions, is a rudimentary tale, and a normal tale is made up of one or more 
moves, possibly intertwined in complex ways. A function is a plot element that is “an 
act of a character, defined from the point of view of its significance for the course of 
the action” (Propp [1928] 1968:21). Each function falls into a major type determined 
by its position in the move, purpose for the plot, and the dramatis personae involved. 
Propp identifies 31 different functions. Each function defines what was happening, but 
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does not necessarily specify how it happened—that is, functions can be instantiated 
in many different ways, which I call the subtype of the function.
	 Propp’s plot structure defines a grammar, in the formal, computational sense of 
the word. In this work, I endeavor to learn some part of that grammar from the text 
itself. As we know from work in grammatical inference (Higuera 2010), the power 
of a grammar influences how difficult that grammar is to learn. So how powerful is 
Propp’s grammar?
	 Propp defines the top-level structure of a tale to be an optional preparatory sequence, 
followed by some number of moves, possibly intermingled. The grammatical com-
plexity of this level is at least context-free, an observation consistent with Lakoff ’s 
analysis (1972), and a fairly powerful grammar. The intermediate level, where func-
tions occur in a restricted order, is a regular grammar, which is less powerful than 
a context-free grammar, and thus easier to learn. The subtype level can have long-
distance effects within the story arc, in that the choice of a particular subtype early 
on in the tale (e.g., instantiating A, the Villainy, as a kidnapping) forces the choice 
of a particular subtype later on (e.g., instantiating K, the Resolution, as a rescue of 
the kidnapped person). This subtype effect adds additional complexity but can be 
incorporated into the function-level regular grammar (or move-level context-free 
grammar) in the form of a feature grammar (Goodman 2000) or generalized phrase 
structure grammar (Gazdar, Pullum, and Sag 1985). Thus, leaving aside the dramatis 
personae, the overall grammatical complexity of Propp’s theory is at least that of a 
generalized phrase structure grammar (GPSG), which is complex indeed.
	 We currently do not have the computational technology to learn the alphabet and 
transitions of Propp’s GPSG simultaneously with the categories of dramatis personae. 
Even if the dramatis personae are given, learning the GPSG is currently too hard. I 
focus here, therefore, on learning only the identities of Propp’s functions, noting that 
the function classes can perhaps be considered Propp’s most important contribution. 
Almost everything else is defined in reference to functions: moves are complexes of 
functions, and subtypes are a modulation on functions. The dramatis personae are 
defined, in part, by the functions in which those characters participate. The majority 
of folkloristic and computational work that has built upon Propp has focused on the 
function level (e.g., Dundes 1964; Colby 1973; Díaz-Agudo, Gervás, and Peinado 
2004; Halpin, Moore, and Robertson 2004).
	I  will leave the following for future work learning: the dramatis personae categories, 
the function subtype categories, the move-level grammar, and the transition structure 
of the function-level regular grammar. My concern here will only be with learning 
the function categories, which is the equivalent of learning only the alphabet of the 
regular grammar of the function level. Learning regular grammars (with a known 
alphabet) is a problem on which there has been some traction, and I leveraged that 
work to construct a new algorithm for learning the alphabet of the regular grammar.

Learning Technique

Model merging is an automated technique for learning regular grammars from posi-
tive examples (Omohundro 1992; Stolcke and Omohundro 1994) and is the conceptual 
foundation of my approach. My technique takes model merging and adds two key 
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augmentations. First, whereas model merging assumes the grammatical alphabet is 
known, one of the major challenges when learning Propp’s morphology is to learn 
identities of the functions themselves. To achieve this, I start with an extremely large 
possible alphabet and incorporate a filtering stage at the end for identifying the actual 
alphabet from the final model. Second, whereas model merging considers model states 
to be relatively atomic, with only a probability distribution over the symbols emitted 
by model states, my technique considers a rich internal structure of each model state 
(derived from the semantic annotations on the text) when making its merge decisions.
	M odel merging may be used to derive a regular grammar from a set of positive 
examples. Consider the set of two characters sequences {ab, abab}. What is the pattern 
that most concisely describes these two sequences? One guess is the regular grammar 
(ab|abab), or rather, either the first string or the second. Our intuition, however, is 
that this guess is unsatisfactory because it does not generalize beyond the examples 
provided. Anyone can see that a more plausible guess is the substring ab repeated 
one or more times, or, written as a regular expression, (ab)+. Model merging is a 
framework that allows us to find a good approximation to this pattern; all we need is 
a method for searching the space of possible grammars.
	M odel merging follows the grammar inference paradigm that starts with a model 
constructed to accept the finite language composed of exactly the positive examples 
observed (Young-Lai 2009). One achieves generalization by applying a merge opera-
tion over states in the model, where two states are removed from the model and 
replaced with a single state that inherits the removed states’ transitions and emissions. 
This merge operation induces a large space of models to search.
	 Figure 1 illustrates my technique by showing the extraction of a simple morphology 
from two extremely short stories, written to illustrate the technique. The first story 
is about an old man and maidservant: they meet on the road, he chases her, she runs 
away, and it ends with her thinking he is an ugly man. The second story is about a 
dragon and a princess: the dragon stalks the princess, which scares her, so she flees 
into hiding, and it ends with her deciding the dragon is an evil creature. At some 
level of abstraction, these two stories are similar. The chasing and stalking events 

