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Abstract

Mobile ad hoc delay/disruption tolerant networks (DTNs) networks with intermittent connectivity,
have recently received a lot of attention because of their applicability in various applications, including
multicasting. We are proposing design of DTN multicast protocol which is called DTCAST for ad-hoc
multicast in intermittent connectivity environments. DTCAST protocol can be defined as dual routing and
data delivery protocol, which combines on-demand routing phase of ODMRP protocol with short-distance
epidemic data dissemination and local route injection to increase robustness in highly mobile environment.
One of the key features of the proposed protocol is two-class delivery guarantee for data messages using
explicit and implicit acknowledgements. In the paper we present various experimentation results of our
protocol implementation as well as simulation results to show the advantages of epidemic dissemination
and network in highly mobile environments.

I. INTRODUCTION

Several different methods for providing multicast routing and delivery of messages in mobile ad
hoc and delay/disruption tolerant networks (DTN) have been proposed over the last several years.
These networks will be widely deployed in the future to provide a variety of services, for example,
network extending without additional infrastructure or sensor networks, which collect environmental
data and vehicular MANETs which help with collaborative driving and central traffic control. Often
in these applications, we need to disseminate data to a group of receivers, e.g. we may want to
reset a series of thresholds in sensing on a certain subset of sensors, or the officer want to provide
traffic information to the vehicles in near blocks. Thus, multicast service in DTN is highly desired.

We are proposing design of DTN multicast protocol which is called DTCAST for ad-hoc multicast
in intermittent connectivity environments, which introduce additional features that many other
existing solutions cannot provide. We have reviewed different aspects of proposed protocol, as well
as performed experimental and simulation evaluation of the protocol under variety DTN connectivity
and mobility conditions.

Our project is focused on a dual routing and data delivery protocol with additional local route
injection design and implementation and its experimental evaluation, as well as on extensive
simulations of multicast implementation of epidemic routing and network coding extension to
ODMRP [1] protocol coupled with local recovery phase and short-distance epidemic routing to
provide informal proof of effectiveness of proposed protocol design.

Epidemic routing is a mobile ad-hoc routing algorithm most suited for partially-connected, delay-
tolerant networks. It works on the premise of flooding the network with messages for intended
recipients. A node which carries a message for another node will infect any node it comes in
contact with, whether or not it is the intended recipient. The only exception would be if the
node just encountered had previously been seen before recently; then no infection would occur.
The idea behind this is simple: the more nodes you can infect with your message, the better
your chances become that one of those infected nodes will eventually come into contact with the
intended recipient. Your chances improve, of course, when you allow infected nodes to continue
to infect others, thus causing an epidemic of your message. To control this epidemic, it therefore
becomes important that you set a Time-To-Live (TTL) and Max Hop Count for each message you
send. These functions ensure that your message eventually gets stopped (hopefully after its been
received) and doesnt bog the network down with unnecessary message infections.
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Combination of reactive on-demand ODMRP-like routing approach and opportunistic epidemic
routing provides extended quality of multicasting service in delay/disruption tolerant networks, as
well as decreases control overhead of protocol.

The rest of the paper is organized as follows. Section II lists related protocols in multicast in
ad-hoc networks (MANETs) and points out its key features, Section III discusses our proposed
protocol design features. Section IV is devoted to experimental evaluation of our implementation
of DTCAST protocol. Section V provides simulation results for DTCAST protocol evaluation. And
finally, Section 7 concludes the paper.

II. BACKGROUND AND RELATED WORK

In last several years, there have emerged a number of research projects proposing different routing
approaches in the mobile ad hoc networks (MANET). Hong et al. in [2] have classified them to flat,
hierarchical and geographic position assisted routing protocols. Flat routing can be represented as
proactive (table-driven) and reactive (on-demand) protocols. Delay and disruption networks imply
high probability of network nodes interconnectivity changes, which eliminates proactive protocols,
which induces excessive amount of overhead due to persistent maintaining routing tables.

ODMRP [1] is a very popular multicast protocol in MANETs. Rather than maintaining routes
proactively, ODMRP provides pure on-demand approach to route establishment by network loop-
prevention flooding from the source node who wants to send data with Join Query packets. Multicast
group members interested in receiving data send Join Reply upon receiving the Join Query, which
is used to establish actual multicast forwarding paths. The source sends out Join Query periodically
to maintain the mesh of multicast forwarding paths, and a node is no longer considered as a group
member if it does not reply the Join Query message during predefined timeout period. ODMRP is
robust to mobility, fast fading, obstacles and jamming, but have considerable control overhead due
to frequent network flooding.

