
Efficiency Assessment of Parallel Workloads on Virtualized Resources

Javier Delgado,
S. Masoud Sadjadi

Florida International University
{javier.delgado,sadjadi}@fiu.edu

Liana Fong, Yanbin Liu,
Norman Bobroff, Seetharami Seelam
IBM T. J. Watson Research Center

{llfong,ygliu,bobroff,sseelam}@us.ibm.com

Abstract—In cloud computing, virtual containers on phys-
ical resources are provisioned to requesting users. Resource
providers may pack as many containers as possible onto
each of their physical machines, or may pack specific types
and quantities of virtual containers based on user or system
QoS objectives. Such elastic provisioning schemes for resource
sharing may present major challenges to scientific parallel ap-
plications that require task synchronization during execution.
Such elastic schemes may also inadvertently lower utilization
of computing resources. In this paper, we describe the elasticity
constraint effect and ripple effect that cause a negative impact to
application response time and system utilization. We quantify
the impact using real workload traces through simulation.
Then, we demonstrate that some resource scheduling tech-
niques can be effective in mitigating the impacts. We find that
a tradeoff is needed among the elasticity of virtual containers,
the complexity of scheduling algorithms, and the response time
of applications.

General Terms: scheduling, virtualization, parallel applica-
tion

I. INTRODUCTION

The current trend in resource provisioning for utility and
cloud computing is to provide compute resources as virtual
resource containers using virtualization technologies. The
most common realization is the use of virtual machine
(VM) technology, in which a virtual container manager
(VCM) abstracts and controls the physical resources allotted
to one or more VMs. The VM abstraction simplifies the
deployment of application environments across a wide range
of physical systems. The VCM provides fine-grained control
of the amount of shared resources to apportion to each VM
when they are competing for them. This provides resource
providers flexible resource allocation control to satisfy qual-
ity of service of requests and to build cost and profit
models [1]. This flexibility also allows application execution
to be tuned in different ways. For example, execution of
a job proceeds faster than expected when its VM borrows
idle CPU cycles from collocated VMs. Moreover, parallel
applications need not limit the degree of parallelism to the
number of physical machines.

The simplicity of application deployment and the flexi-
bility of virtual resource acquisition enabled by the Cloud
is creating interest among users of CPU-intensive parallel
applications [2]. However, this flexibility can present a
unique challenge when scheduling and executing them.

Based on its communication patterns, a parallel appli-
cation is categorized as either tightly-coupled or loosely-
coupled. Loosely-coupled applications require infrequent
communication among tasks. Tightly-coupled applications
must communicate frequently between computation inter-
vals. Thus, their tasks proceed in a “synchronized” manner
and the slowest task limits the resource utilization of all
other tasks. Because of this, if the tasks of a tightly-
coupled parallel application are allotted different amounts
of resources, synchronization can lead to inefficient use of
some of the resources. Thus, allocating tasks to resources
is challenging in virtualized environments, since current
provisioning schemes can result in different allotments for
different workers. This problem must be addressed in order
for both consumers and producers of virtualized environ-
ments like the cloud to maximize their return on investment.

Our prior work investigated and proposed new VM-centric
metrics of compute capacity that are useful for making
job placement decisions in a cloud-like environment [3].
A limitation of that work was that only serial workloads
were evaluated. This work extends our prior study to
scheduling tightly-coupled parallel scientific workloads on
VMs. An early and interesting observation we made was
that as more and larger parallel jobs are introduced into
the workload trace, the overall system utilization drops
from about 100% to 50%. Efforts to increase the load by
increasing the simulated job arrival rate or trying more
aggressive backfill policies in the scheduling algorithm failed
to improve system utilization. Investigation of the source
of this scheduling problem leads to the introduction and
measurement of 2 phenomena that occur when running
multiple parallel applications in virtualized environments in
which different application tasks can have different CPU
allocations and/or capacity limits. We refer to these as the
elasticity constraint effect and the ripple effect on parallel job
execution. Elasticity constraint effect refers to the possibility
of resources being left under-utilized resulting from the
configuration of elasticity constraints on virtual containers.
Ripple effect is the under-utilization of resources resulting
from running applications with parallel task synchronization.
Both of these effects negatively impact the utilization of
computing resources and application response time.

In this paper, we detail the sources of the elasticity
constraint and ripple effects and quantify their impact in

Physical Compute Platform A

Virtual Container
Manager

Virtual
Container

Virtual
Container

Virtual
Container

Job Queue

Physical Compute Platform B

Virtual Container
Manager

Virtual
Container

Virtual
Container

Virtual
Container

Job Scheduler

Figure 1. Virtual Container vs Physical Container Scheduling

environments in which highly synchronized parallel jobs
are placed in virtual containers that compete for physical
CPU capacity. We then experiment with new job scheduling
algorithms that address the technicalities of the virtual
container provisioning paradigm as well as the elasticity
constraint and ripple effects.

