
c© IEEE, 2017. This is author’s version of this work. It is posted here by permission of IEEE for you personal use. Not for
redistribution. The definitive version was published in the proceedings of IEEE Conference on Computer Communications and
Networks (ICCCN) 2017.

NDNS: A DNS-Like Name Service for NDN

Alexander Afanasyev,∗ Xiaoke Jiang,† Yingdi Yu,∗ Jiewen Tan,∗ Yumin Xia,∗ Allison Mankin,‡ and Lixia Zhang∗

∗University of California, Los Angeles
Email: aa,yingdi,lixia@cs.ucla.edu

†Tsinghua University, China
‡Salesforce

Abstract—DNS provides a global-scale distributed lookup ser-
vice to retrieve information of all types for a given name, be it
IP addresses, service records, or cryptographic keys. The DNS
service has proven essential in today’s operational Internet. Our
experience with the design and development of Named Data
Networking (NDN) also suggests the need for a similar always-on
lookup service. To fulfill this need we have designed the NDNS
(NDN DNS) protocol, and learned several interesting lessons
through the process. Although DNS’s request-response operations
seem closely resembling NDN’s Interest-Data packet exchanges,
they operate at different layers in the protocol stack. Comparing
DNS’s implementations over IP protocol stack with NDNS’s im-
plementation over NDN reveals several fundamental differences
between applications designs for host-centric IP architecture and
data-centric NDN architecture.

Index Terms—Named Data Networking; DNS; Information-
centric Networking; Future Internet Architecture

I. INTRODUCTION

Named-Data Networking (NDN) [1], [2], [3] is a proposed
Internet architecture, where data consumers send Interest
packets to fetch desired Data packets. Our NDN design and
development efforts over the last few years identified several
needs for a DNS-like lookup service, e.g., to support NDN
routing scalability [4], to provide rendezvous for mobile data
producers [5], and to provide persistent storage of critical data,
such as public key certificates [6].

To meet the above needs, we have designed NDNS (NDN
DNS), a distributed, always-on distributed lookup service.
The NDNS design leverages the experiences learned from
the Domain Name Systems (DNS) and its security extensions
(DNSSEC) [7], [8], [9], [10], [11], but also addresses the fun-
damental differences in the design requirements of NDN- and
IP-based applications. As we discuss in Section III, NDNS and
DNS(SEC) share the commonalities of retrieving secured data
from hierarchically structured namespaces. However, using
data names directly at the network level and securing network
layer packets leads to fundamentally different implementations
and different tradeoffs.

The contributions of this paper are threefold. First, we
explain why the NDN architecture needs a lookup service,
given it directly uses names to retrieve data at the network
layer (Section II). Second, we design the NDNS protocol that
provides DNS-like lookup service with enriched functionality
using NDN Interest/Data primitives (Section IV). Third, we
identify the fundamental differences between IP and NDN’s

network protocol architectures to explain why naming end-
points versus naming data results in the sharp differences
between DNS and NDNS designs. We hope that our expe-
rience from the design and implementation of NDNS protocol
provides insights and guidelines in adapting other IP-based
application protocols to the NDN architecture.

II. THE NECESSITY OF A LOOKUP SERVICE

This section presents a brief background of NDN and
discuss the necessity of a lookup service in NDN. At the end
of this section, we analyze the commonalities and differences
between NDN and DNS.

A. NDN

Named Data Networking (NDN) [1], [2], [3] makes named
and secured application Data packets the centerpiece of the
network architecture—the “thin waist” of communication. To
request Data, consumers send out Interest packets that include
names or prefixes of what should be fetched. These names are
then used by the NDN network forwarders to steer Interests
towards available (closest) Data replicas and return them back
to the requesters.

1) Name-based Forwarding: NDN’s Interest-Data packet
exchanges are network-layer operations, and network-layer’s
basic function is to make the forward decision for each
packet by name, e.g., “/net/ndnsim/download/pkg/_v=2”.
Each NDN router maintains a Forwarding Information Base
(FIB), which contains logically a table of (name prefix, inter-
face list) tuples. Upon receiving an Interest packet, an NDN
router uses forwarding strategy [12] to forward this request to
one or more interfaces, using information from the matching
FIB entry, previously recorded data plane performance for the
data’s prefix, and potentially other policy restrictions. The
strategy decision is then recorded in the Pending Interest
Table (PIT). Each Data packet is returned to the requester
by utilizing the state recorded in routers’ PIT, following the
reverse path of the Interest.

2) Per-Packet Authentication: NDN mandates Data produc-
ers to create digital signature on their Data packets at the time
of creation. The cryptographic signature binds the name of
Data with its content [13], so that the content authenticity can
be verified independent from where a Data packet comes from.
As a result, each NDN Data packet is immutable, any change

to the carried content requires creation of a new Data packet
with different (e.g., versioned) name and a new signature.

The signature field in each NDN Data packet includes a key
locator field which names the signing key to be used for the
signature verification. A key in NDN is simply another Data
packet containing the public key bits and the corresponding
signature [13], which in turn contains its own key locator.
These key locators form a certification chain up to a trust
anchor key that a consumer must have obtained and trust a
priori.

3) Efficient Data Delivery: Naming and securing data at
the network layer brings a number of important properties in
data distribution. Since a Data packet is inherently secured and
identified by the name at the network layer, NDN routers can
cache Data packets (in-network caching). Multiple simultane-
ous requests for the same Data can be aggregated, providing
built-in multicast Data delivery. The intelligent forwarding
plane of NDN can forward requests along the best path based
on realtime measurement.

B. Operational Needs of NDN

Our experience with NDN design and development since
2010 has identified three primary needs for an always-on
lookup service: to scale network routing, to support mobility
of Data producers, and to provide online persistent storage for
keys when their owners go offline.