Local route recovery was introduced by E-ODMRP [3] to tackle with the high mobility environ-
ment with lower control overhead. With this scheme, receiver estimates packets arriving interval
and set up a corresponding timer. If timer expires, the disconnected node proactively grafts onto
the forwarding group mesh instead of waiting until next route refresh.

The ADMR [4] protocol performs adaptive learning of source traffic broadcasting patterns to
distinguish between sporadic connection loses and node permanent disconnections. On detecting
connection loss, protocol is employing local recovery and global recovery procedures. To perform
channel detecting if source temporarily stops generating data messages, protocol define keep-
alive message sending at increasing inter-packet intervals. Permanent disconnection of source node
is detected by significant deviation of silence period from traffic generation pattern. However,
it is claimed that the protocol doesn’t required network flooding to maintain required source-
based routing trees, it still requires explicit network-wide flooding of join messages from receiver
(multicast solicitation) and either network-flood or unicast type reply from source node. Moreover,
the protocol requires that an additional Receiver Join message to be sent from receiver to source
as a reply to unicast keep-alive reply on Multicast Solicitation message.

MZR [5] is a routing protocol which combines proactive zone routing table maintaining (i.e.
hierarchical routing scheme) with reactive source initiated on-demand building multicast source
routing tree based on session identification using <source id, group id> pair. It is proposing to
use simplified distance vector protocol inside each zone to maintain Zone Routing Table using local
broadcast of special Advertisement packet. The whole multicast tree is created in on-demand way
in multi-phase process - initial source tree building inside zone and recursive source tree expansion
over zone limits using source tree branch creation from each border node. However MZR protocol
provides limited network flooding while route discovery, it still has significant overhead due to
proactive nature of zone route maintaining.

Message Ferrying [6] utilizes a special group of nodes called message ferries to provide com-
munication services in sparse MANETs. Ferries move around the area along pre-determined routes,
providing regular but intermittent communication services to those non-ferry nodes. Non-ferry nodes
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can choose to move freely and meet ferries by chance, which is highly possible assuming the number
of the ferries and the routes they move are reasonable; or they can adjust their movements to meet
the ferries proactively. Ferries collect packets through the contact with non-ferry nodes, and then
deliver the packets to their receivers if these nodes happen to move around the ferries in the future.

Message Ferrying was originally proposed as a unicast protocol, but [7] extends it with multicast
functionality. The source can simply send multicast message to the ferries, and they will handle
everything else. When ferries move around, they advertise a list of active groups to the nodes they
meet, and these nodes choose to join a multicast group by sending a JOIN message to ferry. Upon
becoming a group member, the node can receive the multicast packets of that particular group.

There has been several papers addressing epidemic routing to be more well suited for mobile
ad-hoc and delay-tolerant environment. Vahdad et al. [8] describes the basic protocol design of
Epidemic Routing in its original form, meant for unicast traffic. Chen [7] briefly mentions how
to create a multicast extension to Epidemic Routing, which became a base of our simulation
evaluations. Zhao et al.[9] performs evaluations of this multicast extension of epidemic routing
protocol.

Above mentioned proposals present only routing phase for data delivery process and rely on
upper layer protocol to maintain data integrity. On contrary, Bose et al. [10] have presented FACE-
1 and FACE-2 routing algorithms in the MANET which, besides routing phase, guarantee delivery
without requirement of persistent memory on the network nodes. Also it is claimed, that algorithms
do not need of packet duplication based on finding connected planar node interconnection subgraph
and perform routing on this planar graph. Unfortunately, it only works in the case of static
and connected network during message transmission. Moreover, experimental work shows, that
algorithms proposed in [10] have limited efficiency.