Figure 1. Example merge of two simple stories. Model M3 describes not only the two input 
stories, but an additional two stories that alternatively include or exclude both nodes 1 and 6. 
Thus the model has generalized beyond the two input examples. The filtering step produces 
model M4, which represents the final morphology.
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are similar in that they involve one participant following after another; the running 
away and fleeing events are similar because they involve movement of one participant 
away from the other; and the thinking and deciding events are both mental events 
that involve evaluation. With a representation of the semantics of these events, one 
can use semantic distance measures and an analogical mapping algorithm to find the 
semantic and structural similarities. In the set of merges shown in figure 1, first the 
chasing and stalking events are merged, then the running away and fleeing, and then 
the thinking and deciding events. The result is a story morphology that could be seen 
as generating stories with an optional playing event at the beginning, a pursuit event, 
followed by an optional scared event, followed by the fleeing and evaluation events. 
Once the final model is filtered, three states remain, which might be titled Pursuit, 
Flee, and Judgment.
	 The initial model is derived from the time line of events in the story world itself. 
Each initial state in the model is a single event from each story, and they are ordered 
as they occur in the story time line. Each individual story time line is then incor-
porated into the initial morphology as a single linear branch. An example initial 
model, labeled M0, can be seen at the top of figure 1, where each of the two simple 
example stories with their four constituent events is transformed into a sequence of 
four states.
	 There are many ways of driving the search for the appropriate set of merges. One 
popular way, which I have explored elsewhere, is a search driven by probabilities 
induced by Bayes’s rule (Finlayson 2011). In contrast, the work described here uses 
a search driven by a set of semantic and structural merge rules derived from Propp’s 
monograph. These rules will be outlined in the section titled “Merge Rules,” after I 
explain the data on which the experiment was run. What is clear, however, is that 
some set of rules, heuristics, or biases is needed to find a good model: an exhaustive 
search is not possible in most cases.1

Filtering Stage

As can be seen in figure 1, the penultimate model in the chain (M3) is not quite 
a morphology: it contains states that do not correspond to abstracted similarities 
between the two stories (i.e., states 2 and 3). This is because the initial model began 
with an alphabet of all possible symbols. A filtering step is used to go from the merged 
model to one that represents an actual morphology. The filtering process constructs 
another model from the final merged model from which all states that do not meet 
certain criteria are removed. The states that survive this culling become the alphabet 
of Propp’s grammar, or the functions. The details of this filtering process are given in 
the “Merge Rules” section below.

Data

Propp selected a specific set of tales to analyze from which he derived his morphol-
ogy: the first 100 tales of the Russian fairy tale collection by Alexander Afanasyev 
(1957).2 Propp provides, in his Appendix III, function markings for only about half 
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the tales he analyzed: in the English translation of Propp’s work, there are 45 tales in 
the function table, with a small number of additional analyses distributed through-
out the text. In this work, I do not attempt to learn the move-level grammar, nor the 
subtype grammar, nor the dramatis personae categories. This restriction of scope 
leads to a particular approach to the preparation of the data. First, variations at the 
move level are filtered out by only including tales that Propp identified as contain-
ing a single move. Second, the learning data explicitly include identification of the 
dramatis personae categories for characters.
	B ecause I restricted myself to single-move tales, the set of available tales was reduced 
from Propp’s 45 analyzed tales; across several translations of Propp’s morphology, I 
found a total of 21 single-move tales for which function analyses were provided. My 
ability to apply detailed semantic annotations to this set was further reduced by my 
research budget. In the end, I was left with 15 single-move tales, comprising 18,862 
words, which I was able to have fully annotated.
	 Additionally, while Propp did his work in the original language of the tales (Rus-
sian or sometimes Belorussian or Ukrainian) for practical reasons, I did my analysis 
using English translations. Folklorists also sometimes study tales in translation, and 
the consensus is that, for first-order structural and semantic analyses, the important 
information of the tale is retained in a good translation. As J. L. Fischer notes: “If one 
translated a tale into another language, the tale structure and the essential features of 
the tale images would remain the same” (1963:249).

Semantic Annotation

My use of the word “annotation” here is the same as in corpus linguistics, in that 
it covers “any descriptive or analytic notations applied to raw language data” (Bird 
and Liberman 2001). Automatically producing high-quality annotations of the 
many different aspects of semantics required for this work is beyond the reach of 
the current state of the art of natural language processing (NLP). Consequently, 
to achieve high-quality, low-noise semantic annotations, I needed to hire people 
to either correct automatically produced annotations (so-called semi-automatic 
annotation) or to provide a fully manual annotation from scratch. The benefit of 
having people do semi-automatic or manual annotation is that, while it is slow 
and expensive, we can obtain annotations that we cannot yet create automatically 
with high quality. Thus, while the learning of Propp’s function is done by machine, 
the raw data of the study, “the formalized semantics of the texts,” were produced, 
essentially, by people.
	 All automatic, semi-automatic, or manual annotation performed by the annotators 
for this work was done using the Story Workbench annotation tool (Finlayson 2008, 
2011). The Story Workbench is a general text-annotation tool that allows annotation 
of multiple layers of semantics, provides a user-friendly graphic user interface, and 
supports the annotation of arbitrary text. The annotated layers are listed in table 1. 
Propp’s morphology is founded on characters and event structure, namely who is 
doing what to whom, and when: I call this the “surface semantics” of the text. Each 
of the listed layers was key to extracting the surface semantics from each text.
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Referring Expressions and Co-Reference

The raw information for calculating the characters in the story is given by the “refer-
ring expression” and co-reference annotations (Hervás and Finlayson 2010). The 
referring expression representation marks collections of words that refer to something, 
where the set of words may be continuous or discontinuous. This representation was 
annotated manually. Example (1) shows three examples of referring expressions, 
which are underlined.