1) Routing Scalability: NDN routers forward Interest pack-
ets by names. However, the limited size of FIB implies
that, in large-scale environments, only a small number of
name prefixes can be stored in FIB. Therefore, NDN needs
a way to map all application names that cannot retrieve data
directly over the global Internet into names that can, i.e., that
are present in FIBs and disseminated by the global routing
protocols.

In a proposed secure namespace mapping solution [4], when
necessary, content producers create forwarding hints to map
their application data name prefixes to sets of “reachable”
names. These hints [13] can be then attached to Interest
packets to guide forwarding of the Interests towards a network
region (or a node) where data can be found.

2) Mobile Publishing: While NDN’s stateful forwarding
provides a natural support for data retrieval by a mobile
consumer, it is still a challenge to steer Interests towards
Data when producers move. Several alternative approaches has
been proposed to address this problem [5], including the use
indirection based on the mapping service, inspired the existing
mobile-IP solutions. In particular, instead of directly announc-
ing its reachability through routing protocols, a producer can
update its forwarding hint(s) in the lookup service. To retrieve
data, consumers will lookup these sets and attach them to
Interests, so that routers know where to find the requested
Data.

3) Certificate Provisioning: The data-centric nature of
NDN secures Data directly and enables asynchrony between
Data production and consumption: the original Data producer
may not be online when a piece of content is retrieved and

needs to be verified. The always-on lookup service would
make the public key certificates available to all consumers at
all times, waiving the requirement of producer provisioning its
own certificates. This service can be a default public key stor-
age to facilitate Data verification and trust management, but
does not restrict NDN applications from retrieving certificates
and choose their trust model by other means.

III. NDN AND DNS

In this section, we present a brief summary of DNS [7], [8]
and identify its commonality with NDN on “fetching Data”
semantics and the differences from operating at application
layer versus network layer, respectively.

A. DNS

DNS defines a globally unique tree-like hierarchical names-
pace used by all Internet applications. Each node or DNS
domain of the hierarchical tree can be associated with several
types of resource records (RR) under that name, grouped into
RR sets. DNS namespace is managed in a distributed way by
splitting it into so called DNS zones, which are responsible for
hosting RR sets, including records for sub-domain delegation
to child zones. Zones are usually hosted on multiple name
servers that respond to relevant DNS queries.

Any RR set stored in DNS can be retrieved using a top-down
approach (using so-called iterative queries), starting from the
pre-configured name servers for the root zone. For example,
to discover an IPv4 address of “www.ndnsim.net”, a resolver
would send “what is the “A” record of “www.ndnsim.net”?”
query to one of the root zone DNS servers. Depending on
the available information, each server responds either with the
requested RR set or a referral to a child zone by returning a
set of “NS” and “glue” “A” (and/or “AAAA” for IPv6) records.
In the example, the root zone server would refer to a set of
“net” nameservers, “net” nameservers would refer to a set of
“ndnsim.net” nameservers, who will finally return the desired
information. The servers can also return “NSEC” (or “NSEC3”)
records to indicate that the records does not exist.

To scale DNS resolution, in addition to replicating authori-
tative DNS servers for each zone, DNS also relies on caching
resolvers between end hosts (which run stub resolvers) and
name servers. The caching resolvers, as a response to recursive
queries from stub resolvers, run the iterative querying on
behalf of the end hosts and caches the responses that can be
later reused to avoid repetitive iterative queries within a period
defined by an RR set.

Over the years, DNS has significantly expanded along two
dimensions: the types of RRs and the security of RRs. The first
one is due to the fact that DNS is arguably the largest and most
available distributed database on the Internet, therefore it has
been used as a common lookup service of many other types of
data not related to name resolution. At the time of this writing,
IANA has recorded more than 80 RR types [14], including
different types of host addresses, mail exchange information,
server selection records, cryptographic keys, signatures, and
many other types of information. The security extension

TABLE I
DATA SECURITY IN DNSSEC AND NDN

DNSSEC NDN

Security
granularity RR set Data packet

Signature
carrier RRSIG RR set Embedded in data packet

Key identifier Key tag Embedded in data packet (Key locator)
Key storage DNSKEY record Data packet
Security
delegation

DS record in the
parent zone DKEY in the parent zone

(DNSSEC) [9], [10], [11] added authenticity and integrity
checking of DNS replies through the use of digital signatures.
As a self-contained design, DNSSEC introduced several new
types of DNS RRs including RRSIG (for RRset signature) and
DNSKEY (for public keys that can verify digital signatures).
Each DNSKEY can be verified using the public key of its
parent zone.1 The overall DNSSEC trust is bootstrapped from
a single pre-configured DNS root key.

B. Commonality and Differences between NDN and DNS

While both NDN and DNS fetch data using hierarchically
structured names, DNS that operates at the application layer
and NDN builds the data fetching semantics directly into the
network layer. As a result, a DNS resolver has to explicitly
select the name servers to fetch data [15] and NDN consumers
just request data, unaware of where this data may be retrieved.

The name-based data retrieval allows both NDN and DNS to
benefit from caching. However again, DNS has to implement
an application-level caching by introducing caching resolvers
into the system, while NDN can support caching (and any
other kind of storage) at the network layer reducing complexity
and improving scalability of applications.

DNS (with DNSSEC) secures data by attaching each RR set
with a digital signature, which resolvers can validate through
a strict trust model following the domain hierarchy. NDN,
on the other hand, mandates per-packet signatures that can
be validated by consumers or any network component that
is aware of the trust model associated with data. Notably,
many trust models in NDN, including the DNSSEC-like
model described in Section IV-F, can be defined in terms of
relationships between data names and signing key names using
trust schemas [16] Table I highlights several other important
differences between the data-centric security of DNSSEC and
NDN.

