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ABSTRACT
As a proposed Internet architecture, Named Data Networking (NDN)
takes a fundamental departure from today’s TCP/IP architecture,
thus requiring extensive experimentation and evaluation. To facil-
itate such experimentation, we have developed ndnSIM, an open-
source NDN simulator based on the NS-3 simulation framework.
Since its first release in 2012, ndnSIM has gone through five years
of active development and integration with the NDN prototype im-
plementations, and has become a popular platform used by hun-
dreds of researchers around the world. This paper presents an
overview of the ndnSIM design, the ndnSIM development process,
the design tradeoffs, and the reasons behind the design decisions.
We also share with the community a number of lessons we have
learned in the process.
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1. INTRODUCTION
Named Data Networking (NDN) [54] is a proposed Internet ar-

chitecture. Instead of delivering packets to given IP addresses as
TCP/IP does, NDN retrieves desired content items by names. NDN
names can name anything: a text message, a data block generated
from a video conference call, a command to a light bulb, or a com-
munication endpoint. Such a fundamental change of the communi-
cation model requires extensive evaluation and experimentation. To
create a common evaluation platform for the research community to
experiment with the latest advancements of NDN research at scale,
we have developed ndnSIM [10, 17, 36]; an open-source, modular
NDN simulation package based on the NS-3 framework [12]. The
ndnSIM development effort started in 2011 and its first beta version
was released in February 2012. Since then, it has undergone sub-
stantial design changes and extensive development, and has been
used by an increasing number of researchers from the broader net-
working community.

Over the years, ndnSIM has served as an enabler for a wide scope
of experimentation with NDN architecture. The latest release of
ndnSIM integrates the NDN Forwarding Daemon (NFD) [18] and
its supporting library (ndn-cxx) [38], providing a level of inter-
operability between simulation and prototyping, further increasing
the value of ndnSIM experimentation in understanding the behav-
ior of NDN forwarding [53, 22, 40] and in-network caching [29,

50]. ndnSIM has also facilitated the development of NDN appli-
cations [37, 27, 55, 31], the exploration of applying NDN to dif-
ferent network environments (e.g., vehicular [33, 34], ad hoc wire-
less [21], mobile [44], and IoT [43, 20]), the designs of congestion
control [42], the evaluation of link layer [49] and routing [47] pro-
tocols, including the NDN routing protocol NLSR [35].

To help more people gain familiarity with ndnSIM, in this paper
we first present a broad overview of the ndnSIM design (Section 3).
We then discuss the major design tradeoffs we encountered, the rea-
sons behind our design decisions, and quantitatively evaluate the
cost of our decisions (Section 4). In Section 5, we gauge the soft-
ware development effort and the community adoption of ndnSIM,
and in Section 6 we share the lessons that we have learned from
developing an open-source simulator for a new networking archi-
tecture. Section 7 identifies several limitations in the current ver-
sion of ndnSIM, lists challenges of the development process, and
sketches our future work. Finally, Section 8 discusses related work
and Section 9 concludes the paper.

2. BACKGROUND
In this section, we provide a brief background on Named Data

Networking and NS-3 to prepare the reader for the ndnSIM design
discussions in the rest of this paper.

2.1 Named Data Networking
The NDN project started in 2010 under the sponsorship of the

NSF Future Internet Architecture (FIA) program. Since then, it has
grown from the initial blueprint to operational prototype implemen-
tations running over a multi-continental testbed ns3-structure[7]
and supporting a variety of applications [6].

NDN protocol stack follows the same hourglass shape as TCP/IP,
but changes the “thin waist” of the network architecture from address-
based packet delivery to fetching named and secured data (Fig-
ure 1). More specifically, when an application requires a piece
of data, it simply creates an Interest packet with the name of the
desired content and sends (“express”) this Interest to the network.
The forwarding daemons residing on each NDN node (Figure 2)
then use these hierarchically structured and semantically meaning-
ful names to forward Interest packets towards data producers (up-
stream direction) using the forwarding strategy engine. The strat-
egy uses inputs from the Forwarding Information Base (FIB) and
measurements from earlier fetching to decide whether, when, and
where to forward the Interests. An NDN FIB is similar to an IP FIB,
except that it contains name prefixes instead of IP address prefixes,
and each name prefix may points to multiple next-hop interfaces
(called faces in the NDN context), instead of a single next hop per
IP destination in TCP/IP. A forwarder can also send back down-
stream a Negative Acknowledgment (NACK) if it cannot forward
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the Interest because of the lack of information in FIB for the pre-
fix, congestion on the path, or it encounters other errors. In order
to return the requested data to the requester, NDN forwarders also
maintain a state for each of the forwarded Interests in its Pending
Interest Table (PIT), recording faces on which the Interests are re-
ceived and aggregating Interests for the same data.