We find that executing parallel applications in virtualized
environments can result in sub-optimal usage of the under-
lying physical machines. In fact, we observed up to 47%
average under-utilization of the CPU due to ripple effect
when using a greedy scheduling algorithm. By applying
some simple heuristics that address the elasticity constraint
and ripple effects to scheduling algorithms based on the load
metrics introduced in [3], we were able to reduce this to
35%, as a result improving median job expansion factor
by more than a factor of 3. However, we conclude that
more sophisticated algorithms are needed to directly address
this issue. Reducing the heterogeneity of VMs reduces the
capacity wastage, but hampers the ability to satisfy varying
QoS objectives, which is desirable in cloud environments.

II. SYSTEM MODEL AND VIRTUALIZATION EFFECTS

A. System Model: Resource Sharing in Virtualized Platforms
In a virtualized cluster, a pool of virtual containers is

hosted on a set of physical machines. A virtual container
manager (VCM) orchestrates resource sharing among these
virtual containers. Figure 1 shows two example physical
compute platforms each with three virtual containers. The
job scheduler can assign jobs directly to the physical plat-
form (solid lines) or to the virtual containers (dashed lines).

The resource sharing policy among virtual containers can
be defined by three scheduling or sharing parameters: min,
max, and share. A set of these is assigned to each VM.

1) min - This is the minimum platform capacity that the
VM is guaranteed. The capacity cannot be used by
collocated VMs even when the VM is inactive.

2) max - This is the maximum capacity that a VM can
obtain even when there is free capacity.

3) share - This apportions free capacity among com-
peting VMs. It is further explained below.

The above sharing model is supported by VMWare [4]
and IBM hypervisor [5]. The parameters are best explained
with reference to Figure 2. This figure shows two virtual ma-
chines (V MA and V MB) collocated on a physical platform

with specific values assigned for min, max, and share
for each VM. According to these parameters, V MA can
use at most 4

7 of the total physical capacity, even when
V MB is not using any; V MB can use the full physical
capacity if V MA is idle. Since min is zero, there is no
guaranteed minimum capacity for either of the VMs. The
share distributes available capacity in relative proportion
to each VM, with its min and max as lower and upper
bounds. If all VMs have equal share, they get equal capacity.

The system has a homogeneous VM configuration when
all VMs have the same min, max, and share values. When
these values differ, it has a heterogeneous VM configuration.
For example, the system shown in Figure 2 is heterogeneous
because the two VMs have different values of max and
share. There are numerous reasons for setting these values
to be different across different VMs, the primary reason is
to provide different quality of service to workloads. In the
case of Figure 2, workloads with higher importance could
be assigned to V MB because it has a higher share (4 vs.
3 for V MA). The use of max is useful for capping cost
expenditures for resource usage.

Now we can introduce two new terms that will be used
for job scheduling in virtualized environments: potential
capacity and equilibrium capacity. Potential Capacity (PC)
reflects the instantaneous capacity that a VM can obtain,
depending on the set of VM sharing parameters discussed
above and the current utilization of the collocated VMs.
Thus, its value is computed dynamically. Equilibrium Ca-
pacity (EC) is the minimum resource capacity guaranteed
to a VM when all other collocated VMs are contending for
resources. The value of EC is invariant of the resource usage
by the collocated VMs and only depends on the sharing
parameters. For example, the EC of V MA and V MB in
Figure 2 are 3

7 and 4
7 , respectively. The computation of PC

and EC is not straightforward with different min and max
values; additional details on these terms are discussed in [3].

Now the job scheduling algorithms can use EC and PC
for scheduling jobs on virtual machines. Greedy scheduling
algorithms for scheduling jobs on physical machines can
simply use the free capacity (FC), i.e., the unused capacity
of the physical machine, as the primary metric for job
placement. With VMs, the FC of the underlying physical
platform is not an ideal metric since it is shared with other
VMs. Instead, we use PC and EC, which give us both an

Figure 2. Container CPU resource sharing model

instantaneous upper bound and an invariant lower bound
of how much capacity a VM can obtain, as job placement
metrics.

B. Elasticity Constraint Effect and Ripple Effect in Execut-
ing Parallel Jobs on VMs

Two major problems arise from virtual machine configura-
tions – in terms of the scheduling parameters (min, max,
share), and in terms of homogeneous and heterogeneous
VMs. We call the first problem elasticity constraint effect
because it occurs due to the constraints set by parameter
max. We call the second problem ripple effect; it is caused
when the capacity allocation of one task affects the rest of
tasks of the same parallel job.