III. DTCAST PROTOCOL DESIGN

While designing our multicasting protocol over ad-hoc overlay we have taken in account that it
should satisfy several requirements:

• should perform guaranteed data delivery
• be tolerant to short-term node disconnections
• be tolerant to long-term node disconnections
• be tolerant to node mobility (connection path changes)
• should have low control data and retransmission overhead
• be able to work over any link-layer protocols
Requirements to be tolerant to short-term disconnectivity, long-term disconnectivity and node

mobility, due to different type effects on the node interconnections, lead to different mechanisms
incorporated into the protocol. To be able to tolerate all above mentioned interconnection changes
patterns, our protocol has several phases: route discovery, data transfer, data catch up and local
route injection. The Route Discovery phase consists of ODMRP-like [1] on-demand route discovery
procedure. Data transfer phase includes data delivery with implicit and explicit delivery confirma-
tions as a solution to long-term node disconnection, i.e. data will not be deleted from local message
queues until some kind of confirmation is received. Data catch up phase is triggered when node
on the path to destination detects, that next-hop node is not available. This phase is aimed to be
solution to short-term disconnections and node mobility and employs short-range epidemic data
dissemination [8]. Local route injection phase destination node performs injection of forward path
routing to all its neighbors upon detecting that it stops receiving data. This is very similar to local
recovery phase of E-ODMRP protocol [3], but doesn’t require explicit data stop messages and
instead it uses detection heuristics based on timeout after last data message received. This phase is
aimed to improve data delivery in the case high node mobility.

We have implemented our protocol in Click Router [11] environment. Due to the experimental
nature of the implementation we have not considered any security issues, however some insider
and outsider attack prevention schemes should be implemented in the underlaying link or network
layer protocols in the case of the real deployment. Our implementation borrows from ODMRP
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[1] idea of on-demand building route to the destinations, but it, as it will be described in detail
in Section III-A, extends forward path building. In the ODMRP protocol, each node on receiving
Route Reply message decides whether to create or not forwarding rule for the multicast stream
based on the ”Next” field in the message. DTCAST extends Route Reply messages and Forwarding
rules to contain destinations ID list, which allows to establish delivery responsibility for source
and intermediate nodes. However, this introduces additional overhead to the routing messages and
forwarding tables, it can be considered as minimal due to the fact, that Route Reply messages in
our implementation have time granularity 5 seconds and each destination ID is 32 bits.

On the other hand, DTCAST protocol can be considered as dual protocol: routing and actual
data delivery protocol with two class servicing. All data to be send to number of destinations
is encapsulated in special DTCAST data messages which are identified by unique ID number and
multicast ID number. Moreover, each data message contains a special data field, which indicates the
period of data message actuality, which has to be set by source node and can be in the range from
several seconds to several days. Each data message is also stored internally at each node associated
with the list of the destinations to which this data message should be delivered. This association is
generated based on source node knowledge of the list of destinations (first-class services) and on
the list of destinations from Reply messages (secondary service). First-class service allows delayed
data delivery even if node is not available at the moment of the first delivery try, e.g. source will
keep trying to disseminate all actual data messages to all nodes from internal list. Second-class
services allows data delivery if node is interested in multicasting stream and is active at the time
of delivery tries to the first-class serviced nodes.

The current implementation is available online through public GIT [12] repository http://github.
com/cawka/click-dtcast/ and consists of three basic Click Router [11] elements: Source, Receiver
and Forwarder. The source element implements local queueing and data message encapsulating;
the receiver generates route replies and performs message decapsulating. The forwarder element
performs interaction between other DTCAST stations in the network.

A. Routing Phase
As was mentioned earlier, each source node a-priori knows list of first-class serviced destinations

ID list as well as multicast ID. In our implementation we have defined source, destination and
multicast IDs be 32-bit fields. While source node SRC has any data messages intended for at least
one destination it periodically (Route Request Time = 5s) sends Route Request messages. Each
Route Request message contains Route ID in the form of tuple (Src ID, Stream ID), which will be
used to create tree from source node for particular multicast stream.

Each Route Request can be uniquely identified by source node ID, multicast stream ID and
sequence number. To limit network flooding and prevent loops in route discovery process, each
node should process each unique Route Request only once. This can be done by checking special
designated Cache Table using tuple (Src ID, Stream ID, Seq#) from the Route Request. In the
case of duplicate Route Request detection, node should discard such packet without performing
any further actions.

Otherwise, each node inserts or updates data in the Source Routing Table, which can be repre-
sented as a list of tuples (Src, NextNode, LastUpdate), where Src, NextNode – IDs of the source
and next node on the path to the source, LastUpdate – last time of the information update to
purging unused paths in the network. After updating Source Routing Table node should decrease
RTT value and rebroadcasts Route Request packet. Source Routing Table should be periodically
checked to delete old records.