Each NDN data packet includes the name, data, and a crypto-
graphic signature created by the original data producer that binds
together the packet’s name and the content. Because of this bind-
ing, consumers can ensure integrity, authenticity, and provenance
of each data regardless of how or from where it was retrieved: from
the original producer, the managed storage, or opportunistic caches
(Content Stores, CS) that can be part of each NDN forwarder.
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data	using	names	to	
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Figure 1: NDN keeps the hourglass-shaped architecture model, but
enables secure data retrieval directly at its “thin-waist”
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Figure 2: Overview of packet processing by an NDN forwarder

2.1.1 NDN Forwarder Prototype
Named Data Networking Forwarder (NFD) [18] is the reference

implementation of the NDN forwarder. NFD is developed as a
community effort and supports a diverse set of experimentations
with the NDN technology by emphasizing modularity and exten-
sibility (Figure 3). It includes realizations of the three basic data
structure (FIB, PIT, CS) along with several cache policies and for-
warding strategies (basic best-route and multicast strategies, self-
learning access router strategy, and two adaptive SRTT-based strate-
gies). The key abstraction for communicating between the for-
warder, local applications, and remote forwarders—Face—has mod-
ular Face-LinkService-Transport design, separating generic high-
level network-level functions (packet encoding/decoding and packet
dispatch), link adaptation functions (fragmentation, optional recov-

ery from link errors, etc.), and low-level details of sending and re-
trieving packets to/from specific links.

Many of the core NDN operations in NFD are implemented us-
ing the ndn-cxx library [38], providing routines for packet encod-
ing/decoding, extensive set of security mechanisms, as well as a
special application-directed Face realizations (ndn-cxx Face). Note
that the latter are semi-equivalent of BSD sockets providing NDN
applications a basic API to express Interests and publish data, while
Face abstraction inside the forwarder (NFD Face) is similar to OS
kernel’s routines to send/receive packets through the network inter-
faces.
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Figure 3: Design overview of NDN prototype implementations

2.2 NS-3 Framework
NS-3 is an open-source network simulation platform based on

discrete event scheduling. It is written in C++ and fulfills the needs
of modern networking research. With NS-3, users can create their
own simulation topologies with custom node and link parameters,
simulate the full TCP/IP protocol stack (physical, link, network,
transport, application layer protocols), trace and collect simulation
data and visualize the simulation execution. To reduce memory
requirements in large-scale simulations, NS-3 packets can contain
virtual payload.

Network simulations in NS-3 are based on the following key ab-
stractions: 1) Node: the basic computing entity, which can be pro-
grammed by users; 2) Application: a user-defined program defining
some functionality to be simulated; 3) Channel: a communication
channel entity connected to a Node; 4) Net Device: representation
of both the simulated hardware and software drivers that enable
a Node to communicate through Channels with other Nodes; and
5) Topology Helpers: software components used to facilitate the
creation, coordination and parameter configuration of the previous
abstractions.

The software is organized as a number of modules, each mod-
ule typically consisting of one or more models (representations of
network protocols, devices, routers, etc.) and a number helpers
classes. Figure 4 summarizes the modules, models, net device im-
plementations and the overall integration and support offered by
NS-3.

3. NDNSIM DESIGN OVERVIEW
In this section, we present the overall structure of ndnSIM envi-

ronment (Figure 5), consisting of NS3, NFD, and ndn-cxx, as well
as an NDN simulation layer, ndnSIM-specific and real-world ap-
plications ported to ndnSIM, and a number of plug-and-play sim-
ulation scenarios. We also identify a set of features that makes
it a useful tool to the research community and present the design
workflow by discussing the process of exchanging NDN packets
between two simulated nodes.

First, we would like to explain the term “open-source simula-
tion package”: the term “open-source” refers to the fact that the
ndnSIM codebase is available to the public and users are welcome
to download and modify it based on their individual needs. Users
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tion/support offered by NS-3

are encouraged to participate to the simulator development. The
term “simulation package” demonstrates that ndnSIM consists of
multiple software components that have been integrated altogether
to provide a concrete framework for high-fidelity NDN simulations.