IV. NDNS DESIGN

The design of NDNS inherits several basic concepts from
DNS, including domains, zones, resource records (RR), name
servers, caching and stub resolvers, and iterative and recursive
queries. NDNS lookup also takes the top-down search, and
relies on replication and caching to scale.

The architectural differences between IP and NDN dictate
that the NDNS design takes a different form, most notably its

1A zone usually has multiple keys for scalability and security reasons,
including key signing key (KSK) and one or more zone signing keys (ZSKs).

Recursive Query

 Result

Iterative Query

Iterative Query

Iterative Query

Caching
NDNS

Resolver

NDN Caches NDN Caches

Stub
Resolver

 R
eferral

 Referral

 Result Au
th

or
ita

tiv
e

N
D

N
S

Se
rv

er
s

Fig. 1. NDNS operation overview, where queries carry only the names to
be queried, and “NDN caches” represent caches at any network forwarders.
Queries are forwarded based on their names, and can bring back matching
answers from any intermediate caches.

iterative query mechanism. Because an NDN Interest packet
is forwarded based on the name N carried in the Interest; to
steer the Interest towards NDNS servers of a specific zone, the
zone’s name must be included in N ’s prefix. At the same time,
since the returning data packet D goes back to its requester by
following the PIT states left by the Interest packet, D’s name
also must contain N at least as a prefix. This means that a
NDNS name server can only either return the exact answer to
the request, either using pre-created Data packet or creating
it on the fly. Moreover, because names are used directly at
the network level, two Interests for the same name N most
likely to bring the same data. In other words, once an Interest
for name N succeeds in retrieving a Data packet, subsequent
Interests for N may get the same data packet from network
caches, even though there could be another Data packet with
N as a prefix but a different suffix.

Due to routing scalability concerns, we assume that only
name servers of the top-level and popular second-level do-
mains have “reachable” names. Retrieving information from
NDNS servers of less popular domains would need to rely on
the forwarding hint mechanism [4].

A. NDNS Design Overview

Figure 1 shows an overview picture of NDNS operations,
highlighting resemblance to DNS/DNSSEC with several no-
table differences. The query process starts with stub resolvers
sending recursive queries towards local NDNS caching re-
solver(s); we use the word “towards” instead of “to” here,
because the query, which is an Interest packet, may bring back
the requested answer from a router’s cache before it reaches
the local caching resolver. If the query reaches a caching
resolver, the resolver either finds the answer from its internal
caches, or otherwise issues a set of top-down iterative queries
to find the answer.

All NDNS queries are represented as Interest packets that
carry the names to be resolved, without specifying from which
exact server to retrieve the data. Stub resolvers send queries
under “/NDNS-R” prefix, which is a naming convention for
“NDNS caching resolver service”, and is announced to the
routing system by the caching resolver instances.

As we explained at the beginning of this section, to retrieve
data from a specific NDNS zone, Interest packets need to
carry the name of that zone. Thus, a NDNS caching resolver
has to split an incoming recursive query into a set of specific
questions/Interests about the zone referrals and questions for
data (see Section IV-B). More specifically, the questions have
to start with determining whether the top-level zone has been
delegated, then continue with whether the next-level zone has
been delegated, and so on. This process continues until either
all the name components in the original query are exhausted
or it is determined that the sub-zone is no longer delegated or
does not exist. In the first two cases, the resolver sends out
a new query asking for the actual data requested by the stub
resolver, requesting this information from the last discovered
“authority” zone.

To allow data retrieval from specific zones, NDNS defines
the following naming conventions for the iterative query Inter-
ests: “/<zone-name>/NDNS/<label(s)>/<record-type>”. For
example, Interest for “/NDNS/net/NS” requests “NS” records
for “net” label from the root zone, while Interest for “/net
/ndnsim/NDNS/foo/bar/TXT” requests “TXT” records for “foo
/bar” label from “/net/ndnsim” zone.

The bootstrapping of the NDNS infrastructure can be
accomplished by simply announcing the root zone prefix
(“/NDNS”), top-level zone prefixes (“/net/NDNS”, “/com/NDNS”,
etc.), and any popular second-level zone prefixes (“/com
/google/NDNS”, “/com/cnn/NDNS”) into the routing system.
Therefore, the caching resolvers do not need to be pre-
or re-configured with information about NDNS servers. All
they need to do is to generate query names by following
proper naming conventions; the network can then take care
of forwarding the query Interests towards the right data.

In cases where zone (e.g., “/net/ndnsim/NDNS”) is not a
directly “reachable” name, the parent zone’s referral response
(as part of “NS” records) must contain a forwarding hint, so
that the query Interests can find the data.

By running on top of NDN, NDNS takes advantages of all
built-in NDN features, including (1) efficient query Interest
forwarding taking into account server and network availability
information at network layer; (2) aggregation of same queries
and multicasting query results; (3) in-network caching of query
results; and (4) built-in authentication for query results carried
in NDN data packets.

A comparison between DNS and NDNS is presented in
Table II.

B. NDNS Namespace and Naming

Borrowing the DNS concept of zones, NDNS also uses
zones as units of administrative management of namespaces.
Different from DNS, NDNS uses a set of naming conventions
to steer NDNS query interest towards the servers of specific
zones (Figure 2). NDNS zones have names that are constructed
by appending “NDNS” component to the corresponding zone
namespace (“/NDNS” for root namespace zone or just root zone,
“/net/NDNS” for “/net” namespace zone, etc.).