We illustrate these two issues with a set of examples
shown in Figures 3 through 5. These figures show different
physical machines (PM1, . . . , PM4) each with 2 or 3 virtual
machines (V M1, . . . , V M3). We set min=0 and share=1
for all the VMs. The maximum utilization of a VM (max) is
set to different values to illustrate the issues. Several parallel
jobs (A-E), each with a different number of tasks, are placed
on these virtual machines (one task per virtual machine).

Consider Figure 3(a) which shows PM1 with a max of
0.5 and 0.4 for V M1 and V M2, respectively. Job A executes
on V M1 and Job B on V M2. Both of these jobs are compute
intensive and each can utilize as much capacity as possible
from the underlying physical machine. However, their actual
utilization will be limited to 0.5 and 0.4, respectively,
because of the max (i.e. the elasticity constraint) set on
the VMs. Therefore, 0.1 of the platform capacity will not
be utilized, even though either job could fully utilize it if
not for the max parameter. This is one example of system
utilization inefficiency due to the elasticity constraint.

Another example of elasticity constraint effect is shown in
Figure 3(b). In this case, tasks of jobs C and D are collocated
on PM3 and PM4 so each share 0.5 of the utilization. Now,
since job C is a parallel job with three tightly-coupled tasks,
its utilization on PM2 will be limited to 0.5 as well. Job
E on PM2 will have a utilization of 0.4 because of the
elasticity constraint of V M3. Again in this case, the total
utilization of PM2 will be limited to 0.9.

Obviously, the elasticity constraint effect will be ob-
served only for VMs with max<1. Moreover, running

D

C

D

C

VM3 max=0.4

50%

100%

50%50%

50%

100%

E

C

50%

40%

90%

VM1 max=1.0

VM2 max=1.0

VM1 max=0.5

VM2 max=0.4

PM1

B

A

50%

40%

90%

(a) (b)

PM2 PM3 PM4

Figure 3. Examples of elasticity constraint effect

highly-synchronized parallel jobs will exacerbate the under-
utilization situation.

Another source of under-utilization is what we call ripple
effect; it is caused by parallel task synchronization. We
illustrate the concept of ripple effect by referring to Figure 4
with three homogeneous VMs. In this situation, as the left
hand side of the figure shows, the cluster initially has 3
jobs: Job A has three tasks that are placed on one VM from
each of PM2, PM3, and PM4, Job B has one task on
PM1, and Job C has one task on PM3 and one on PM4.
The system utilization in this configuration is 7

8 because Job
A’s task on PM2 will only utilize half of the CPU due to
task synchronization. On PM3 and PM4, Job A and Job
C share the physical machine and thus each can only get
1
2 , so Job A cannot use more than 0.5 on PM2. Next, as
shown on the right hand side of the figure, we schedule Job
D with three tasks on one VM from each PM. On PM3,
each task of Jobs A, C, and D now share the PM and would
get a utilization of 1

3 . Then, the utilization of Jobs A, C,
and D (on PM2 and PM4 for Job A, PM4 for Job C, and
PM1 and PM2 for job D) would also be 1

3 . As a result, the
utilization of PM4 drops from 1 to 2

3 and the utilization of
PM2 increases from 1

2 to 2
3 . Hence, the allocation of job

D causes the cluster utilization to be lowered unexpectedly
due to the ripple effect.

Another example of ripple effect is presented in Figure
5. The ripple effect is more pronounced in heterogeneous
VMs with different shares, as shown in Figure 5(b), than
homogeneous VMs with same shares, as shown in Figure
5(a). Due to space limit, we will not describe this in detail.

In summary, elasticity constraint and ripple effects can

A

C

D

PM1

AB DDD
A

CC

A A

C

A

D

B

D

VM1

VM3

VM2

PM3 PM4 PM1 PM2 PM3 PM4PM2

Figure 4. Example of a scenario that causes ripple effect

A

…

VM1

VM2

PM1 PM2 PM3 PMN

A A A

VM share is
1:1

B

PMN

A AA

…B

PM1 PM2 PM3

A

VM share is
1:3

A AA

B …

PM1 PM2 PM3 PMN

A

(a) (b)

Figure 5. Another scenario that results in ripple effect

impact the efficiency of running parallel applications in vir-
tualized environments. Resource selection algorithms need
to consider these effects to mitigate their negative impacts.