3.1 ndnSIM Structure
In its core, ndnSIM is based on NS3 simulation framework and

leverages it in the following ways:
• To create simulation topologies and specify topology param-

eters (e.g., link bandwidth, node queue size, link delays).
• To simulate available link-layer protocol models (e.g., point-

to-point, wireless, CSMA).
• To simulate the exchange of NDN traffic among the simu-

lated nodes.
• To trace simulation events and (optionally) visualize the sim-

ulation execution.
Therefore, ndnSIM simulations can use any of the existing mod-
ules, models, NetDevice implementations, and integrated compo-
nents of NS3.

To realize the core NDN forwarding functions, ndnSIM inte-
grates NFD and ndn-cxx codebases, rewiring key logic elements
such as the event processing and network operations to the NS3
specific routines. The result of this integration is that the code
used for experiments with NDN forwarding in ndnSIM can be di-
rectly used by the real NFD implementation and vice versa. More-
over, ndnSIM allows simulating the real-world NDN applications
based on ndn-cxx library (with a few constraints described in Sec-
tion 3.2.2).

On top of the NFD integration, ndnSIM includes an addition
NDN simulation layer to streamline creation and execution of sim-
ulations and to obtain key metrics. ndnSIM package also offers a
collection of tutorial simulation scenarios that provide examples of
ndnSIM features.

The following summarizes ndnSIM components and their fea-
tures:
• Core (Integration and Models): the NDN protocol stack,

the realization of NFD’s Transport to provide communica-
tion on top of NS3 NetDevice and Channel abstractions, the
realization of NFD’s LinkService to facilitate direct commu-
nication between ndnSIM-specific applications and local for-
warder instances, and the global routing controller to facili-

tate static configuration of FIB (based on the Dijkstra’s short-
est path algorithm).
• Utilities: a number of packet tracers to obtain simulation

results (link-, network-, and application-level tracing) and
topology readers to simplify definition of simulation topolo-
gies.
• Helpers: a set of helpers to install and configure NDN stack

and simulated applications on nodes, to manage (statically
or during simulation) FIB, forwarding strategies, and cache
replacement policies, to simplify modifying states (up/down)
of the links in the simulated topologies.

3.2 Applications
ndnSIM can simulate two distinct types of NDN applications:

ndnSIM-specific and real-world applications.

3.2.1 ndnSIM-Specific Applications
The ndnSIM-specific applications are a convenient way to gener-

ate basic Interest/Data packet flows for various network-level eval-
uations, including behavior of forwarding strategies, cache policies,
etc. These applications are realized based on NS3’s Application ab-
straction and include several built-in tracing capabilities, including
times to retrieve data.

The built-in ndnSIM-specific applications include:
• ConsumerCbr: the consumer application that generates In-

terest traffic with constant-frequency pattern.
• ConsumerZipfMandelbrot: the consumer application that gen-

erates Interests with name popularities following the Zipf-
Mandelbrot distribution [16].
• ConsumerBatches: the consumer application that generates

a specified number of Interest packets at certain points of the
simulation execution. It accepts a pattern for Interest gener-
ation specifying a set of points of time in the simulation and
a number of Interests to be generated at those points.
• ConsumerWindow: the consumer application that generates

Interests based on a sliding window mechanism.
• Producer: the application that responds to each received In-

terest with a data packet carrying the same name as the Inter-
est and with a specified size.

A few examples of NDN application designs that have been im-
plemented and evaluated as ndnSIM-specific applications are: an
application to achieve peer-to-peer file sharing in NDN (nTorrent) [37]
and a framework that features a number of adaptive multimedia
streaming (amus-ndnSIM) [27].

3.2.2 Real-World Applications
The real-world applications are generic applications and libraries

that fully leverage the high-level NDN and asynchronous input/out-
put APIs provided by the ndn-cxx library. In other words, these
applications can express Interests and dispatch the retrieved Data
to the supplied callbacks (as opposed to pre-defined callback for
ndnSIM-specific applications), detect Interest timeouts, register pre-
fixes with local NFD, use packet signing and verification APIs.
Because ndnSIM integrates with the specially adjusted ndn-cxx li-
brary for the simulation environment, such applications can be first
developed against the real prototypes and then run inside the simu-
lation environment. Alternatively, the existing applications can be
ported to run in ndnSIM to evaluate them at scale.

It is important to note that the existing applications may require
several modifications to satisfy requirements imposed by the nature
of discrete event simulations. Specifically, an application:
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• should not use global variables to define its state, since sim-
ulations may need to create multiple instances of the same
application that share the same memory;
• should not use disk operations, unless application instances

access unique parts of the file system, since in the simulated
environment, all application instances access the same local
file system;
• should only use ndn-cxx APIs for network-level (ndn-cxx

Face), event scheduling (ndn-cxx Scheduler), and absolute
time operations, as otherwise the simulations may incorrectly
combine simulated and real-world functions;
• must not contain any GUI or command-line interactions; and
• the entry point to the application should be configurable (e.g.,

provided as a C++ class), allowing customized instantiations
of the application. This is a generic requirement, which in
most cases is satisfied if the application/library is already
provisioned for unit-testing.