TABLE II
COMPARISON OF IMPLEMENTATION IN DNS AND NDNS

DNS NDNS

Namespace DNS namespace Reflection of NDN
namespace

Scalability
and
availability

Replication and
application-level caching

Replication, in-network
caching, application-layer
caching

Robustness
Best name server
selection by caching
resolvers

Retrieval best answer from
the NDN network

Security DNSSEC extension
(application level) Built-in NDN (network level)

Data format Resource record set Data packet (Section IV-C)
Iterative
lookup

From root to leaves,
implicit From root to leaves, explicit

Each zone publishes data its own namespace in the form of
data packets, which represent specific resource records in the
zone. The zone data is served by one or more authoritative
NDNS name servers that synchronize their records using, for
example, the ChronoSync protocol [17].

/NDNS

/edu/NDNS /net/NDNS ...

/net/ndnsim/NDNS

Name servers

Stub
resolvers

zone:
/net/ndnsim/docs

/net/ndnsim/docs/NDNS NDN

in-network storage
(caches)

caching
resolvers

...

Fig. 2. NDNS elements: tree-organized zones, name servers, caching resolvers
and stub resolvers.

Any NDN name (or in DNS terms, any domain name)
belongs to exactly one NDNS zone that manages information
associated with that name. For example in Figure 2, “/net
/ndnsim/www” domain belongs to the “/net/ndnsim/NDNS”
zone, while “/net/ndnsim/docs/...” domains are managed
by the “/net/ndnsim/docs/NDNS” zone, i.e., the longest match
zone name takes precedence.

NDNS resource records, or RRs for short, are typed data
associated with the domain name that are retrieved during
the iterative NDNS query process. The name of NDNS RR
consists of the zone name, label, data type, and auxiliary parts
such as version and segment components (Figure 3).2 By de-
sign, the zone name without “NDNS” component concatenated
with the label part of the RR name equals to the domain
name this record is associated with. In a way, NDNS RR is a
metadata associated with the specific NDN name that is stored
in a specific place inside NDNS infrastructure.

2Version and segment number fields are optional in interest names, by
default the server returns data with latest version.

/net/ndnsim/NDNS/www/TXT/%FD%23/%00%01
zone name label type version segment

/net/ndnsim/NDNS/www/TXT
zone name label type

Query

Response

Fig. 3. NDNS query/response naming example

The type component in the RR name is an application-
defined data blob. Currently, NDNS reserves “NS” type to
store (potentially empty) sets of forwarding hints to indicate
delegation of the subzones, “CERT” type to store NDNS public
key certificates, “APPCERT” to store applications certificates
as encapsulated data, and “TXT” type to store a collection of
free-formed text records. We expect applications to introduce
new types of records over time, as what happened to DNS
RRs. While applications are free to select any name for the
custom record type, in near future we plan to establish a formal
process to to ensure uniqueness and promote standardized
naming conventions and operations.

NDNS defines additional naming conventions for the recur-
sive queries, with an objective to reach the closest instance
of the caching resolver (Figure 4). More specifically, all
names carried in recursive queries start with prefix “NDNS-R”
that is disseminated by the routing protocols within local
networks. Following the “/NDNS-R” prefix, the query includes
the domain name together with the requested record type.
In cases where clients are willing to use caching resolvers
provided by a different provider (e.g., Google): users can either
use a dedicated prefix (e.g., “/com/google/NDNS-R”) or rely
on forwarding hints to steer Interests towards that provider,
bypassing the local caching resolvers.

/NDNS-R/net/ndnsim/www/TXT
recursive
resolver
dataset

domain name type

Query

/NDNS-R/net/ndnsim/www/TXT/%FD%24/%00%01
Response

version segmentrecursive
resolver
dataset

domain name type

Fig. 4. Recursive query naming example

C. Data Format

NDN retrieves data in the unit of packets. Each NDNS data
packet contains enough information to indicate with which
NDN name it is associated, to which zone the record belongs,
and what the record type is (Figure 5).

Interpretation of the carried payload in the NDNS data
packet depends on the value of ContentType field. In particular,
NDNS distinguishes the following semantic interpretations:

• ContentType “NACK” indicates that the requested record
does not exist. A NACK can optionally include an error
code as part of its content.

NDNS data format type

Data	packet

Signature

Name	(zone	+	label	+	type)

Content

MetaInfo

ContentType

FreshnessPeriod

ContentType	(others) Content

ApplicaDon-

defined

NDNS data type
Name	(=	…	+	“CERT”)Name	(=	…	+	“NS”)

Name	(=	…	+	“TXT”) Name	(=	…	+	“<other>”)

ContentType	(=NACK) Content

Error	code*

ContentType	

(=NDNS_AUTH)
Content

Fig. 5. NDNS data packet format

NsContent ::= CONTENT−TYPE TLV−LENGTH
ForwardingHint∗

ForwardingHint ::= FORWARDING−HINT−TYPE(=31) TLV−LENGTH
Preference
Name

Preference ::= LINK−PREFERENCE−TYPE(=30) TLV−LENGTH
nonNegativeInteger

* When NsContent includes zero hints, the child zone is delegated and its data can be

retrieved directly, i.e., without the need to attach forwarding hints to the Interest.

Fig. 6. Payload definition for “NS” type.

KeyContent ::= CONTENT−TYPE TLV−LENGTH
Data(=Application’s NDN certificate)+

Fig. 7. Payload definition for “KEY” type

TxtContent ::= CONTENT−TYPE TLV−LENGTH
RrData+

RrData ::= RR−DATA−TYPE(=191) TLV−LENGTH
BYTE∗

Fig. 8. Payload definition for “TXT” type

• ContentType “NDNS_AUTH” indicates that the requested
record does not exist, but the child zone is delegated.
“NDNS_AUTH” only applies for “NS” records and has no
defined meaning for other record types. See a more de-
tailed description why NDNS needs this in Section IV-D.