III. SCHEDULING ALGORITHMS

To evaluate and mitigate the elasticity constraint and rip-
ple effects on parallel workload execution, various methods
of job scheduling need to be considered, including both the
job ordering policy and the resource selection algorithm. The
job ordering policy we use is first come first serve (FCFS)
complemented with backfill [6]. Backfill improves system
utilization without starving jobs requiring a relatively large
number of tasks. In this policy, the job at the front of the
waiting queue, for which there are not enough resources to
run, will reserve VM(s) at a future time. Other jobs queued
behind this job can be assigned to currently idle resources if
their execution does not interfere with the job’s reservation.
In our algorithm, we use EC, which represents the worst-
case utilization of a VM, to estimate the runtime of a queued
job conservatively when deciding if queued jobs should be
run ahead of the job with the reservation.

The resource selection algorithm, which selects the set
of VMs that should be assigned to the set of tasks of a
job, greatly affects the job’s execution time and the efficient
utilization of the compute resources. Most algorithms in-
troduced here are at their core a variation of load balancing
algorithms. These approaches are based on greedy heuristics
such as total free machine capacity in a non-virtualized
environment. In a virtualized environment, the PC or EC
metrics are shown to work well to maximize the overall
system utilization and job response time when serial jobs
dominate the workload with homogeneous VMs [3].

However, as the portion of parallel jobs in the workload
increases, the elasticity constraint and ripple effects chal-
lenge the applicability of classical job scheduling algorithms.
Our initial set of experiments confirm this speculation that
the effects negatively impact the overall system efficiency,
as shown later in Section V. Thus, we devise some resource
selection algorithms to mitigate these effects and then eval-
uate their effectiveness.

The starting point for the algorithms is the straightforward
greedy approach using EC or PC as task placement metrics.
Here, VMs are ranked according to the value of the place-
ment metric, in descending order, and tasks are assigned
accordingly. (Some subtleties are discussed in [3]). Some
intuition about the importance and reasoning behind our
choices for the resource selection algorithm is exemplified
in Figure 6. The underlying system has 7 PMs (A-G), each
of which has 4 VMs (1-4), such that A1 represents the
first VM on PM A. The figure illustrates the scenario of
scheduling a 4-task job when 9 VMs, ranked by either EC
or PC, are available. A load-based greedy algorithm selects
the 4 VMs with the highest value of EC or PC, i.e. the ones
enclosed in the colored rectangle. In contrast, the concept of

!"
#"

0

5

10

15

20

25

0 2 4 6 8

P
C

 o
r

E
C

Rank

$"

%"

%&

!'
(")& *"

Figure 6. Illustration of ranking scheme for scheduling algorithms

a semi-greedy approach is illustrated by selecting the 4 VMs
enclosed in the ellipse, where the last two VMs, D2 and E1,
have the same rank as C1. The semi-greedy idea comes from
the observation that a tightly-coupled parallel job’s execution
rate is limited to that of its slowest executing task, in this
case C1. Thus, both selections result in the same execution
rate for the job, but the semi-greedy approach leaves the
bigger capacity on A1 and B1 to later jobs.

The resource selection algorithms implemented for the
experiments are described below:

• PC-g: Select VMs with the highest PC ranking.
• PC-sg: Select VMs according to their PC ranking using

the semi-greedy algorithm.
• PCFC-sg: An extension of PC-sg with special treatment

of serial jobs. When scheduling a serial job, first select
the VM with the highest PC ranking from the VMs
whose PC is not bigger than the free capacity (FC)
of the underlying physical machine. If no such VM is
found, select the one with the highest PC ranking.

• EC: Select VMs with the highest EC ranking.
• PMVM: Prioritize PMs with the least number of active

VMs; use share as a secondary metric (or tie-breaker).

Among the above algorithms, PC-g does not consider
the ripple effect. PC-sg reduces the ripple effect by trying
to assign parallel tasks to VMs with similar PC. PCFC-sg
directly addresses the ripple effect by preventing serial jobs
from being assigned to VMs whose PC is bigger than the
free capacity (FC) of the PM. This technique prevents serial
jobs from creating a ripple effect by being placed on PMs
currently running other job(s) and avoids the effect shown
in Figure 5. When no VM satisfying this criteria is found,
the job is assigned to the highest-PC VM.

PMVM is an algorithm that does not rely on any of our
new metrics (EC and PC); it is a simple extension to current
resource selection algorithms for physical machines. It is
the baseline case for comparison with the EC or PC based
algorithms. The above algorithms are not necessarily optimal
techniques, but instead illustrate the new challenges faced
when scheduling jobs in virtualized environments.