So far, we and the researchers in the community have adapted
and then evaluated with ndnSIM several real-world applications,
including:
• NLSR [35, 11]: NDN Link State Routing Protocol daemon.
• ChronoSync [55, 4]: one of the earliest distributed protocols

for dataset synchronization in NDN.
• RoundSync [31, 15]: a revised design of the dataset synchro-

nization to achieve fast synchronization in face of simultane-
ous data productions.

Based on our experience in assisting the community with NDN
application development, we have noticed that the majority of re-
searchers prefer the simplified ndnSIM-specific application proto-
types. While these applications are a good fit to drive the network-
level evaluations, they have a limited approximation of NDN appli-
cation semantics and require substantial effort to implement even
simple application behavior (e.g., they need custom timers to han-
dle Interest timeouts, custom callback dispatch mechanism, etc.).
Therefore, we would like to encourage the community to exper-
iment with the development of real-world NDN applications that
simplify realization of NDN semantics and can be tested both in-
side the simulator and on the NDN testbed [7].
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Figure 5: Structure of the ndnSIM simulation package

3.3 NDN Packet Flow in ndnSIM with Inte-
grated ndn-cxx and NFD

The packet flow in ndnSIM involves multiple elements, includ-
ing NS3’s packet, device, and channel abstraction, ndnSIM core,
and processing by the integrated NFD with the help of ndn-cxx li-
brary. An example of the overall workflow to forward NDN packets
between two simulated nodes is illustrated in Figure 6.

The whole process is initiated by an application expressing an
Interest or publishing a Data packet (after receiving an Interest for
it) and includes generation of Interest and Data packets (and ap-
propriately signing them) using abstractions provided by the inte-
grated ndn-cxx library. Using the specialized ndnSIM Face (us-
ing AppLinkService) or a customized version of the ndn-cxx Face
(using InternalClientTransport and InternalForwarderTransport un-
derlying abstractions), these packets are injected into the NFD in-
stance installed on the corresponding simulated node. After that,
NFD will apply the necessary processing logic and will determine
how to process the packet, i.e., it will create a PIT entry and for-
ward to an outgoing Face determined by the strategy for the Inter-
est’s namespace, aggregate or drop Interest, satisfy Interest from
the internal cache, cache the received Data packet and forward it
to the incoming Faces, or drop the Data packet. If a packet is de-
termined to be send out to a Face that corresponds to a simulated
link, this packet is getting encoded into NS3’s Packet and sched-
uled for transmission over NS3’s NetDevice/Channel using a Face
that leverages the specialized NetDeviceTransport abstraction. On
the other end, NDN packet is extracted form the NS3 Packet and
injected into the NFD instance for further processing.
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Figure 6: NDN packet exchange process between two simulated nodes

4. PROTOTYPE INTEGRATION PROCESS
In 2014, the NDN team started development of the new reference

implementation of NDN forwarder and supporting library to enable
multiple new NDN features (per-namespace strategies, formalized
forwarding pipelines, data-centric security abstractions with trust
schemas, forwarding hints, etc.) and allowing extensions through
the modularity. To ensure that these advancements can be properly
and with high-fidelity evaluated in the simulation environment we
made a decision for ndnSIM 2.x to integrate these codebases inside
ndnSIM, instead of reimplementing the same features specifically
for NS3 (as was the case for ndnSIM 1.x). In the rest of this section,
we discuss the challenges and trade-offs of this integration and then
present our experimental evaluation of the integration overheads.

4.1 Integration Challenges
To fit the real prototypes into the NS3 world, we had to: 1) redi-

rect the scheduler and logger of NFD and ndn-cxx to use the sched-
uler and logger of NS3 respectively, 2) bind the events in NFD
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with the tracing facilities of NS3 and extend its data structures and
pipelines to add NS-3 tracing points, and 3) enable simulation time
in NFD by using an abstraction provided by ndn-cxx to convert
NS-3 time to NFD system time.

Additional challenge of instantiating real NFD instances on sim-
ulated nodes is additional memory and processing requirements for
simulation scenarios. To partially mitigate these overheads, we im-
plemented a custom KeyChain to create “mocked” signatures of
Data and Interest packets without incurring cost of cryptographic
operations and enabled facilities to opt-out of some of the NFD
components if they are not needed in specific simulations.