The destination, on receiving Route Request for the expected Stream ID, forms and broadcasts
a Route Reply, where it includes itself ID. Each node on receiving Route Reply checks if its ID
equals Next ID in the Route Reply. If it is true, then node search record in Source Routing Table. If
there are no records - path to the source node is unknown, than Route Reply is discarded, otherwise
it should fill record in Forwarding Table for the particular Route ID with tuple (Dst, Fw flag,
Timestamp), where Fw flag is set to true. List of destinations in the Forwarding Table is used

http://github.com/cawka/click-dtcast/
http://github.com/cawka/click-dtcast/
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to establish delivery responsibility and because of dynamic character of the table it contains all
downstream active destinations of the multicast tree.

While there are records in the Forwarding Table and correspondent records in Source Routing
Table, node periodically form and broadcast Route Reply packet for each RouteID designated to
NextID node, containing associated list of destinations (Figure 1). If node detects, that source
path is no longer available, than it should delete the corresponding records in Forwarding Table.

The example of the route discovery presented in Figure 2. There is source node 1 and two desti-
nation nodes 6 and 8. Source node broadcasts Route Request, containing stream ID X (RR<X>).
Each node on the path constructs their own Source Routing Table, e.g. remembers source of the route
request packet, and further rebroadcasts Route Request. Nodes 6 and 8 on receiving Route Request
form and broadcast their Route Reply for the stream ID X , containing correspondent destination IDs
– RT<X>[6] and RT<X>[8] accordingly. On receiving Route Reply node 4 updates its Forwarding
Table to include node 6 in the downlink destination node list, or in other words, establish delivery
responsibility for node 6. Similarly node 5 establish delivery responsibility for node 8. Node 3
would receive Route Reply from both node 4 and node 5 and will update Forwarding Table to
contain records for both nodes 6 and 8 as downlink destination list for stream ID X . Finally, node
3 will generate cumulative Route Reply packet containing list of all downlink nodes (node 6 and
8) and will broadcast it to the source node 1.

1
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Fig. 1: Route Discovery

B. Data Transfer Phase
Each data message in DTCAST protocol is uniquely identified by stream ID and sequence

number. On the other hand, it is associated to particular route using tuple (Stream ID, Src ID).
This means that each source should disseminate data using distinct stream ID and, in the same time,
data message from one source can be disseminated using different multicast routing trees. Such
approach is one of the key elements of the guaranteed delivery service and especially useful in the
case of high node mobility. Additionally, data message contains Time of Actuality field, which is
used to decide time moment of undelivered data discarding from local queues. Time of actuality is
set by the source in can be in range from several seconds to several days.

Delivery guarantee in delay and disruption tolerant networks implies the possibility to store each
data message for long-time periods. Actual data storage requirements depends on source data rate,
overall data length and node connectivity. To be able to recover from short-term disruptions, protocol
should have short data retransmission period, but there is tradeoff between this period and network
overhead. Our implementation includes heuristics to have small retransmission period (5 seconds)
and in the same time have small network overhead. This heuristics can be described as pseudocode
in Figure 4. As it can be seen, message will be broadcasted twice only in the case of non-empty
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intersection of destination list of the message and list of downlink destinations. Destination list of
the message decreased each time node receives explicit or implicit data acknowledgement.

OnRet ransmi tT imer ( DataMessage ){
s e r v i c e d d s t s = DataMessage . g e t D s t s ( ) ;
d o w n l i n k d s t s = ForwardTab le . g e t D s t s ( DataMessage . ge tRou te ID ( ) ) ;

i f ( s e r v i c e d d s t s ∩ d o w n l i n k d s t s 6= ∅ )
b r o a d c a s t ( DataMessage ) ;

}

Fig. 2: Heuristics to trigger data transmission

Because our protocol allows retransmission nodes should allow the reception duplicate data
packets, but at the same time should prevent excessive data rebroadcasting, e.g. upstream nodes
should not rebroadcast data message, which is broadcasted by downstream node. Additionally, upon
receiving data message node should notify upstream node of successful data message receptions. We
have defined two types of notifications: implicit (passive) and explicit (active). In the first case data
rebroadcasting plays role of implicit notifications and in the second case special acknowledgement
packet is send to the upstream node (see Figure 3).