IV. EXPERIMENTAL SETUP

A. Experimental Platform
We build a trace-driven, event-based simulator using Mat-

lab1 to measure the performance of scheduling algorithms
with workloads from real world traces. The simulator has
three components, a Resource Manager, a Job Manager
and a Scheduler. The Resource Manager monitors VM
states, including each VM’s allocated job and its utilization.
The states are changed and re-calculated upon job arrival
and completion events. It also provides interfaces for other
components to inquire about resource states and resource
parameters such as PM utilization, EC, PC, and FC. The
Job Manager generates job arrival and completion events.
The Scheduler schedules jobs on VMs based on resource
information from the resource manager upon job events
generated by the job manager.

B. Workloads for Simulation
Experiments are driven by two widely used traces from

the Cornell Theory Center (CTC)2 and the Grid’50003. The
traces are run unmodified, using each job’s specified number
of tasks and run time as the number of VMs required to
execute the job when run in isolation (i.e. using the full
CPU of the PM). The execution time is assumed to increase
proportionally to the allotted share of the CPU given to a
task. Our simulations process the first 10,000 jobs of each
trace. The Grid’5000 trace has a significantly lower portion
of parallel jobs than the CTC trace, which will demonstrate
the issues raised by the ripple effect with more parallel jobs.

C. Simulated Infrastructure
The simulated compute cluster consists of 64 PMs, each

with 4 VMs. Each physical machine has a normalized CPU
capacity of unity that is shared among the 4 collocated
VMs. We assume that each task is compute intensive and
can use up to the full capacity of the underlying physical
machine. This assumption is somewhat unrealistic, but it is
not possible to get fine-grained information about temporal
CPU resource utilization data from the trace files. Also,
if the VM scheduler fairly distributes CPU cycles and
there are multiple VMs on a physical machine, it is not
unreasonable to expect that the CPU will be constantly at full
utilization. The actual CPU consumption of the VM depends
on multiple factors, including not only the collocated VMs’
states, but also the states of VMs on other PMs because of
the ripple effect introduced by the parallel jobs. Since idle
VMs consume negligible CPU resources, we assume that
unoccupied VMs consume no CPU cycles.

Except for the study in which we explicitly set a max-
imum VM capacity less than 1, all VMs have min=0

1http://www.mathworks.com/products/matlab/
2http://www.cs.huji.ac.il/labs/parallel/workload/models.html
3http://gwa.ewi.tudelft.nl/pmwiki/

and max=1. In experiments where the VMs are described
as being homogeneous, each VM has share=1. For the
heterogeneous case, the share assigned to the 4 collocated
VMs on each PM are 1, 1, 2, 4. Hence, their EC values are
1
8 , 1

8 , 1
4 , and 1

2 of the physical CPU, respectively.

V. OBSERVATIONS

The elasticity constraint and ripple effects are evaluated
together with the effectiveness of different scheduling algo-
rithms for parallel workloads. The evaluation metrics include
cluster utilization (U), efficiency (η), expansion factor (XF),
and makespan (M). Cluster utilization U is the average CPU
utilization over all the PMs in the cluster. Cluster efficiency
η is the average CPU utilization of occupied PMs in the
cluster. An occupied PM is one that is currently executing
a task on at least one of its VMs. Efficiency measures
the deficit in resource utilization caused by the elasticity
constraint and ripple effects. This is because in the absence
of these effects (i.e. with all VMs’ max=1 and no parallel
jobs), any VM executing a job uses all available CPU cycles
from idle collocated VMs, which results in 100% utilization
of the corresponding PM. Then, for example, as parallel jobs
are introduced to the workload the ripple effect can preclude
them from fully utilizing the idle cycles.

The remaining two metrics address the job performance
or user perspective in contrast to the system resource or
provider viewpoint. The XF for each job is the “bounded
slowdown” of [7] and defined for a virtual environment in
Equation 1. Because of resource elasticity during execution,
the equation distinguishes a compute component (XFc) that
depends on system state from a pure queuing term. The
threshold in the denominator limits a potential bias caused
by modest delays to very short duration jobs. A threshold of
10 seconds is used here. The median XFc, median XF, and
90th percentile values are reported from our experiments.

XF =
(queueT ime + actualRunTime)
max(threshold, idealRuntime)

(1)

Makespan is the total time to execute a trace of N jobs
and reflects a combination of the benefits of scheduling
techniques, but restricted by actual job arrival patterns. Re-
sults are presented for the Grid’5000 trace, unless otherwise
noted.