(1)	 Ivan had a sword. It was sharp.

In this sentence, the referents are people and things, concrete things in the story world, 
but they need not always be so. Referring expressions can refer to abstract objects 
(such as ideas), events, times, actions, emotions, and many other things.
	E xample (1) also illustrates the important and obvious point, that a single referent 
can be mentioned several times in a text. In this case, there is a single referent (the 
sword) with two referring expressions (the phrases “the sword” and “it”). These last 
two referring expressions are co-referential because they refer to the same referent. 
To annotate referents using referring expressions, collections of referring expressions 
that co-refer are brought together in a co-reference bundle. Therefore, a co-reference 
bundle is a list of referring expressions referring to the same thing. This representation 
was annotated manually.
	 A second aspect of co-reference that was annotated was set-member relationships. 
Example (2) below shows a simple form, where the referring expression “Jack and Jill” 
refers to the set including both Jack and Jill. The word “they” is co-referential with the 
set Jack and Jill, and both Jack and Jill are members of that set. This information was 
important for determining which individual characters were actually participating 
in which events.

(2)	 Jack and Jill went up the hill. They fetched a pail of water.

Table 1. Annotations used in this work. Agreement is expressed as either an F1-measure or a 
chance-adjusted Rand index. The F1-measure ranges from 0 (no agreement) to 1 (perfect 
agreement). The Rand Index ranges from –1 (perfect disagreement) to 1 (perfect agreement)

Layer	 Semantics captured	 Annotation style	 Agreement

Referring expressions (REs)	O bjects in the world	M anual	 0.91
Co-reference	 Which REs co-refer	M anual	 0.85*
Time expressions	T imes and dates	M anual	 0.66
Events	O ccurrences and states	 Semi-automatic	 0.69
Time links	T emporal order	M anual	 0.59
Semantic roles	 Arguments to verbs	 Semi-Automatic	 0.60†

Wordnet senses	 Dictionary definitions	M anual	 0.78
Event valence	E vent’s impact on the Hero	 Semi-automatic	 0.78
Dramatis personae	 Propp’s character types	M anual	 0.70
Functions	 Propp’s functions	M anual	 0.71‡

*Chance-adjusted Rand Index
†Core arguments only
‡Region overlap
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Time Expressions, Events, and Time Links

To construct the time line of the story, I used the TimeML annotation scheme (Puste-
jovsky et al. 2003). TimeML comprises three representations: time expressions, events, 
and time links. The first two mark the objects that populate the time line, and the last 
defines the order of those objects on the time line. Examples in the section are drawn 
from those in the TimeML annotation guide (Saurí et al. 2006).
	T ime expressions mark the location, type, and value of temporal expressions. Each 
expression is a sequence of tokens, potentially discontinuous, that indicate a time or 
date, how long something lasted, or how often something occurs. Temporal expres-
sions may be calendar dates, times of day, or durations such as periods of hours, days, 
or even centuries. Temporal expressions can be precise or ambiguous.

(3)	 The dragon arrived at noon. (Time)
(4)	 The dragon arrived on the last day of spring. (Date)
(5)	H e lived in the underworld for almost a year. (Duration)

Interestingly, time expressions are extremely sparse in the fairy tales analyzed in this 
study, with only 142 instances over the entire corpus of 18,862 words, an average of 
only 7.5 time expressions per 1,000 words. Indeed, most of the tales had fewer than 
10 time expressions, and two had only one. This is perhaps because folktales generally 
occur on unspecified dates, or altogether outside of history. Regardless of the reason, 
time expressions proved to have little importance for the time lines as a whole.
	E vents are the second sort of object that populates the time line. Events are defined 
as happenings or states. They can be punctual, as in (6) below, or they can last for a 
period of time, as in (7). For the most part, circumstances in which something obtains 
or holds true, such as “shortage” in (8), are considered events.

(6)	I van quickly struck the dragon’s head from his body.
(7)	 The heroes traveled to faraway lands.
(8)	 There was a shortage of food across the land.

Events and times are connected together via time links, which represent temporal 
order. Time links fall into three major categories. Temporal links indicate an ordering 
between two times, two events, or a time and an event, as in Examples (9) and (10).

(9)	I van’s brothers only arrived after the fight. (Temporal—After)
(10)	He lived in the underworld for almost a year. (Temporal—During)

Aspectual links indicate a relationship between an event and one of its subparts, as 
in (11) below. Subordinating links indicate relationships involving events that take 
arguments, as in (12) below. Good examples of events that start subordination links 
are those events that impose some truth-condition on their arguments, or imply that 
their arguments are about future or possible worlds.

(11)	Ivan started to search for his wife. (Aspectual-Begin)
(12)	Ivan forgot to bring the magic word. (Subordinating-Factive)
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Word Senses

Word sense disambiguation (WSD) is a well-known NLP task in which each open-
class token or multi-word expression (i.e., each noun, verb, adjective, or adverb) is 
assigned a single sense from a sense inventory, which gives us a proxy for the actual 
meaning of each word (Agirre and Edmonds 2007). For this work, the annotators 
sense-disambiguated every word using the electronic dictionary Wordnet 3.0 (Fell-
baum 1998). Because most WSD algorithms are not much better than the default 
most-frequent-sense baseline, the annotators did this annotation completely manually. 
While they were assigning word senses, they also corrected multi-word expression 
boundaries, part-of-speech tags, and word stems. Although Wordnet’s coverage is 
excellent, it occasionally lacks an appropriate word sense. In those cases, the anno-
tators found a reasonable synonym and substituted that sense. In the rare case that 
they could not find an appropriate substitute, annotators were allowed to mark “no 
appropriate sense available.”