On receiving a data packet each node performs heuristic decision procedure whether to rebroad-
cast packet (”send” implicit notification to the uplink), or not to broadcast and to send explicit
delivery notifications. Decision procedure can be described using pseudocode in Figure 5. In the
case of reception data packet and cached list of serviced destinations is equal to current list of
serviced destination for the Route ID obtained from Forwarding Table. This is indication that
message is from the upstream node, which haven’t detected implicit notification and node send
explicit notification. If the list of currently serviced destinations contains at least one node, which
is not present in cached list, then node performs message rebroadcasting.

OnReceiv ing ( DataMessage ){
s e r v i c e d d s t s = Cache . p r e v i o u s l y s e r v i c e d d s t s ( DataMessage ) ;
d o w n l i n k d s t s = ForwardTab le . g e t D s t s ( DataMessage . ge tRou te ID ( ) ) ;

i f ( s e r v i c e d d s t s = d o w n l i n k d s t s )
b r o a d c a s t A c t i v e A c k ( ) ; / / Probabably s o u r c e haven ’ t

/ / r e c e i v e d i m p l i c i t n o t i f i c a t i o n
e l s e i f ( d o w n l i n k d s t s − s e r v i c e d d s t s 6= ∅ )

b r o a d c a s t ( DataMessage ) ;
}

Fig. 3: Data broadcasting decision procedure

On receiving implicit or explicit notification, node finds corresponding record in Message Queue
for (Route ID, Seq#) and removes from Dst list of the found record all Dst ID’s containing the
notification. If after removing records Dst list contains no records, the node removes whole record
from Message Queue.

Example of the DTCAST data transfer with active acknowledgements is presented in Figure 6.
Source node 1 broadcasts message X using previously established route. After receiving acknowl-
edgements from node 3, node 1 discards message X from Message Queue. Node 3 broadcasts
message X and after receiving acknowledgements from nodes 4 and 5 discards message X from
Message Queue. Similarly, message X will be delivered to destination nodes 6 and 8 and discarder
from local queues on nodes 4 and 5.
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Fig. 4: Data transfer (full connectivity)

C. Data Catch Up Phase
Data catch up phase is triggered if some node detects downlink path disconnection. Detection is

based on observation downlink path disappearance (cached_serviced_dsts− downlink_dsts
6= ∅). Detection is performed only on intermediate nodes on the path from source to destinations.

Upon triggering, node updates change original source ID of appropriate records in Message
Queue to itself ID. This step allows to build new multicast tree from the intermediate node and
rebroadcast data using new route. Additionally, node sets ”Epidemic” flag to same records for 20
seconds and performs epidemic data dissemination [8] in the range of 2 hops, which ensures data
delivery in the case of high mobility and fast route changes.

On receiving data with EPIDEMIC flag set each node broadcasts acknowledgement with EPI-
DEMIC flag set and TTL=4 and performs local delivery if data cache doesn’t contain record for
data, decrement TTL field and rebroadcasts data if TTL permits.

On receiving acknowledgement, additionally to data transfer phase actions, node checks if ac-
knowledgement has ”Epidemic” flag. If it has, node decreases TTL field and rebroadcasts packet
if TTL permits.

Example of phase action is presented in Figure 7. Path between node 4 and 6 accidentally
breaks (e.g. due to mobility of the nodes), node 4 after detecting disconnection will send data
packet containing message with epidemic routing flag set, TTL value equals to 2. Assuming, that
nodes move relatively slow and there is high connectivity between nodes, there is high probability,
that data packet will reach node 6, which in the same epidemic manner will acknowledge all nodes
in the range 2xTTL.
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Fig. 5: Data transfer (route loss)

D. Local Route Injection Phase
Local route injection phase is triggered if a destination node hasn’t received new data messages

during a pre-defined timeout value (in our implementation we have defined this timeout be 5
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seconds). For 5 seconds after having been triggered, the node will generate a special form Route
Reply packets, which have TTL=1 and NextNode field equals to special All Nodes value. This
phase can help to recover from sporadical connection loses be injecting forwarding path to all
neighboring nodes.

IV. DTCAST PERFORMANCE EVALUATION

A. Experimental Testbed
For the experimental evaluation, our DTCAST implementation was deployed to 7 WiFi enabled

laptops. Interconnections as illustrated in Figure 8 were modeled using internal firewall on each
computer. Node 1 is a source, node 6, 7 are receivers with first-class delivery service, other nodes
are second-class receivers. This model allows to evaluate impact of critical and non-critical path
nodes (nodes 4 and 3 consequently) disconnections.