A. Inefficiency due to the Elasticity Constraint Effect
The elasticity constraint effect is isolated from ripple

effect by filtering the trace to contain only single node jobs.
As noted above, so long as the max parameter of each VM
is 1, the efficiency η of the cluster is unity, meaning the
CPU is fully utilized on all occupied PMs. This behavior is
noted for a heterogeneous cluster using the PC-g algorithm
in Figure 7, where the horizontal axis is the occupancy ratio
and the vertical axis is the cluster utilization U . Note that
η can also be represented as the ratio between U and the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of occupied physical machines in cluster

C
lu

st
er

 U
til

iz
at

io
n

max
VM1−4

 = 0.5

max
VM4

 = 0.5

max
VM1−4

 = 1.0

Figure 7. Efficiency η on heterogeneous VMs for serial jobs

occupancy rate. The diamond markers (green) show the data
with unconstrained VMs, where all VMs have max=1. Then,
we reduce the max parameter of V M4, which has the largest
share (4), on each PM, to 0.5. This change (blue squares) has
little effect on efficiency because the PC metric accounts for
the decreased max (PC ≤ max) and the greedy approach
chooses to place jobs on VMs with smaller share but max=1.
There is a small decline at high occupancy when there are
fewer VMs to choose from. That is, V M4 has a better
chance of being chosen, resulting in constrained utilization
of the PM. A large drop in η occurs when all VMs have
max=0.5 (black ’x’). The PC-g algorithm balances the load
across PMs and there are long periods with less running jobs
than there are PMs, thus the cluster is not fully utilized. In
addition, the mean XF in this case is about 40% higher than
in the case of unconstrained VMs.

B. Inefficiency due to Ripple Effect

The ripple effect is more problematic than the elasticity
constraint effect since it cannot be solved by managing VM
sharing properties. It is evaluated with the homogeneous and
heterogeneous VM sharing configurations described in Sec-
tion IV-C and without filtering parallel jobs. Figure 8 com-
pares the efficiency as a function of time for heterogeneous
(dashed black line) and homogeneous (solid red line) VM
configurations. The impact of the ripple effect is apparent in
the figure as η < 1 most of the time. Furthermore, the homo-
geneous configuration utilizes the resources more efficiently
throughout the trace compared to the heterogeneous case. Its
makespan is 30-40% lower; its average efficiency is 89%,
compared to 65% for the heterogeneous case; its median
expansion factor is more than 30% lower. These results
lead us to conclude that heterogeneity should be minimized
for workloads with parallel jobs for high cluster efficiency,
unless more sophistic scheduling algorithms that address the
ripple effect are devised. These tests were performed with
the PCFC algorithm, which combines all our heuristics for
mitigating the ripple effect, as described in Section III.

0 0.5 1 1.5 2 2.5
x 10

7

0.2

0.4

0.6

0.8

1

event time (sec.)

cl
us

te
r e

ff
ic

ie
nc

y

hom.VMs

het. VMs

Figure 8. Efficiency η for homogeneous (hom.) and heterogeneous (het.)
VMs

C. Algorithm Comparison on Homogeneous VMs

In this section, different scheduling algorithms are com-
pared on their performance for the homogeneous VM con-
figuration.

The observed scheduling performance is shown in Table
I for each algorithm. The algorithms perform similarly,
except for the EC algorithm. Note that for homogeneous
VM configurations, all VMs have the same EC value. Since
our EC algorithm does not have a secondary sort criteria,
the algorithm assigns the job tasks sequentially to VMs.
This characteristic reduces the ripple effect since packing
tasks of a job into fewer PMs reduces the chance of uneven
task distribution. On the other hand, it increases the XF and
reduces overall U when the number of tasks in the cluster
is low, as tasks are collocated on PMs when there are free
PMs in the cluster. However, when the number of tasks in
the cluster is high and few PMs are left free, the benefit of
reducing ripple effect may become dominant, so the overall
XF and U depend on the workload pattern. As shown in
Table I, compared to other algorithms, EC has the best
efficiency and 90th percentile expansion factor, but the worst
median expansion factor, makespan, and cluster utilization.

Overall, the obtained results suggest that the ripple effect
is reduced by packing tasks from the same job on fewer
physical machines, but this should only be done when the
ratio of tasks to PMs is high, otherwise the cluster can
remain underutilized.

Table I
UTILIZATION AND EXPANSION FACTORS FOR 64 PMS AND 4

HOMOGENEOUS VMS/PM

Algorithm U η XFc XF XF90 Mkspan(L)
PC-sg 0.725 0.89 4.0 6.24 795 202.92

PCFC-sg 0.729 0.89 4.0 5.98 1006 201.78
EC 0.706 0.95 4.0 11.31 414 208.28

PMVM 0.720 0.88 4.0 5.97 784 204.12

D. Algorithm Comparison with Heterogeneous VMs
The tests of the previous subsection are repeated with the

heterogeneous VM configuration.
The scheduling performance metrics for all algorithms are

shown in Table II. The table includes the PC-g performance
data to contrast the impact of heterogeneity in the fully
greedy case compared to the semi-greedy case. The results
are mixed, but clearly EC and the PC-sg based algorithms
perform more efficiently and their expansion factors are
lower than the other methods. With the chosen cluster size,
due to the large variation in execution times, the XF90

values observed are disproportionately variable as the XF
values grow exponentially. However, the median XF values
obtained agree with our assumptions.