Semantic Roles

Annotators also captured the argument structure of all the verbs in the texts, a task 
known as semantic role labeling. Specifically, we used the PropBank scheme (Palmer, 
Kingsbury, and Gildea 2005). This annotation was done semi-automatically by a basic 
statistical semantic role-labeler modeled on the analyzers described in the literature 
(Pradhan et al. 2005; Gildea and Jurafsky 2002). This labeler was run over the texts 
to create argument boundaries and semantic role labels for each verb. Each verb was 
also assigned a PropBank frame, which is a list of allowed roles and their descrip-
tions. The identity of this frame was the only piece of information not automatically 
annotated. Annotators were required to add the frame, any missing arguments, and 
semantic role labels, and to correct the extant argument boundaries and labels. As 
was the case for word senses, sometimes an appropriate frame was not available in 
the PropBank frame set. This happened perhaps once or twice per text, and, in these 
cases, the annotators found the closest matching frame and assigned that instead.

Event Valence

Each TimeML event was also marked for its valence, a marking intended to capture 
how positive or negative an event is for the Hero. The scale is akin to Wendy Lehnert’s 
positive or negative mental states (1981). My scale ran from –3 to +3, including 0 
(neutral) as a potential valence, rather than being restricted to just positive or nega-
tive, as in Lehnert’s representation. The import of each valence on the scale is laid out 
in table 2. This representation was annotated manually.

Dramatis Personae

Propp identified seven types of characters found in his folktales, and these character 
types are critically important in his theory. As noted earlier, I am leaving the learning 
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of the dramatis personae for future work. Consequently, the dramatis personae were 
annotated, and this information was used to help derive the morphology structure. 
This representation consisted of the seven labels: Hero, Villain, Princess, Dispatcher, 
Donor, Helper, and False Hero. Any number of these could be attached to a particu-
lar referent in the text. Not all characters fulfilled a dramatis personae role, as Propp 
noted, and, in such cases, no tag was attached to that referent. In other cases, as Propp 
also noted, a single character fulfilled more than one role. This representation was 
annotated manually.

Functions

The final annotation captured Propp’s functions. This annotation served as the stan-
dard against which the results of the learning algorithm were measured. Annotating 
Propp’s functions was a delicate task. While Propp described his morphology in great 
detail, it still was not specified in such a way as to allow unambiguous annotation in 
text. Propp’s monograph is enlightening, but it is not an effective annotation guide. 
There are at least four main problems with Propp’s scheme as described: unclear 
placement; implicit functions; inconsistent marking of trebling (function groups 
that were repeated two, three, or four times in succession); and, in a small number of 
cases, apparent disagreement between Propp’s own categorization scheme and what 
is found in the tale.
	R egarding unclear placement, consider, for example, the following excerpt of Afa-
nasyev’s tale No. 148.

The tsar went in person to beg Nikita the Tanner to free his land from the wicked 
dragon and rescue the princess. At that moment Nikita was currying hides and held 
twelve hides in his hands; when he saw that the tsar in person had come to see him, 
he began to tremble with fear, his hands shook, and he tore the twelve hides. But no 
matter how much the tsar and tsarina entreated him, he refused to go forth against 
the dragon. So they gathered together five thousand little children and sent them to 
implore him, hoping that their tears would move him to pity. The little children came 
to Nikita and begged him with tears to go fight the dragon. Nikita himself began to 
shed tears when he saw theirs. He took twelve thousand pounds of hemp, tarred it 

Table 2. Valence scale, which describes each level of affect and gives some examples

Valence Description Example

+3 Immediately good for the hero or his allies The hero marries the princess; The hero is given 
gold

+2 May lead directly to a +3 event Someone hides the hero from pursuit
+1 Someone promises an event that would be  

+2 or +3
An old man promises to help someday when the 
hero most needs it

  0 Neither good nor bad
–1 Someone threatens an event that would be  

–2 or –3
A witch threatens death to the hero

–2 May lead directly to a –3 event The hero and the dragon fight
–3 Immediately bad for the hero or his allies The princess is kidnapped; The hero is banished
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with pitch, and wound it around himself so that the dragon could not devour him, 
then went forth to give him battle. (Afanasyev 1957, 1975:310–1)