• Any other value of the ContentType field is interpreted
as a positive response for the iterative query. The inter-
pretation of the payload is application-defined and may
or may not rely on ContentType value.

The payload for the reserved “NS”, “KEY”, and “TXT” types
is defined in Figure 6, 7, and 8. Refer to NDN packet
specification [13] for additional information. The “CERT” type
is interpreted as NDN certificate [18].

Each NDNS record/data packet is signed at the time of its
creation. NDN data packets also include FreshnessPeriod field
that defines how long a cached packet is considered “fresh” in
router caches and can be used to satisfy interests requesting
the same data. Effectively, FreshnessPeriod plays the role of
TTL field in DNS.

Table III summarizes how data-centric nature of NDN

affects the design of NDNS, capturing differences between
NDNS record and DNS packet formats.

TABLE III
DATA FORMAT COMPARISON BETWEEN DNS AND NDNS

DNS NDNS
DNS packet, containing
identifier, flags, codes, question
count, answer record count,
authority record count,
additional record count

NDN data packet, containing a
single NDNS record (equivalent
to answer section)

Answer section containing one
or multiple (RR)

Type- and application-specific
content that can contain multiple
items

RR name Part of data packet name
Record type Part of data packet name

Record class Not defined (can be part of data
packet name)

TTL FreshnessPeriod
Resource data Data packet’s Content

D. Iterative Resolution

The overall NDNS iterative query process is defined by the
flowchart in Figure 9.

To illustrate the process of an iterative resolution we will
use the lookup for a TXT record of the “/net/ndnsim/www”
domain (Figure 10). Assuming a caching resolver initially has
an empty cache, it starts the process by expressing a query
Interest with name “/NDNS/net/NS” to retrieve the referrals

NDNS iterative query

Input: NDNS name
Input: RR type

Discover zone delegation
Express interest: AuthZone + “NDNS" + Label + "NS"

Check
ContentType

Abort on
timeout

Zone = "/"
Label = "/"

Label = Label + <Next Component of NDNS name>

Zone = Zone + Label
Label = "/"

Make final query
Express interest: AuthZone + “NDNS" + Label + RR type

Terminate

Return
Data

/net/ndnsim/NDNS/www/TXT

Discover zone delegation

Abort on
timeout

Abort

/net/ndnsim/www
TXT

NACK

NDNS_AUTHOther

NDNS_RESP

/NDNS/net/NS

/net/NDNS/ndnsim/NS

/net/ndnsim/NDNS/www/NS

Fig. 9. NDNS iterative query flowchart

? /net/ndnsim/www TXT

/NDNS/net/NS

/net/NDNS/ndnsim/NS

/NDNS/net/NS/…
 ContentType: BLOB

/net/NDNS/ndnsim/NS/…
 ContentType: BLOB

/net/ndnsim/NDNS =>
 - /ucla/cs, 1
 - /telia/terabits, 2

Request referral to zone “/net” from root zone,
assume /net is globally routable

Request referral to zone “/net/ndnsim” from “/net”, assume
existence of a LINK for /net/ndnsim

1

2

3 Request referral to zone /net/ndnsim/www from zone “/net/
ndnsim”, assume no such zone

/net/ndnsim/NDNS/www/NS

+

4 Request TXT RR set /net/ndnsim/www from zone “/net/
ndnsim”, assume the RR set exists

/net/ndnsimNDNS/www/NS/…
 ContentType: NACK

/net/ndnsim/NDNS/www/TXT/…
 ContentType: BLOB
 content: <app-defined>

/net/ndnsim/NDNS =>
 - /ucla/cs, 1
 - /telia/terabits, 2

/net/ndnsim/NDNS/www/TXT

+
/net/ndnsim/NDNS =>
 - /ucla/cs, 1
 - /telia/terabits, 2

Fig. 10. NDNS iterative resolution example

(NS record) to the zone “/net/NDNS” from a root server. Since
the root zone (“/NDNS”) is globally reachable, routers can
forward this Interest directly using the name carried in the
Interest.

When the caching resolver receives the referral data packet
back, the packet should contain information on how to reach
the NDNS servers of next level zone “/net/NDNS”. Depending
on whether the name “/net/NDNS” is announced to the routing
system, the referral “NS” data packet may contain either (1) an
empty set of forwarding hints or (2) a set of forwarding hints
to steer an Interest with prefix “/net/NDNS” toward its data.
Note that if it is known that “/net/NDNS” zone is globally
reachable, this step could have been omitted.

The caching resolver can then continue the process to
retrieve the referral to the servers of the next level zone
(“/net/ndnsim/NDNS”). In the first case, the caching resolver
simply expresses a query Interest “/net/NDNS/ndnsim/NS”. In
the second case, the caching resolver expresses the same query
Interest but attaches the forwarding hints from the retrieved
“NS” record, so that the Interest can be properly forwarded
toward the zone “/net/NDNS”. In our example, we assume
routers have “/net/NDNS” prefix in their FIB to further forward
the Interest to one of the “/net” NDNS servers.

The process of discovering the authoritative zone of a target
data stops when the query for the referrals to the target
domain name brings back a NACK (“/net/ndnsim/NDNS/www
/NS” in our example), indicating that the zone is not delegated

further. At this moment, the resolver can construct the final
question, e.g., “/net/NDNS/ndnsim/www/TXT”, to retrieve the
target information, which will be returned from either the
authoritative server or a router cache.

One must also consider the case where a domain does not
have its own NDNS server and stores its data in its parent
domains, e.g., a hypothetical case when the root zone has
delegated “/net/ndnsim/NDNS” zone directly (no delegation
for “/net/NDNS” zone). In this case, the result of the first query
must return a special “NDNS_AUTH” response, indicating that the
zone in question has not been delegated, but there are child
zones of the requested namespace that are delegated. When
such response is received, the iterative resolver asks a question
to the same zone, but using a more specific label for query
(“/NDNS/net/ndnsim/NS” instead of “/NDNS/net/NS”).