The efficiency of each algorithm compared by measuring
U at each occupancy level is presented in Figure 9. The
line at 45 degrees represents optimal efficiency. When less
than 50% of the PMs have jobs, all algorithms perform
close to optimal. The EC (brown ’+’), PC-sg (black ’x’) and
PCFC-sg (blue circles) are more efficient than PC-g (orange
diamonds) and PMVM (green squares). When all PMs are
active, PCFC-sg, PC-sg, and EC average roughly the same
utilization, with PCFC-sg performing slightly better. PC-g
and PMVM perform much worse at this stage due to their
tendency to select VMs without consideration of available
capacity of the available of VMs, which increases the ripple
effect.

Comparing these results to the homogeneous case clearly
confirms our previous observation that heterogeneity greatly
affects the efficiency and job performance of the cluster.
Even with workloads like the Grid’5000, consisting mostly
of serial jobs that consume all the compute cycles lost due
to the ripple effect, this is the case. Another observation
is that the greediest techniques actually make the problem
worse. Hence we reiterate that VMs should be as similar as
possible if simple scheduling techniques are used.

Table II
UTILIZATION AND EXPANSION FACTORS FOR 64 PMS AND 4

HETEROGENEOUS VMS/PM

Algorithm U η XFc XF XF90 Mkspan(L)
PC-g 0.490 0.53 2.00 30.7 910.84 299.80
PC-sg 0.564 0.65 2.00 8.29 887.81 260.59

PCFC-sg 0.529 0.61 1.66 8.00 380.31 277.87
EC 0.559 0.64 1.75 8.31 407.97 262.96

PMVM 0.508 0.56 2.00 18.1 820.57 289.66

E. Ripple Effect of CTC Trace
As expected, the ripple effect is more significant for the

CTC trace, due to its high percentage of long running
and large parallel jobs. Figure 10 shows the temporal
efficiency for two scheduling algorithms: PCFC (black ’x’
and blue/dark ’o’) and PC-sg (light/red ’+’ and light/green
squares) with the homogeneous and default heterogeneous

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of occupied physical machines in cluster

C
lu

st
er

 C
P

U
 U

til
iz

at
io

n

PC−sg

PCFC−sg

EC

PMVM

PC−g

Optimal

Figure 9. Efficiency η for heterogeneous VMs with five scheduling
algorithms

0 81 161 241 321
0.4

0.6

0.8

1

event time (days)

cl
us

te
r e

ff
ic

ie
nc

y

PCFC−sg (hom.)

PCFC−sg (het.)

PC−sg (hom.)

PC−sg (het.)

Figure 10. Efficiency η of the CTC trace for homogeneous and heteroge-
neous VMs

VM configurations. From the event time along the X-axis,
the makespan is roughly doubled for the heterogeneous VM
case. In terms of efficiency, both algorithms are about 98%
for all the homogeneous and 56-58% for the heterogeneous
configurations. The median expansion factors were nearly
twice as large in the heterogeneous VM case, clearly due to
the capacity lost to the ripple effect. These results further
confirm the negative impact of ripple effect in virtualized
environments with heterogeneous configurations.

VI. RELATED WORK

Virtualization is an essential aspect of cloud computing.
However, it comes with important implications for applica-
tion performance and system utilization.

The virtualization overhead can impact the performance
of high performance computing (HPC) applications. The
authors of [8] reported the impact of Xen on MPI appli-
cations and the authors of [9] quantified the virtualization
overhead on HPC applications such as BLAST, GROMACS
and HMMer. This paper does not address the virtualization
overhead. The focus of the paper is on assessing the effects
that negatively impact parallel job execution in virtualized

environments and the potential mitigation of the impact with
new job scheduling algorithms.

Parallel job scheduling on physical machines is a mature
field and is well studied. The development and evaluation
of parallel job scheduling algorithms are many and a good
summary on issues and approaches is in [10].