Propp indicates the presence of functions B and C in this tale. Propp calls B the 
“mediation, the connective incident,” with this extended definition: “Misfortune or 
lack is made known; the hero is approached with a request or command; he is allowed 
to go or he is dispatched” ([1928] 1968:36). He calls C the “beginning counteraction,” 
with this extended definition: “The Seeker agrees to or decides upon counteraction” 
([1928] 1968:38). Roughly, these two functions are the presentation of the task to the 
hero (B), and the acceptance of that task (C).
	 Finding these two functions in this passage is not trivial. Where exactly is B? Is it 
the whole section? Is it from the word “entreated” to the word “begged”? Should func-
tion boundaries correspond to sentence or paragraph boundaries? Is their imploring 
of the children to be considered part of B? Annotators marked two groups of tokens 
when identifying functions. First, they marked a region that captures the majority 
of the sense and extent of a function. This was usually a sentence, but extended to a 
paragraph or more in some cases. Second, they marked a defining word for the func-
tion, which usually took the form of a single verb. In cases where that single verb 
or its synonyms were repeated in close proximity to the first marking, and referred 
to the same action, these repeats were marked as well. In the case above, annotators 
marked the region “the tsar and tsarina entreated . . . and begged him with tears to go 
fight the dragon” as B, and picked the verbs “entreated” and “begged” as the defining 
verbs.
	 Where exactly is C? This is the decision to go forth against the dragon. It seems to 
happen somewhere between Nikita’s shedding of tears and his preparation for battle 
by obtaining hemp, but it is not expressed anywhere directly in words; that is, the 
function is implicit. When the annotators could find no explicit mention of a particular 
function that Propp indicated as having occurred in a tale, they chose the logically 
most closely related event and marked it either as an Antecedent or a Subsequent, as 
appropriate. For C in the section above, the region was the sentence “Nikita himself 
began to shed tears when he saw theirs,” and “shed” was marked as the defining verb. 
This implicit function was marked as an Antecedent.
	 When trebling was inconsistently marked, or when indicated functions did not 
seem to match the tale itself, the annotators did their best to determine the correct 
marking. Fortunately, most typographical errors in Propp’s table were restricted to 
disagreement in function subtypes, which does not directly affect these results.

Agreement

Measuring inter-annotator agreement can provide an assessment of the quality of 
the annotations. In cases where an established layer was being annotated, I pre-
pared an annotation guide from the available material for the annotation team. An 
annotation team consisted of two annotators and an adjudicator. The adjudicator 
was either an annotator already experienced in that representation, or myself (if 
no other adjudicator was available). After the annotation of the same few thousand 

JAF 129_1 text.indd   66 1/11/16   2:48 PM



	 Finlayson, Inferring Propp’s Functions	 67

words (two or three texts) by the two annotators, the whole annotation team met 
and merged the annotations together into a single document, which was then cor-
rected by discussion guided by the adjudicator. This process was repeated until all 
the texts were annotated.
	 The most uniform measure of agreement across the different layers is the F1-
measure, familiar to statisticians, which, calculated in the standard way, provides 
the harmonic mean of precision and recall (van Rijsbergen 1979; see also Nikolić 
and Bakarić in this issue). I used the F1-measure instead of the more common Kappa 
statistic, which measures the chance-adjusted agreement (Carletta 1996) because of 
the difficulty of calculating the chance-level of agreement for most of the layers. The 
F1-measure is a natural outgrowth of the merge process, has a clear interpretation 
with regard to the data, and allows a direct comparison between different layers. Table 
1 summarizes the agreements for the different layers annotated either manually or 
semi-automatically. Overall, the agreement values are good.

Initial Model Construction

With the human-annotated data in hand, we can proceed to the automated portion 
of the study. Constructing the initial model for the merge algorithm required the 
following steps: first, a time line of events for each story was automatically extracted 
from the annotations. Second, each event was automatically associated with a set 
of Agent and Patient characters. Figure 2 represents schematically the information 
included in the initial model.
	 The TimeML annotations allowed the extraction of the time line of events for each 
tale. The fairy tales in the corpus are quite simple in their temporal structure; all of 
them, except for one, are describable by a linear time line. To construct the linear time 
line for each tale, I first removed all subordinated events from consideration. Events 
connected only by subordinating links indicated events that did not actually occur 
on the time line. Second, using the straightforward definition of the temporal links 
(Before, After, Simultaneous, etc.), I wrote a simple algorithm that arranged events 
in the order of their starting point (Finlayson 2011).
	I t should be noted that quite a few of the events on the time lines were generic, and 
these were not distinguishable on the basis of surface semantics alone from other 
non-Functional events. These events were eventually filtered from consideration; 
this is discussed more in the section on “Merge Rules.” Table 3 shows the 15 tales 
that were annotated, the counts of events, the number of events on the full time line 
(excluding subordinated events), and the filtered time line that was used in the final 
experiment.
	O nce I constructed the event time line, I assigned automatically, if possible, an Agent 
and a Patient to each event. I extracted this information from the semantic role, refer-
ring expression, and co-reference annotations. Every verb in the corpus was marked 
with a semantic role, which gives the arguments to that verb represented as spans of 
text. Nearly every event in the corpus was associated with at least one semantic role 
via its verb expressions. In fact, of the 3,438 events on the tale time lines, only two 
events had no semantic role. I manually specified the Agents and Patients of these two 
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events in post-processing. When an event had more than one semantic role, meaning 
that the event was mentioned several times using a verb, I merged the subject and 
object fillers for each associated semantic role, favoring the first-mentioned semantic 
role in case of a conflict.
	I  used each semantic role’s associated PropBank frame to find the subject and object. 
According to PropBank conventions, the argument to the verb marked ARG0 is usu-
ally the subject, and the argument marked ARG1 is usually the object. Nevertheless, 
many PropBank frames do not have this ARG0-ARG1 subject-object structure because 
of the idiosyncrasies of the frame definitions. Furthermore, some PropBank frames 
can be considered symmetric, where the Agent and Patient roles are not semantically 
distinct (e.g., the verb “marry” when used intransitively, as in “Anna and Bob were 
married”). Because this information is not encapsulated anywhere in PropBank, I 
manually classified the symmetric nature and Agent and Patient roles for all the 
PropBank frames found in the corpus.
	O nce the correct subject and object span was determined, the largest referring 
expression inside each span was automatically chosen as the most appropriate role 
filler. Once the referring expressions filling the subject and object roles of an event 
were determined, it remained to substitute automatically that referring expression 
with one or more elementary referents. Sometimes this required replacing a composite 
referent with member referents.