E. Recursive Resolution

The NDNS recursive query is expressed using Interest with
names that follows the structure “NDNS-R” + “domain name”
+ “requested record type” (e.g., “/NDNS-R/net/ndnsim/www
/TXT”). The response for the caching query is the NDNS RR
(or a NACK as a proof of non-existence of the RR) that is
encapsulated in the data packet with the name matching the
query and signature of the caching resolver. In other words,
the encapsulated data packet carries the original signature of
the authoritative zone, which can be verified by the consumer
(if needed, the required certificates can be fetched through the
same recursive process). At the same time, if the consumer
has established trust relationship with the caching resolver, it
can simply trust responses based on the outer signature of the
recursive response.

F. Security

NDNS uses the hierarchical trust model similar to DNSSEC
illustrated in Figure 11. In this model all records in zones are
signed with one or more “data signing keys” (DSKs) (e.g.,
“/net/ndnsim/NDNS/KEY/dsk-8/CERT”). DSKs are signed by
one or more “key signing keys” (KSKs) of the same zone
(e.g., “/net/ndnsim/NDNS/KEY/ksk-7/CERT”). KSKs are either
self-signed (e.g., for root “/NDNS” and well-known zones such
as “/com/google/NDNS”) or signed by the “delegation keys”
(D-KEYs) records stored in the corresponding parent zones.

Note that the version number does not shows up in the
KeyLocator in order to decouple the content authentication
from certificate version [18]. This way, RRs do not have to
be re-signed if certificates in the authentication chains are
updated to a new version (e.g., when a grand-parent certificate
is changed).

G. Zone Update and Synchronization

To update NDNS records in the zone, one either needs to
leverage Interests to carry data packets with the new/updated
records, or solicit Interest for the updates [19]. As an example,
one can use a special “UPDATE” type of iterative query Interest,
embedding the update as part of the label part of the query.
Once one of the authoritative name servers for the zone

receives such a query, it will extract the data packet from it,
verify the record, and updates the zone.

To realize redundant authoritative NDNS servers, it is
necessary to efficiently synchronize updated records. Such
synchronization is a classic problem with several promising
NDN-based solutions, including ChronoSync [17]. At the
same time, the current design has limitations regarding de-
ployment of redundant authoritative servers. To respond with
a legitimate NACK, each NDNS server instance must have
access to the zone’s DSK. Our ongoing work is to use an
NSEC-like mechanism [20] to allow pre-creation of signed
denial-of-existence records and encapsulate them in response
packets that do not require DSK-based signature.

V. PROTOTYPE & DEPLOYMENT OF NDNS

To verify and exercise the proposed design, we have devel-
oped several prototypes of NDNS. The now deprecated initial
Python-based prototype [21] revealed unnecessary complexity
in re-using the DNS message format and led to a clean-slate
re-design of the payload of resource records. The next version
written in C++ [22] went through several iterations, refining
our understanding of the relationship between certificates used
to authenticate NDNS zones and application certificates stored
in NDNS zones. In particular, the intention to use NDNS as
the storage for application certificates resulted in the conflict
of names: the required “NDNS” component in the certificates
names was not appropriate for applications that merely use
NDNS as a storage. We then tweaked the NDNS naming
conventions to use “KEY” instead of “NDNS”, e.g., changing
“/net/NDNS/www/CERT” to “/net/KEY/www/CERT”, but did not
get rid of the problem of moving “KEY” component in the
certificate name, needed when the NDNS lookup process
walks down the name tree. Applications were still forced
to name the same key differently depending on the zone in
which it is stored. The latest iteration of NDNS and NDN
certificate naming (NDN Certificate 2.0 [23]) addressed this
problem by decoupling NDNS and application certificates: the
former use “NDNS” as part of the their names and are stored in
NDNS directly and the latter use application-defined naming
and are stored in NDNS in the encapsulated form (i.e., an
NDN certificate as a payload in NDNS record).

The current version of the prototype has been deployed
on NDN Testbed [24] and is actively used as an application
certificate storage for testbed root (“/ndn/NDNS”) and sev-
eral other zones, including “/ndn/edu/ucla/NDNS” and “/ndn
/guest/NDNS”. NDNS has been also used to facilitate several
NDN-based applications, e.g., ChronoChat [25], a distributed
group chat tool for NDN, and NDNTube [26], an online video
player over NDN. To show the universality and flexibility
of NDNS, we also built a demo application called CPUSen-
sor [27]. This application monitor each PC’s CPU temperature
and stores the measurement data into the designated NDNS
zone using a custom “CPU-INFO” resource type.

Note that we are currently in process of transitioning
NDNS to the latest version of the design described in this
paper, as well as in the process of integration of the iterative

Known and trusted key (data packet)

/NDNS/KEY/ksk-1/CERT/_v=6Name:
Content:

KeyLocator: Self-Signed
public key for ksk-1

/NDNS/KEY/dsk-2/CERT/_v=1993Name:
Content:

KeyLocator: /NDNS/KEY/ksk-1
public key for dsk-2

Data packet

Data packet

/net/NDNS/KEY/ksk-4/CERT/_v=1983Name:
Content:

KeyLocator:
public key for ksk-4

/net/NDNS/ndnsim/KEY/dsk-5/CERT/_v=2Name:
Content:

KeyLocator: /net/NDNS/KEY/ksk-4
public key for dsk-5

Data packet

“/NDNS“ (root) zone

Data packet

/net/ndnsim/NDNS/KEY/dsk-8/CERT/_v=7Name:
Content:

KeyLocator: /net/ndnsim/NDNS/KEY/ksk-7
public key for dsk-8

"/net/ndnsim/NDNS” zone

Other NDNS records
/net/NDNS/ndnsim/KEY/dkey-6/CERT/_v=3Name:

Content:
KeyLocator: /net/NDNS/KEY/dsk-5
public key for dkey-6

Data packet

"/net/NDNS” zone

Data packet

/net/ndnsim/NDNS/KEY/ksk-7/CERT/_v=27Name:
Content:

KeyLocator: /net/NDNS/ndnsim/KEY/dkey-6
public key for ksk-7

/NDNS/net/KEY/dkey-3

Data packet

/NDNS/net/KEY/dkey-3/CERT/_v=42Name:
Content
: KeyLocator:

public key for dkey-3
/NDNS/KEY/dsk-2

Fig. 11. Hierarchical trust model example. For a zone, DSK is certified by KSK inside a zone; KSK, except for root zone’s KSK, is certified by a D-KEY
stored at parent zone. Authentication chain can be constructed from trust anchor to any RR.

NDNS query as part of the validation framework of ndn-
cxx library [18], one of the popular C++ NDN libraries. In
particular, to support applications that store and retrieve their
certificates in NDNS, the validation framework needs to be
aware of the iterative or recursive NDNS querying process.
In other words, when some certificate is needed to verify a
signature, the validator may need to use a special certificate
fetcher to iteratively or recursively discover zone in which the
certificate is stored and then fetch it from the zone.

VI. DISCUSSIONS

A. The Need for NDNS Caching Resolvers

NDN’s in-network caching is shared by all data traffic and
can provide opportunistic benefits for NDNS data retrieval
but may not be relied on completely. Therefore, it is still
beneficial to provide caching resolvers which are dedicated
to cache NDNS data. Furthermore, caching resolvers perform
the iterative resolution on behalf of end consumers. This can
be important for power-constrained devices such as sensors,
wearable devices and personal digital assistants (PDAs) that
operate on battery power.

B. Root-Less NDNS

The Internet is a large distributed interconnection of many
networks owned by different parties. How to manage DNS
root zone has been a subject of discussion and debate over
years. Yet due to its top-down lookup process, the root zone is
essential to DNS operations, because caching resolvers use the
hard-coded addresses of the root zone servers. Not having the
NDS root zone implies that each resolver must be configured
with the IP addresses of the authoritative name servers of
all the TLDs (around 300 TLDs with each have at most 13
name servers). Whenever a TLD authoritative server change
its address, all the resolvers must update their configuration.

NDNS is designed to support multiple independent trust
anchors at the top, in the absence of a root. In other words,
if the routing system knows how to forward Interests towards
the top-level NDNS zone services, NDNS can easily function

without the root zone. In this case, iterative query process
can start by fetching data from TLD servers to determine
whether the second-level zone has been delegated. Moreover,
if a popular zone, such as “/com/google/NDNS”, is known
to be directly reachable, the iterative query process for this
zone can also skip TLD. Note however, in addition to the
routing system, the resolvers must be able to authenticate the
responses. As discussed in Section IV-F, they either they need
to explicitly trust the corresponding ZSKs or still fetch D-
KEYs from root or TLD zones.

C. Denial-of-Service & NSEC

NDNS generates NACK and signs it to answer the requests
for non-existing information. Attackers can send a massive
number of requests with random names as a form of denial-
of-service (DoS) attack on NDNS or data producer. The same
vulnerability exists in DNS as well, and is addressed by
NSEC [20] and its enhancement, e.g., NSEC3[28]. Our ongo-
ing work is to adopt NSEC-like approach by embedding the
NSEC records into the returned NACK without re-signing the
whole packet again. The caching resolver can return negative
answer to end clients directly on behave of name servers,
since it receives the final questions and can understand the
application semantic. However, it is still an open architectural
question whether it is possible to leverage NDN’s in-network
caches to process such NSEC records and if possible, which
security implication it would entail.

An alternative way to look at DoS and DDoS problem
is considering general data retrieval mechanism of NDN.
(D)DoS’ing a producer by sending Interests with random
names is a vulnerability in NDN that can be addressed by
leveraging the stateful and symmetric Interest/Data forwarding
in NDN [29], [30].

VII. CONCLUSION

In this paper, we described the design of NDNS which
provides an always-on lookup service in an NDN network.
By providing a service to store and lookup forwarding hints,

NDNS facilitates retrieval of named data, without having all
data producers to announce their name prefixes into the global
routing system. At the same time, flexible design of NDNS
enables other uses, such as persistent storage for users’ and
applications’ certificates.

The design of NDNS is among our first attempts to convert
existing IP-based applications to run over NDN networks. It
taught us to appreciate the impacts of the different network
architectures on application designs. Although NDNS inherits
most of the major design concepts from DNS, its operations
differ from that of DNS in fundamental ways. Our lessons
from converting IP-based DNS to an NDN service and to
leverage NDN’s built-in support for better application designs,
can be summarized as follows.

a) Effects of Shared Namespace between Application and
Network Layers: The design of the namespace is of first and
foremost importance in all NDN application developments.
The differences between the DNS and NDNS designs reflect
the impact of having application and network sharing the
same namespace. NDN’s direct use of application data names
for network-layer data retrieval brings the gains of utilizing
NDN’s built-in multicast delivery, in-network caching, and
network forwarding for automatic server selection. At the same
time, this shared use of the same namespace also introduces
new challenges.