4.2 Integration Trade-offs
The integration of NFD and ndn-cxx into ndnSIM faced a num-

ber of trade-offs. The major change of the packet processing flow
broke compatibility with the previous versions of ndnSIM. Because
of the tight integration with the real NDN library that assumes prop-
erly allocated memory blocks for NDN packets, ndnSIM 2.x can no
longer take advantage of the virtual payload abstraction, increasing
memory requirements for packet processing and storage. In addi-
tion, the memory overhead takes additional increase because the in-
tegrated prototype forwarder realized fully featured data structures
of PIT, FIB, CS, and various management structures.

At the same time, ndnSIM is now fully up-to-date with the lat-
est advancements of NDN architecture, allowing flexible two-way
experimentation and evaluation—i.e., the prototyped code can be
simulated in ndnSIM and simulated code can be evaluated in real
(or emulated) environments. Moreover, the integration eliminated
the overhead of maintaining and synchronizing two independent
codebases and united the research community. As anecdotal ev-
idence of the latter, many questions on ndnSIM mailing list are
getting answered by developers and users of NFD, some resulting
in discovery of issues and requests of new features for the reference
implementations.

4.3 Integration Overhead Evaluation
To quantify effects of the major re-design of ndnSIM 2.x com-

pared to ndnSIM 1.x, we evaluated several basic use-cases of the
simulator: cache replacement policies, forwarding strategies, and
applications. We used a simple topology consisting of two con-
nected nodes and measure the system execution time and average
memory requirements for CS and PIT. Unless otherwise stated,
each node in our evaluations had installed NDN protocol stack (an
instance of NFD and the specialized Faces to communicate with
NDN applications and remote simulation nodes), one node with a
ConsumerCbr application instance generating 1,000 Interests/sec,
and one with a Producer instance responding to the Interests. The
experiments were performed on an Intel Core i7 processor (2.4
GHz) with 8 GBytes of memory machine, each experiment simulat-
ing 30 seconds of packet exchanges. We repeated each simulation
ten times and we report on the minimum, maximum, and average
values of all the runs.

4.3.1 Cache Replacement Policy Development Over-
head

ndnSIM 2.x uses the CS implementation of NFD,1 therefore, to
create a new cache replacement policy, users need extend NFD’s
Policy class to implement new callbacks that are invoked when a
new data packet is inserted to the CS, an existing data packet is
deleted from the CS, and a data packet is about to be returned after
a lookup match.
1Version 2.x of ndnSIM includes support for the ndnSIM 1.x ver-
sion of cache policies, which will be phase out in future releases

To develop a custom cache replacement policy, the API provided
by NFD can be modified more easily than implementing a new C++
template class required in ndnSIM 1.x, especially for users not so
experienced with software development in C++. On the other hand,
NFD’ cache policies framework incurs additional overhead for vir-
tual function dispatch, resulting in a small processin penalty.

Table 1 highlights the memory overhead per CS and PIT entry,
and the system execution time with the Least Recently Used (LRU)
and First In First Out (FIFO) replacement policies for ndnSIM 1.x
and ndnSIM 2.x. The CS has a capacity of 100,000 entries, enough
to hold all Data packets during each simulation run, allowing us
to measure the memory overhead as the CS size grows. As ex-
pected from the loss of virtual payload capability, we observe that
the memory overhead per CS entry in ndnSIM 2.x is higher than
of ndnSIM 1.x. At the same time, the observed seven-fold average
increase is larger than what we expected and we are currently in-
vestigating the underlying reasons for this change, including effects
of the memory allocation for C++ STL data structures, memory
fragmentation, and potential memory leaks in the prototype imple-
mentation. The system execution time for ndnSIM 2.x is as ex-
pected longer, as it runs the real NFD prototype code that performs
more sophisticated processing than the simplified packet forward-
ing logic in the original ndnSIM 1.x.

4.3.2 Forwarding Strategy Development Overhead
In ndnSIM 1.x, the forwarding plane used a single forwarding

strategy chosen for the whole duration of the simulation. Among
available strategies were Multicast (a.k.a. Broadcast), BestRoute,
and adaptive “Green-Yellow-Red” variants of both.2 Among the
important facilities that can be leveraged by the strategy (not yet
available in NFD and ndnSIM 2.x) was per-face and per-FIB entry
rate limits on number of Interests. In ndnSIM 2.x, a forwarding
strategy is implemented as a part of the forwarding plane of NFD
and can be selected to activate in a specific namespace. To add a
new forwarding strategy, users need to extend the Strategy class of
NFD and implement certain callbacks that will be invoked when an
Interest is received, before an Interest is satisfied by a data packet,
and when a NACK is received.