Table 3. Texts analyzed. All texts were single-move folktales for which Propp provided function 
analyses. Listed are the number of words in the English translation; the number of TimeML 
events annotated for each story; the number of non-subordinated events that appear in the full 
time line of the story; and the number of events that appear in the “filtered” time line used in the 
learning experiment

Tale No. Russian title English title # Words # Events
Full  

time line
Filtered  
time line

148 Никита кожемяка Nikita the Tanner 646 104 75 16
113 Гуси-лебеди The Magic Swan Geese 696 132 94 43
145 Семь симеонов The Seven Simeons 725 121 87 42
163 Бухтан Бухтанович Bukhtan Bukhtanovich 888 150 107 62
162 Хрустальная гора The Crystal Mountain 989 150 104 43
151 Шабарша рабочий Shabarsha the Laborer 1202 236 122 55
152 Иванко Медведко Ivanko the Bear’s Son 1210 223 143 65
149 Змей и цыган The Serpent and the Gypsy 1210 250 138 80
135 Иван Попялов Ivan Popyalov 1228 220 170 46
131 Фролка-сидень Frolka Stay-at-Home 1388 248 169 56
108 Ивашко и ведьма Ivashko and The Witch 1448 276 157 61
154 Беглый солдат и черт The Runaway Soldier and 

the Devil
1698 317 190 76

114 Князь Данила-Говорила Prince Danila Govorila 1774 341 223 92
127 Купеческая дочь и 

служанка
The Merchant’s Daughter 
and the Housemaid

1794 331 234 89

140 Зорька, вечорка, и 
полуночка

Dawn, Evening, and 
Midnight

1934 339 250 78

Average 1258 229 151 60
Sum 18862 3438 2253 904
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Merge Rules

To design merge rules that reproduce Propp’s functions within the model-merging 
framework, I considered three of the same features to which Propp himself was sensi-
tive in his analysis. Propp describes in his monograph three features through which 
he found similarity between events: event semantics, the dramatis personae involved, 
and the position of the event in the arc of the move. I leveraged these three aspects of 
similarity in a two-stage merge process. The first stage merged together, roughly, events 
that were semantically similar. The second stage merged only states that contained 
more than one event, and, of these states, it merged those that were nearby with the 
same emotional valence for the Hero.
	B oth stages only merged together states that involved consistent sets of dramatis 
personae. The dramatis personae involved in two events were considered consistent 
when they were either identical or proper subsets of each other. More specifically, the 
dramatis personae labels for each participant in both the Agent and Patient positions 
were added to an Agent or Patient set of labels. If the Hero tag was in a set, the Helper 
tag was also added, and vice versa. Two events were considered to have consistent 
dramatis personae if one event’s Agent and Patient sets of dramatis personae labels 
equaled (or was a proper subset of, or vice versa) the other event’s Agent and Patient 
sets, respectively. If one of the events was marked as a symmetric event, where Agent 
and Patient positions are interchangeable, the dramatis personae sets for each event 
were combined into one set for the purposes of matching.

Stage One: Semantics

The merge rule for stage one was as follows. Two states were automatically merged 
if (1) all events in the resultant state were non-generic (see below), (2) all pairs of 
events in the resultant state were synonymous or hyper-synonymous with regard to 
their Wordnet senses, and (3) each unique PropBank frame attached to all events in 
the resultant state was represented at least twice. I define these conditions in more 
detail below.
	 Generic Events: I identified a class of verb type, which I called “generic” verbs. They 
were automatically excluded from merging because it was impossible to distinguish 
an informative, functional use of these words from a generic filler sense. The verb 
“say” and its synonyms are a good example: these made up nearly three-quarters of 
all events, and every one of Propp’s functions included at least one “say” event. That 
is, characters could accomplish all of Propp’s functions through speech acts. Char-
acters could threaten each other (A, Villainy, or Pr, Pursuit), meet for the first time 
or offer assistance (D, First Encounter with the Donor), react to other’s actions (E, 
Hero’s Reaction to the Donor), offer one’s services (C, Decision to Counteract), send 
a Hero on a quest (B, Dispatch), and so forth. More precisely, generic events were 
those whose verbs were marked with Wordnet senses falling into the lexicographer 
files of verbs of communication, perception, or motion. These include verbs such as 
“say,” “see,” or “go.”
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	 Synonymity: Two events were considered synonymous if their attached Wordnet 
senses, or the sense’s hypernyms, shared synonyms. This defined a loose semantic 
similarity that allowed events to be clustered together on the basis of meaning.
	 Doubled PropBank Frames: PropBank frames were attached to events through the 
semantic role annotation, as described previously. For two states to be merged, each 
PropBank frame found on an event in that state needed to be found on at least one 
other event in that state. This more specific semantic similarity served as a balance 
to the more generous similarity provided by Wordnet synonymity.