In DNS, because a query packet carries both the name to
be looked up and the IP address of a server to answer the
query, this enables a DNS query to carry exactly the same
DNS name no matter where it goes (to a caching resolver
or an authoritative server), or what kind of response it may
retrieve (whether a referral or the final answer). The flip side is
that the resolver must pick an IP address for one of the servers,
without the knowledge of network connectivity. In NDNS,
one must explicitly name the information to be retrieved, and
queries intended for caching resolvers must carry different
names from those going to authoritative servers, but can leave
to the network to figure out the best place to retrieve an answer.

b) Network-Level Data-Centric Security: NDN’s built-
in security primitive, signing and verifying every data packet,
provides a solid foundation to build secure systems and
applications. NDNS effectively has the DNSSEC functionality
built in, and can leverage a defined trust schema [16], which
defines the relationship between data and signing key names,
to realize more flexible trust models than the strict hierarchical
trust model of DNSSEC.

The process of NDNS development preceded the concep-
tualization of NDN trust schemas, during which we stumbled
many times over the questions of how to enforce different
security policies, or how to automate the signing as well as the
signature verification processes. Majority of these questions
have since been addressed through the use of trust schemas.
However, we believe that how to do security right will continue
to be a challenge in future NDN application developments.

c) “The test of all knowledge is experiment”: This a
famous Feynman quote [31], which offers a concise descrip-
tion of the biggest lesson we learned from our four-year trial-

and-error NDNS development process (e.g. see our experience
described in Section V), a rather rewarding experience.

REFERENCES

[1] V. Jacobson, D. Smetters, J. Thornton et al., “Networking named con-
tent,” in Proc. of ACM Conference on emerging Networking EXperiments
and Technologies (CoNEXT), 2009.

[2] L. Zhang et al., “Named data networking (NDN) project,” NDN,
Technical Report NDN-0001, 2010.

[3] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson et al., “Named Data
Networking,” ACM Comp. Comm. Review, 2014.

[4] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “SNAMP:
Secure namespace mapping to scale NDN forwarding,” in Proc. of IEEE
Global Internet Symposium (GI), 2015.

[5] Y. Zhang, A. Afanasyev, J. Burke, and L. Zhang, “A survey of mobility
support in Named Data Networking,” in Proc. of INFOCOM Workshop
on Name-Oriented Mobility (NOM), 2016.

[6] C. Bian, Z. Zhu, A. Afanasyev, E. Uzun, and L. Zhang, “Deploying
key management on NDN testbed,” NDN, Technical Report NDN-0009,
Revision 2, 2013.

[7] P. Mockapetris, “Domain names, implementation and specification,”
RFC 1035, 1987.

[8] ——, “Domain names: concepts and facilities,” RFC 1034, 1987.
[9] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “Resource

records for the DNS security extensions,” RFC 4034, 2005.
[10] ——, “Protocol modifications for the DNS security extensions,” RFC

4035, 2005.
[11] ——, “DNS security introduction and requirements,” RFC 4033, 2005.
[12] A. Afanasyev, J. Shi, B. Zhang, L. Zhang et al., “NFD developer’s

guide,” NDN, Technical Report NDN-0021, Revision 7, 2016.
[13] NDN Project, “NDN packet format specification,” http://named-

data.net/doc/ndn-tlv/.
[14] IANA, “Domain name system (DNS) parameters,”

http://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml.
[15] Y. Yu, D. Wessels, M. Larson, and L. Zhang, “Authority server selection

in DNS caching resolvers,” ACM Comp. Comm. Review, 2012.
[16] Y. Yu, A. Afanasyev, D. Clark, V. Jacobson, L. Zhang et al., “Schema-

tizing trust in named data networking,” in Proc. of ACM Conference on
Information-Centric Networking (ICN), 2015.

[17] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking,” in Proc. of IEEE
International Conference on Network Protocols (ICNP), 2013.

[18] A. Afanasyev, Y. Yu, J. Shi et al., “ndn-cxx: NDN C++ library with
eXperimental eXtensions,” http://named-data.net/doc/ndn-cxx/current/.

[19] I. Moiseenko, M. Stapp, and D. Oran, “Communication patterns for Web
interaction in Named Data Networking,” in Proc. of ACM Conference
on Information-Centric Networking (ICN), 2014.

[20] S. Weiler and J. Ihren, “Minimally covering NSEC records and DNSSEC
on-line signing,” RFC 4470, 2006.

[21] A. Afanasyev, “NDNS: DNS service for Named Data Networking (py-
ndns),” https://github.com/cawka/py-ndns, 2013.

[22] X. Jiang, A. Afanasyev, Y. Xia, E. Newberry, and J. Tan,
“NDNS: Domain name service for Named Data Networking,”
https://github.com/named-data/ndns, 2017.

[23] “NDN certificate format version 2.0,” http://named-data.net/doc/ndn-
cxx/current/specs/certificate-format.html.

[24] “NDN Testbed,” http://named-data.net/ndn-testbed/.
[25] “ChronoChat,” https://github.com/named-data/ChronoChat.git.
[26] L. Wang, I. Moiseenko, and L. Zhang, “NDNLive and NDNTube: Live

and prerecorded video streaming over NDN,” NDN, Technical Report
NDN-0031, 2015.

[27] X. Jiang, “CPU Sensor,” https://github.com/shockjiang/cpu-sensor, 2015.
[28] B. Laurie, G. Sisson, R. Arends, D. Blacka et al., “DNS security

(DNSSEC) hashed authenticated denial of existence,” RFC 5155, 2008.
[29] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang, “In-

terest flooding attack and countermeasures in Named Data Networking,”
in Proc. of IFIP Networking, May 2013.

[30] A. Compagno, M. Conti, P. Gasti, and G. Tsudik, “Poseidon: Mitigating
interest flooding DDoS attacks in Named-Data Networking,” in Proc. of
IEEE Conference on Local Computer Networks (LCN), 2013.

[31] R. Feynman, “The Feynman Lectures on Physics,”
http://www.feynmanlectures.caltech.edu/, 1963.