The logic of adding a new forwarding strategy in ndnSIM 1.x and
2.x is similar, however, the APIs provided by NFD are more spe-
cialized to make determination where/whether to forward the Inter-
est, while ndnSIM 1.x provided more generic APIs for strategies to
control all aspects of all type of NDN packet forwarding. In other
words, NFD clearly separates the generic logic of Interest (dupli-
cate suppression, aggregation, etc), Data, and Nack packet process-
ing (so called “pipelines” in [18]) and customizable decision (and
feedback) to forward Interests, compared to ndnSIM 1.x that com-
bined all of these under a single umbrella of extensible forwarding
strategy API. Table 2 shows the memory overhead per CS and PIT
entry and the system execution time in the case of the BestRoute
and Multicast forwarding strategies for ndnSIM 1.x (with Green-
Yellow-Red scheme) and ndnSIM 2.x (non-adaptive variants). The
results are similar to those presented in section 4.3.1 with similar
conclusions and future ares of improvements.

4.3.3 Application Development Overhead
ndnSIM 2.x enables applications to communicate directly with

the local NFD instance, therefore it supports simulations of both
ndnSIM-specific and real-world applications. In ndnSIM 1.x, an
application communicates with a simulated forwarding plane, there-

2Additional strategies are available as part of car-to-car [?], interest
flooding [?], SAF [40], and several other research efforts.
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Table 1: Cache Replacement Policy Development Overhead between ndnSIM 1.x & ndnSIM 2.x
ndnSIM 1.x (min/max/avg) ndnSIM 2.x (min/max/avg)

Cache Replacement Policy LRU FIFO LRU FIFO
PIT Entry Overhead (Kilobytes) 5.22/5.33/5.29 5.20/5.31/5.24 37.82/40.21/39.23 38.04/40.05/39.12
CS Entry Overhead (Kilobytes) 0.75/0.79/0.77 0.74/0.77/0.75 5.41/6.92/6.24 5.41/7.38/6.91
System Time (s) 12.84/14.13/13.56 12.49/14.71/13.92 23.56/24.93/24.03 27.57/29.11/28.53

Table 2: Forwarding Strategy Development Overhead between ndnSIM 1.x & ndnSIM 2.x
ndnSIM 1.x (min/max/avg) ndnSIM 2.x (min/max/avg)

Forwarding Strategy Best Route Multicast Best Route Multicast
PIT Entry Overhead (Kilobytes) 5.23/5.39/5.30 5.22/5.32/5.28 37.73/40.12/39.35 38.81/40.21/39.51
CS Entry Overhead (Kilobytes) 0.74/0.77/0.76 0.73/0.77/0.75 6.34/6.45/6.40 6.38/6.41/6.39
System Time (s) 12.87/14.58/13.71 13.04/14.72/14.09 22.67/23.98/23.12 21.72/22.x9/22.01

fore, it can only simulate ndnSIM-specific applications but cannot
run real-world applications.

To make a fair comparison, Table 3 presents the memory over-
head per CS and PIT entry and the system execution time for ndnSIM
1.x and ndnSIM 2.x when running two ndnSIM-specific applica-
tions: 1) the ConsumerCbr application with a constant rate of 2000
Interests/second, and 2) the ConsumerZipfMandelbrot application
generating 1000 Interests/second, where the names of the gener-
ated Interests are based on an NS3 ZipfRandomVariable instance
with α = 1.x and N = 100.

Because of the methodology of our experiment (we are measur-
ing the overall memory use that includes tge overhead of all other
auxiliary data structures), the overall overhead of ConsumerZipf-
Mandelbrot application experiment is higher for both ndnSIM 1.x
and 2.x that that of ConsumerCbr because of the smaller number of
generated of Interest and Data packets. Beyond that, the overhead
for memory use and processing time follows the same pattern as
reported in previous sections, with higher numbers for ndnSIM 2.x
than in ndnSIM 1.x because of the additional requirements of the
fully featured NFD implementation.

5. SOFTWARE DEVELOPMENT, GOVER-
NANCE MODEL & COMMUNITY ADOP-
TION

In this section, we present statistics from our GitHub reposi-
tory [8] and our mailing list [9] along with the the number of tech-
nical report citations (according to Google Scholar) to measure the
ndnSIM software development effort and adoption in terms of com-
munity growth respectively. We also present the open-source gov-
ernance model and stakeholders of ndnSIM.