Stage Two: Valence and Position

In the second stage of merging, two states were automatically merged if (1) the two 
states already contained more than one event each, (2) the valence across the events 
of the states was compatible, and (3) the two states were the closest pairs of events 
in the story arcs.
	 Matching Valence: Two states were only automatically merged in this stage if the 
valences across the events in a state were compatible. As shown in table 2, event 
valence was measured on a 7-point scale running from +3 to –3. Two valences were 
compatible if their values were equal, with the exception that a neutral valence (value 
of 0) was allowed to match any other valence.
	 Closest Pairs: This stage also automatically merged states in a particular order, 
according to how far apart the state’s constituent events were, relatively, on their time 
lines. The position of each state was calculated as follows. The position of an event 
was defined as a fraction between 0 and 1, inclusive, corresponding to its relative 
position in its original linear time line. The position of a merged node was the average 
position of its constituent events. Then pairwise merges were ranked according to 
the difference in position between the states they were merging, where the smallest 
differences were pushed to the front of the search queue.

Results

From the Propp function annotations described previously, I constructed the gold 
standard against which the final model was measured. The final, gold standard set of 
function markings was actually much reduced from the list of functions in Propp’s 
monograph for three reasons: Propp’s omissions, functions not present or too sparse 
in the corpus data, and implicit functions.
	O f the 31 functions, Propp did not indicate the presence of the first seven functions 
(these were the preparatory functions, marked with Greek letters). These functions 
therefore had to be excluded from the analysis. Of the remaining 24 functions, func-
tions J, L, M, and N were not found in the 15 tales in my corpus, leaving 20 functions. 
Of these, an additional four—o, Q, Ex, and U—had two or fewer instances, and were 
excluded because they were too sparse to learn.
	 There were 276 function markings, of which 186 were explicit and 90 implicit. 
Because I did no commonsense inference, these implicit functions, or over 30 percent 
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of the data, had no actual event instantiation in the text. This problem was largely 
circumvented by noting that the majority of the implicit functions was one of functions 
involved in the two pairs of E-F (Reaction & Receipt) and H-I (Struggle & Victory). In 
these cases, when one of a pair was implicit, the other would be explicit. For example, 
in the case of a Hero fighting with a Villain, only the actual fight was mentioned and 
the victory was left implicit, or the victory was mentioned and the fight left implicit. 
Thus for the purposes of measurement, I merged these two sets of functions together. 
This resulted in the merging of 45 implicit function markings into explicit function 
instances, leaving 234 explicit function markings out of 276; the remaining 45 implicit 
markings were excluded from the target. These data are summarized in table 4, with 
the rightmost column indicating the number of functions present after filtering out 
generic events (see next section).
	I  used three different measures to analyze the performance of the learning proce-
dure. The first was the application of the chance-adjusted Rand Index, a measure of 
the overall quality of the clustering of events into Propp’s functions (Rota 1964). The 
second was the application of individual F1 measures for each of Propp’s functions. 
The third was a cross-validation analysis of how well the implementation works with 
smaller amounts of data.

Event Clustering

I used the chance-adjusted Rand Index (Hubert and Arabie 1985) to examine the 
quality of clustering of events into Propp’s function categories. I created three mea-
sures that may be ranked, colloquially, from “strict” to “lenient.” They were (1) a Strict 
score, where the clusters in the final model were compared against all Propp’s clusters 
of explicit function markings as listed in the Explicit Raw column in table 4; (2) an 
Interactive-Only score, where the clusters in the final model were compared against 
Propp’s explicit clusters with Non-Interactive events removed; and (3) an Interactive 

Table 4. Function present in the corpus before and after time line filtering

Symbol Description # Explicit raw # Explicit filtered

A/a Villainy/Lack 18 15
B Mediation/Dispatch 7 7
C Beginning counteraction 7 5
up Departure 13 7
D Encounter with the donor 16 16
EF Reaction & Receipt 30 29
G Transference 4 2†

HI Struggle & Victory 71 66
K Tension liquidated 12 9
down Return 10 2†

Pr Pursuit 18 14
Rs Rescue 13 10
T Transfiguration 3 2†

W/w Reward 12 8

Total 234 186
†Too few instances in data to expect extraction, not included in total
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Non-Generics Only score, where the clusters in the final model were compared against 
Propp’s explicit clusters with both Non-Interactive and Generic Events removed. 
These three results are listed in table 5. For the most lenient measure (Interactive 
Non-Generics Only), the algorithm performs fairly well, achieving an overall 0.714 
chance-adjusted Rand Index against Propp’s original functions. Here, I say “fairly 
well” because it is actually unclear how good this performance is, as there is no prior 
work: this work is the first attempt ever to learn Propp’s functions from folktales by 
computer, so there is no previous technique against which to compare.

Function Categories

The second metric was the F1-measure for individual function categories. Of the 14 
function categories in the final data, eight were recovered. These results are shown 
for the Interactive Non-Generics O measure in table 6. Importantly, the algorithm 
extracted the most central functions of the morphology: the initial villainy (A), the 
donor-encounter triplet (DEF), the struggle with and victory over the villain (HI), 
the liquidation of the villainy (K), the Pursuit-Rescue doublet (Pr-Rs), and the final 
reward (W). These are all key functions, not only in the tales analyzed, but across 
Propp’s morphology.
	 The most striking success was the extraction of HI, the Struggle-Victory combina-
tion function. A full 51 instances were classified correctly, and, when measured against 
the filtered time line, this resulted in an overall F1-measure of 0.823. This success 

Table 5. Three different chance-adjusted Rand index 
measures of cluster quality. The scores range from most 
strict through most lenient