1
10.1.1.1

3
10.1.1.3

2
10.1.1.2

4
10.1.1.4

5
10.1.1.5

6
10.1.1.1

7
10.1.1.1

Fig. 6: Experiment interconnection scheme

Experimental evaluation was performed using source data stream configuration as follows:
• data messages size 1024bytes
• data speed 1 packets/second
• continuos data transfer for 40 seconds
The purpose of evaluation is to get multi-hop data propagation delay characteristics for all test-

bed nodes depending on different network states. Delay was calculated as difference in test data
message timestamp and reception time on each receiver. System clocks of all testbed machines was
previously synchronized using NTP protocol (http://www.ntp.org/).

B. Experimental Results
Experimental results show message delay changes for all testbed nodes relatively to source node

in different interconnectivity dynamic environments. Figure 9 presents behavior of the DTCAST in
the static lossy environment (static WiFi network). Due to chosen retransmission timeout granularity,
first data message, which triggered on-demand route discovery, has been delayed up to 12 seconds.
Almost all other data messages experienced delay under 1 second. It is clearly visible, that node 6,
which has at least 3 hop distance from source, had the most message delay. Message delay in this
case can be described as queuing effect on one of the intermediate nodes (delay is almost equal
message queue check granularity). Delay increase for the message number 5 and 12 could occur
due to packet loss. It can be deducted from the graph, that loss for message 5 occur between 1
hop and 2 hop nodes, because we can observe proportional delay increase for nodes 4, 5, 6 and 7.
Loss for data message 12 occur in the path between node 7 and its uplink, because this loss have
affected only delivery to node 7.

Figures 10 and 11 illustrate protocol behavior consequently in the case of short-term and long-
term disconnection of node 3 which is not on critical path to any other node. Former case was
produced by restarting network interface on the target laptop on 15th second of the experiment. Lat-
ter case was performed by connecting node 3 to the network on 9th second of ongoing experiment.
Negative delay values mean that particular message was not delivered by the receiver. On both

http://www.ntp.org/
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diagrams we can observe prolonged period of stable route establishment and this can be described
first Route Request packet loss. After its retransmission (retransmission period is 5 seconds), delay
for messages on one-hop receivers became almost zero. Due to queueing delays on each distance
level, we can clearly distinguish one-hop, two-hop and three-hop distance receivers in the DTCAST
stable phase. Short-term disconnection (around 1 second) affected only data message number 15
by increasing delay to 1.2 seconds (retransmission granularity is 1 second). Data packet loss on
31st second is also have impact only on this message delivery delay for node 3.
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As it was expected, in the case of delayed by 9 seconds connection node 3 to the network, there
are some undelivered data messages due to second-class guaranteed delivery service (see Secion III).
Due to prolonged initial route discovery, node 3 is able to receive first four data messages, and
because source node doesn’t provide first-class guarantee delivery service to node 3, data messages
4 through 9 haven’t been delivered. Delay dynamics between 10 and 11 seconds of the experiment
shows that initially node 3 have received data message 10 from one of 2-hop nodes (delay almost
equal to 3-hop nodes) and than have happened route rebuilding process and it became stable 1-hop
receiver. Dynamics between 13 and 14 seconds of the experiment is one more example of route
rebuilding. There was observed unexpected loss of second data message for the receiver 7. Such
unexpected spontaneous loses were observed also in other experiments and partly can be described
by heuristic nature of detection upstream/downstream nodes (see Section III-B) – in the case of
wrong decision, upstream node can send acknowledgement to the transmitting downlink node (i.e.
node 5 has transmitted data message, node 7 due to loss hasn’t received it, but node 3 due to wrong
decision can transmit acknowledgement, which cause local queue purge and impossibility of future
retransmissions).

Figures 12 and 13 illustrate protocol behavior consequently in the case of short-term and long-
term disconnection of node 4 which is on critical path node 7. Experiment scheme was analogous to
the previous case with the difference of disconnection and connection time moments. For the short-
term disconnection experiment interface of node 4 was restarted on 7th second of the experiment