5.1 Software Development Effort
In Figure 8, we present the number of commits, lines of code

added, and deleted and total contributors per year from our GitHub
repository [8].

During the first 3 years of development (before the integration
with the prototypes), we had to maintain simulation-specific soft-
ware, which required a lot of effort in terms of coding. In 2014,
NFD and ndn-cxx were initially sub-folders of the simulator code-
base (their commit history was added to the commit history of
ndnSIM, resulting in the corresponding spike in Figure 8). Starting
from 2015, to allow easier integration of every new release with the
simulator, we decided to maintain them as separate GitHub sub-
modules (a number code lines were deleted), therefore, the cod-
ing effort itself became less demanding. However, the cooperative

software design effort with the rest of the NDN team significantly
increased to make sure that the features developed for NFD and
ndn-cxx are compatible with ndnSIM and NS-3.

The NDN Team follows the full cycle of software development
(issue tracking, code review, unit-testing, etc.) used in the soft-
ware development industry. The code review process introduced
for ndnSIM in 2015 to ensure that each commit is comprehensive
and well-designed before it is pushed to our GitHub repository.

We should note that we receive a limited number of GitHub pull
requests and issues, therefore, these metrics are not representative
of the ndnSIM software development effort. The majority of our
users submit their questions and code related issues on our mail-
ing list, which has created a user community at large, where people
help out with each other’s questions (as explained in detail in Sec-
tion 6). Users also typically fork the official ndnSIM GitHub repos-
itory and do their development on their personal repositories, while
they share code patches and extensions through the mailing list and
submit their code to our code review system to get it merged to our
official GitHub repository.
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Figure 7: Statistics from the ndnSIM GitHub repository

5.2 Open-Source Governance Model & Stake-
holders

ndnSIM is an open-source project, where every researcher can
commit their code after going through the code review process (the
committers do not need to be NDN Team members). As shown in
Figure 8, a number of committers external to the NDN Team have
contributed to the development of the simulator over the years.
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Table 3: Application Development Overhead between ndnSIM 1.x & ndnSIM 2.x
ndnSIM 1.x (min/max/avg) ndnSIM 2.x (min/max/avg)

Consumer Application ConsumerCbr ConsumerZipfMandelbrot ConsumerCbr ConsumerZipfMandelbrot
PIT Entry Overhead (Kilobytes) 5.13/5.24/5.18 8.08/9.45/9.03 38.02/40.22/39.54 287.69/299.167/294.21
CS Entry Overhead (Kilobytes) 0.73/0.76/0.75 2.59/3.64/3.06 6.17/6.42/6.31 82.83/84.08/83.54
System Time (s) 25.22/29.69/27.36 3.44/3.72/3.51 45.65/48.13/46.22 2.58/2.87/2.71
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Figure 8: ndnSIM internal (NDN team) and external contributors

In Figure 9, we present the ndnSIM stakeholders, their relation-
ship and the facilitated development workflow. At the bottom left,
we have the users that can: 1) directly submit feature and bug re-
ports to our Redmine issue tracking system, 2) submit their code
for review to our Gerrit code review system, and 3) send an email
to the mailing list with development related questions, feature re-
quests and bug reports.

At the bottom right, we have the ndnSIM team, which is a part
of the overall NDN project team. The ndnSIM team works closely
with the NDN protocol architects and the NFD team to participate
to the protocol design effort and ensure that the software changes
done in NFD are compatible with ndnSIM. The ndnSIM team with
the participation and help of the entire NDN team responds to the
user emails received on the list, reviews the already submitted and
creates new issues on Redmine, reviews already submitted (either
by users or members of the NDN and ndnSIM team itself), and
submits new code patches (commits) to Gerrit.

Once a commit is submitted to Gerrit, it is automatically submit-
ted to continuous integration system powered by Jenkins-CI, where
it is compiled and tested on a number of different operating sys-
tems including several Ubuntu and macOS distributions. Once the
commit is verified by Jenkins-CI and the code review process is
complete, it is merged to our official GitHub repository.

We should note that users can also participate in discussion re-
lated to the specific Redmine issues (in Redmine and the mailing
list) and Gerrit code review process, ensuing critical bugs fixed and
important features are implemented in a timely manner.

5.3 Community Growth
The ndnSIM community has grown from a few dozens to some

hundreds of members over the last five years. At the time of this
writing, the ndnSIM mailing list has approximately 550 subscribers
and the technical reports have been cited 425 times in total. As
it is shown in Figure 10 and Figure 11, the mailing list becomes
more active every year (steady increase in the number of threads
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Figure 9: Stakeholders, their relationship and the development work-
flow facilitated by ndnSIM

and individual emails on the mailing list over the last couple of
years), while ndnSIM is used and cited by more researchers.