There are some studies on the job scheduling algorithms
and performance of virtual machines mapped to physical
machines [11], [12], [13]. Particularly, the work by Still-
well [14] addressed a set of scheduling issues. Stillwell’s
work proposed job placement methods based on current CPU
utilization and memory occupancy using Multi-Capacity
Bin Packing (MCB) algorithms. The job placements are
then augmented by periodic preemption and migration to
address workload imbalance. Unlike this work, our work
uses new load metrics and addresses the scheduling and
system utilization issues for mixed workloads of serial and
parallel jobs. Our earlier work in [3] defined new load
metrics and studied their applicability for serial workloads
in homogeneous virtualized environments.

Feitelson looked at fragmentation [15] in gang scheduling
that may cause wasted capacity in multiprocessor systems.
Similarly, fragmentation occurs when scheduling on virtual
machines, but in this case some processor capacity may not
be utilized due to sharing physical machines among jobs
and elastic resource specifications. Thus, we introduce two
novel aspects in virtualization on parallel jobs performance:
elasticity constraint and ripple effects.

VII. CONCLUDING REMARKS AND FUTURE WORK

Based on a generic elastic resource sharing model in vir-
tualized environments, we describe the elasticity constraint
effect and ripple effect, which negatively impact resource
utilization and job response time in these environments. We
quantify their impact using a simulator and present some
new algorithms to mitigate this impact. We argue that simple
extensions to traditional job scheduling techniques for phys-
ical resources are inadequate for virtualized environments.
Hence, a new generation of load metrics and algorithms
for job scheduling are required. Otherwise, we find that a
tradeoff is needed among the elasticity of virtual containers,
the complexity of scheduling algorithms, and the response
time of applications.

In this paper, we show experimental results on a limited
set of resource sharing parameters and job placement algo-
rithms. For future work, we may investigate additional pa-
rameter settings (e.g. min>0), more sophisticated schedul-
ing algorithms, and migration of tasks between virtual
machines on the same physical machine or across physical
machines.

VIII. ACKNOWLEDGMENTS

This material is based upon work supported in part by
IBM, in part by the National Science Foundation under

Grant Numbers OISE-0730065, CNS- BPC-AE-1042341,
CNS-MRI-R2-0959985, HRD-CREST- 0833093.

REFERENCES

[1] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented
cloud computing: Vision, hype, and reality for delivering it
services as computing utilities,” in HPCC, 2008, pp. 5–13.

[2] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance
cloud computing: A view of scientific applications,” in ISPAN,
2009, pp. 4–16.

[3] Y. Liu, N. Bobroff, L. Fong, S. Seelam, and J. Delgado, “New
metrics for scheduling jobs on a cluster of virtual machines,”
in IDPDP ’11: Workshop on System Management Technique,
Process and Services, 2011.

[4] “VMWare: Virtualized Basics.” [Online]. Available:
http://www.vmware.com/virtualization/virtual-machine.html

[5] “IBM: Advanced POWER Virtualization on
IBM System P5.” [Online]. Available:
http://www.redbooks.ibm.com/abstracts/sg247940.html

[6] D. A. Lifka, “The anl/ibm sp scheduling system,” in JSSPP,
1995, pp. 295–303.

[7] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C.
Sevcik, and P. Wong, “Theory and practice in parallel job
scheduling,” in IPPS ’97: Proceedings of the Job Scheduling
Strategies for Parallel Processing. London, UK: Springer-
Verlag, 1997, pp. 1–34.

[8] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Evaluating
the performance impact of xen on mpi and process execution
for hpc systems,” in Proceedings of the 2nd International
Workshop on Virtualization Technology in Distributed Com-
puting. IEEE Computer Society, 2006.

[9] C. Macdonell and P. Lu, “Pragmatics of virtual machines for
high-performance computing: A quantitative study of basic
overheads,” in Proceeding of the High Perf. Computing and
Simulation Conf., 2007.

[10] D. G. Feitelson and L. Rudolph, “Theory and practice in
parallel job scheduling,” in IPPS ’95: Proceedings of the Job
Scheduling Strategies for Parallel Processing. London, UK:
Springer-Verlag, 1995.

[11] N. Bobroff, A. Kochut, and K. A. Beaty, “Dynamic placement
of virtual machines for managing sla violations,” in Integrated
Network Management, 2007, pp. 119–128.

[12] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic
placement of hpc applications,” in ICS ’08: Proceedings of
the 22nd annual international conference on Supercomputing.
New York, NY, USA: ACM, 2008, pp. 175–184.

[13] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. T.
Foster, “Resource leasing and the art of suspending virtual
machines,” in HPCC, 2009, pp. 59–68.

[14] M. Stillwell, F. Vivien, and H. Casanova, “Dynamic fractional
resource scheduling for hpc workloads,” in IPDPS, 2010.

[15] D. G. Feitelson, “Packing schemes for gang scheduling,” in
JSSPP, 1996, pp. 89–110.