10

and for long-term disconnection experiment node 4 was connected to the network on 23rd second
of experiment.
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Fig. 10: Short-term disconnection of node 4
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During short-disconnection node 4 and node 7 weren’t receiving any data messages; after a coarse
timeout, a lost message was successfully retransmitted from one of the intermediate nodes. It should
be stated, that delivery delay to the node 7 is constantly higher that delay to node 4, because
of connection path to node 7 dependence on node 4. Very interesting behavior is experiencing
data delivery in the case of delayed node 4 connection to the network on 23rd second. Due to
broadcasting nature of data delivery process, node 4 start instantly receiving data messages starting
from number 23 and simultaneously node 4 starts route discovery procedure, which generally
repeats starting behavior of all experiments, but only for single node 7. Unsuccessful delivery of
data message 14 and 25 as in previous experiments, can be partly described by sporadic decision
heuristics misses. All data prior node 4 connection to the network due to first-class service for
node 7 was buffered at the source node and after path discovery data buffer was almost gradually
delivered and source queue purged. As in short-term experiment, delivery delay to the node 7 is
more than delay to the node 4.

Experiments have confirmed workability of designed protocol in variety of dynamic network
environments. But also help to discover several weaknesses. First of all, there is small percentage
of unsuccessful delivery for the first-class serviced nodes, which is probably caused by data loop-
prevention heuristics mismatches in some cases and there is need additional research to close all
cases in this heuristic procedure. Also, experiments show, that there is different equilibrium points
for data delivery delays – on Figure 11 we can see two different stable states between seconds
5–13 and 14–40. Additionally, it was quite unexpected, that initial route discovery process can have
variety duration (1 to 5 seconds) and have different impact on delivery delays (5 to 14 seconds).
All these observations are to be resolved in the ongoing research.

C. Simulation Environment
The simulation field size is 2000×2000m. There are 50 nodes moving within the area and, in

most cases, the multicast group has 11 members, including 1 source. Nodes are distributed in
the area randomly at the beginning of the simulation and then are moving according to random
waypoint model with speed randomly chosen from 1 to 35 m/s and a pause time of 3 seconds.
All the nodes use 802.11b as the physical layer protocol. And ODMRP Join Query interval [1],
[3] is set to 3 seconds, while the Packet Recovery interval is set to 1 second. The source generates
and sends 200 packets in the beginning of the 500-second simulation time, with interval of 0.25
second.

To better evaluate the protocol in a large area with more nodes, the protocol implemented in
the simulation is a little different from the one implemented in field experiments. Here, instead
of guaranteed service, the nodes in the forward group do not keep state of dissemination process
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to down stream nodes. The source compares the received Join-Replies to the member-list it keeps
and determines if some group members cannot be reached; if it is the case, the source set on the
Epidemic Routing Flag in the header of the packets. The hop limits of Epidemic Routing Packet
and Recovery Request Packet are both set to 1.

In the future work we are planning to implement another modified version of DTCAST, which
additionally integrates network coding.

D. Simulation Results
In all above simulations, the achieved packet delivery ratio, PDR ≈ 100%, e.g. almost all data

messages were successfully delivered to all multicast group receivers. Thus we will not mention
this metric in the later in this section.

Figure 14 shows the time every node needed to collect certain amount of data packets. Note
that these received packets need not to be consecutive. As we can see, all the receivers receive 10
data packets within 20 seconds, and it is relatively easy to collect data packets when the source is
sending data, since when the nodes happen to be reachable in ODMRP multicast, they will receive
several packets. But after the source stopping sending data, for those packets that are missing,
a node need to move close to another node that happens to have these packets, and gets a part
of missing packets in local recovery process or epidemic routing process. Thus, it becomes more
difficult to get the missing packets; as we can see from the Figure 14, the time needed to collect
another 10 packets grows quickly after 50 simulation seconds. As the result, to get higher PDR,
the dissemination process need more time to finish, e.g. it takes about 180 seconds to ensure that
every group member receives more than 95% data packets, while it will take about 245 seconds to
increase PDR to 99.5%. Fortunately, the information expires in a relatively long period where the
DTCAST protocol is used.

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100  120  140  160  180  200

Ti
m

e 
re

qu
ire

d,
 s

Packet received

Member 1
Member 2
Member 3
Member 4
Member 5
Member 6
Member 7
Member 8
Member 9

Member 10

Fig. 12: Dynamic View of DTCAST Process

To better evaluate the influence of Nodal Speed, we did experiments under two simulation
environments. In the first environment, ODMRP Join Query interval is set to 15 seconds, and Packet
Recovery interval is set to 3 seconds, while in the second environment, these two parameters keep
unchanged. In both environments, we did 6 experiments, with nodal speed chosen from 6 speed
range: (1 m/s to 5 m/s), ( 5 m/s to 10 m/s), (10 m/s to 15 m/s), (15 m/s to 20 m/s), (20 m/s to 25
m/s), (25 m/s to 30 m/s).