Method	 Score

Strict	 0.511
Interactive only	 0.581
Interactive non-generic only	 0.714

Table 6. F1-measures of identification of functions

Symbol Description Semantics #False pos. # True pos. # False neg. F1

A/a Villainy/Lack devour, drag, hurt, 
seize

3 12 3 0.8

D Donor encounter drag, hit 0 6 10 0.585
E-F Reaction & Receipt cover, eat, make 3 9 20 0.839
H-I Struggle & Victory attack, break, cut, 

defeat, drag, fight, hit, 
hurt, push, race, seal, 
seize, throw, whistle

7 51 15 0.823

K Tension liquidated fill 0 3 4 0.6
Pr Pursuit chase, chew 0 5 9 0.526
Rs Rescue strike, throw 1 6 4 0.706
W Reward gift, marry 1 6 2 0.8
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can probably be attributed to substantial uniformity of semantics for this particular 
function, in that all the verbs were verbs of competition and fighting.
	 The next notable success is the identification of A (Villainy/Lack) and W (Reward), 
functions with an F1-measure of 0.8. These are two key functions because they book-
end the action. Similar to HI, the semantic uniformity of these functions was impor-
tant to their successful extraction. In Russian tales, the most common villainy is a 
kidnapping of a princess or other weak party. The reward is most commonly either 
marriage to the rescued princess or a gift of money.

Cross-Validation

The third metric of success was a cross-validation study where the algorithm was run 
over different subsets of the data, and exhibited a smooth degradation with smaller 
amounts of data. Remarkably, the technique still achieves an average chance-adjusted 
Rand Index of 0.457 when examining just two stories. Figure 3 shows this perfor-
mance, measured by the three chance-adjusted Rand Index measures as in table 5, at 
the optimal parameter values over different subsets of the corpus. Each data point in 
the graph is an average of all n-sized subsets of stories from the folktale corpus. As 
can be seen, the algorithm’s performance drops off smoothly, until, when only two 
stories are being considered at a time, it retains a surprisingly good value of 0.457 for 
the No-Generics measure, 0.360 for the Interactive Only measure, and 0.325 for the 
Strict measure. This measurement shows that the implementation is actually quite 
robust to variation in the data.

Figure 3. Performance of the ProppASM implementation on all subsets of the corpus.
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Related Work

While this is the first work that has shown learning of an actual theory of narrative 
structure by computational means, there has been some interesting recent work on 
learning more general narrative patterns. First, Nathanael Chambers and Dan Juraf-
sky have leveraged distributional learning over very large corpora to identify com-
mon sequences of events (2008, 2009). The technique relies on a point-wise mutual 
information score between verbs that share arguments to build up common pairs of 
events and their orders. These pairs are then knitted together to form narrative chains. 
Narrative chains have several interesting points of commonality and difference with 
this work. Chambers and Jurafsky and I are similarly trying to identify chains of 
events commonly found across sets of texts. Furthermore, their work is another data 
point supporting the argument that knowing the roles of the characters (e.g., who is 
the Protagonist) is critically important for identifying common narrative structure. 
On the other hand, the technique relies on an incredible weight of texts (they train 
on over 1 million texts) to find similarities. This approach is in contrast to my own 
algorithm, which my cross-validation study shows works passably well on a mere two 
tales. Also in contrast to my approach, the narrative chain model used by Chambers 
and Jurafsky sits quite close to the meaning of the texts: verbs are considered identical 
when they share root forms. With my technique, I go beyond this surface representa-
tion to abstract and generalize from the data—for example, using semantic knowledge 
to unify items such as “kidnap” and “seize,” and then further unify these with a verb 
such as “torment” to achieve a “harm” or “villainy.”
	O ther work, including that by Michaela Regneri, Alexander Koller, and Manfred 
Pinkal (2010), seeks to learn event scripts from lists of actions. The technique is a 
variation of the multiple-sequence alignment technique from bio-informatics. In their 
work, they were able to extract reasonable script-like structure from the data. Differ-
ences from my work include the type of data (subject-generated lists of key actions 
in performing a task versus natural stories) and, as with Chambers and Jurafsky, the 
inability to learn cycles. There is also no attention paid to filtering out unimportant 
events, as their starting data contained only events relevant to a particular script.

Conclusion

This work represents an advance for both the artificial intelligence field and the field of 
folkloristics. For artificial intelligence, it demonstrates a technique for learning a level 
of semantics rarely attempted and never before learned in such a verified manner. For 
folkloristics, it demonstrates that computational techniques can provide significant 
help in examining the deeper structure of folklore, and do not have to operate only 
at the surface level of lexical or keyword analyses.
	 There are many avenues to explore in future work. First, we should pursue extend-
ing these techniques to automatically learning the other levels of Propp’s theory: 
moves, subtypes, and dramatis personae. Second, regarding functions, it is natural to 
apply this work to other morphological analyses, such as those by Colby (1973) and 
Dundes (1964). Third, the basic technique itself affords much improvement: greater 
integration of commonsense knowledge about cause, generics, and other semantics; 
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attempts to learn implicit functions; and closing the loop by verifying the validity of 
morphological analyses via psychological or cultural experiments. With these efforts, 
artificial intelligence and folkloristics can expect much exciting future interdisciplin-
ary interaction that will enrich and advance both fields.
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Notes

	 1. For non-trivial starting stories, the search space for model merging becomes unmanageably large: it 
is equal to Bell’s number, Bn, where n is the number of initial states in the model (Rota 1964). Bell’s number 
quickly becomes extremely large as n increases. For example, while B2 = 2 and B3 = 5, B10 = 115,975 and 
B55 ≈ 3.59e + 31.
	 2. Note that Propp used an older version of Afanasyev’s collection. We provide this more modern 
citation for convenience.
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