The experiments results are shown in Figure 15 and Figure 16. In situation 1, both Average
Delay and Maximum Delay is smallest when the nodal speed is within 10 to 20 m/s. When speed
is lower, the further node has to move for longer time in order to get in touch with other group
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member; when speed is higher, the node moves faster and it becomes more difficult to receiving
packets because the long interval between Join Queries and between Packet Recovery messages
(e.g. even when one node passes by another node that has the packets it needs, they may not be able
to communicate due to the longer intervals between control packets). In situation 2, both average
delay and maximum delay decrease when the nodal speed increases (thought there is exception).
This is because the shorter refresh time in this case: it makes the source as well as the other nodes
to know the topology change quickly and take necessary actions early. Thus, when the speed is
higher, the mobility of the nodes in contrast helps to promote the performance of DTCAST in
terms of delays, though at the cost of higher control overhead, as we will see later.
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Fig. 14: Overhead in two situations when nodal speed changes

In Situation 1, control overhead is almost the same for most speed ranges, and has the smallest
value of 6% when the nodal speed are chosen from 10 to 15 m/s. In situation 2, overhead introduced
by DTCAST is large when nodal speed is small or large, and when the nodal speed is 5 to 15 m/s,
the overhead is smallest. ODMRP overhead, in this case, is almost the same except the speed range
of 10 to 15 m/s. Thus it makes the overall overhead become the smallest when the nodal speed is
within 5 to 10 m/s. In both cases, the ideal speed is around 10 m/s, which is usually the speed of
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vehicles that are moving in a city. Due to the higher frequency of control actions, the overhead in
situation 2 is 30% to 50% higher than that in situation 1.

The next simulation setup is the same as the original one described in Section IV-C except the
group size. We increased the group size from 5 to 25 and analyzed the change in control overhead.
As shown in Figure 17. RR stands for recovery request overhead; ER stands for epidemic routing
overhead; ODMRP stands for ODMPR overhead; Overall stands for DTCAST overall overhead.
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Fig. 15: Group Size and Control Overhead

When the group size grows, ER drops almost linearly, because when the node broadcast the one
hop epidemic routing packets, the possibility of being received by another receiver who needs these
packets grows with the group size, thus makes ER packets more efficient. RR is smallest when there
are 15 members in the group. With fewer group members, one node may need to send more recovery
requests to get answer from the node that has the missing packets. With more group members, more
forwarding links will break and thus more nodes start recovery request. ODMRP overhead stays
the same for all group size. Thus, the overall control overhead of DTCAST becomes smallest when
group size is 15 in this simulation environment. And we can infer from the experiment that there
is an optimal group size for a certain situation, and usually the group size is not large.

V. CONCLUSIONS

In this paper we have studied different approaches to perform multicast routing in delay and
disruption tolerant ad hoc networks. We have proposed new multicasting DTCAST protocol, which
combines ODMRP-like on-demand route discovery process, as well as incorporates local route
injection and epidemic routing phases to increase routing and data transmission performance.
Additionally, proposed protocol provide two-class data delivery service - guaranteed and best-effort
data messages delivery to multicast stream subscribers.

We have implemented our protocol in various forms and performed experimental and simulation-
based evaluations, which confirmed workability of designed protocol in variety of dynamic network
environments. But also help to discover several weaknesses. First of all, there is small percentage
of unsuccessful delivery for the first-class serviced nodes, which is probably caused by data loop-
prevention heuristics mismatches in some cases and there is need additional research to close all
cases in this heuristic procedure. Also, experiments show, that there is different equilibrium points
for data delivery delays. All these observations are to be resolved in the ongoing research.

Additionally we have performed simulation-based evaluation of pure epidemic multicasting rout-
ing protocol. While implemented version may not be suitable for real life use, it shows that multicast
traffic can be handled in delay and disruption tolerant networks (DTNs) as well as shows promise
for a very robust solution if the protocol were explored further. It also shows that, in order to
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compete with DTCAST and other protocols, it has to be willing to be very inefficient in terms
of duplicate deliveries and flooding of network resources. If you can deal with the issues that are
inherent to an epidemic approach, then it would be more than possible to have a multicast solution
for use in DTNs.
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