We would like to thank all the members of the community for
their help and feedback and, especially, our much-appreciated con-
tributors; Jiangzhe Wang, Cheng Yi, Saeid Montazeri, Xiaoke Jiang,
Saran Tarnoi, Hovaidi Ardestani Mohammad, Michael Sweatt, Wen-
tao Shang, Christian Kreuzberger, Yuanzhi Gao, and Mohammad
Sabet, Junxiao Shi, Susmit Shannigrahi, John Baugh, Ashlesh Gawande,
and many others who have reported bugs, submitted patches, and
helped ndnSIM users on the mailing list.

6. LESSONS LEARNED
Developing an open-source simulation platform used by a grow-

ing and active user community is a rewarding process that has helped
to us learn a number of lessons. In this section, we would like to
share those lessons with the research community.

A well-designed simulation platform facilitates the protocol
design effort. It helps researchers understand the architectural
trade-offs by enabling large scale experimentation; some design de-
ficiencies come up only after intensive experimentation. A recent
example is ChronoSync [3], where a design bug that could lead to
large delays in the case of multiple simultaneous data generations
was discovered and fixed only after large scale simulations.

Researchers should be able to reproduce each other’s exper-
iments. Reproducibility is one of the most important aspect of
experiment-based research. Because of the continuous evolution
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of NDN, the reference implementation, and ndnSIM, it is critical
to capture the specific version of ndnSIM used for simulations. To
promote such recording and ensure that simulation results can be
easily reproduced, we created a specialized template [?] to simplify
managing simulation scenarios and ensuring future-proof ability to
re-run experiments. In addition to that, we are planning to setup
a database to collect all the simulation scenarios used in scientific
papers, so that our users have direct access to each other’s experi-
ments.

An open communication channel with the user community
is crucial for an open-source project. A number of times, users
have helped each other by responding to questions on the mailing
list, but also contributed to the actual software development by im-
plementing specific features.

We have established this channel in two ways:
• By extensively documenting ndnSIM and providing a large set

of basic simulation scenario examples on ndnSIM website [10],
encouraging user participation and helping getting familiar with
the codebase.
• By maintaining a mailing list to allow further collaboration and

assistance to questions that have not been addressed in the doc-
umentation. The mailing list has helped us further improve our
documentation by identifying and addressing a number of fre-
quently asked user questions that fall into one of the following
categories: 1) understanding of the simulation outcomes related
to packet tracing and simulation execution visualization, 2) ex-
perimentation with the NDN architectural parameters, and 3)
software development questions, as users are required to have

a good understanding of C++ and C++11 for NFD and ndn-cxx
extensions.
Developing an open-source software project is an iterative

process. The developed features may need to be redesigned, refac-
tored, or extended based on the feedback from the users. For in-
stance, right after the NFD integration, we received a number of
emails on the mailing list (implicitly) requesting a later introduced
API to optionally disable some of the NFD features not needed
for basic scenarios. When the support for NACKs was added to
NFD, a number of users requested this feature in the simulator,
which required the following refactoring of ndnSIM internals with
adjustment of several trade-offs (limiting ability to optimize mem-
ory overhead).

The simulator and the prototypes facilitate and influence each
other’s development. When the NDN team started working on
ndn-cxx and NFD, parts of the ndnSIM codebase were used to fa-
cilitate their development. Eventually, when the prototypes were
developed, they were integrated in ndnSIM.

Since the beginning of this integration, we have been working
closely with the NFD Team to make the forwarder more modular
and compatible with the simulator. An outcome of this collabo-
ration is the higher level of modularity of NFD and ndn-cxx with
additional parts that are conditionally compiled. Initially, we had
to manually remove parts of the NFD and ndn-cxx codebase not
compatible with the simulation environment , including implemen-
tations of TCP/UDP channels, support for Unix sockets, logging,
etc. The latest version of NFD and ndn-cxx is integrated within
ndnSIM with minimal changes.

7. LIMITATIONS AND FUTURE WORK
In this section, we discuss the current simulator limitations, the

pain points of its development process, and our future work plan.

7.1 Current ndnSIM Limitations
ndnSIM is currently supported on Linux and Mac OS platforms,

but unavailable on Windows (NS3 in general has limited support on
Windows platform). It also does not support connecting the simu-
lation network with an NFD, ndn-cxx, or an application instance
running on an external host.

As stated in section 3.2, real-world applications need to be mod-
ified in certain ways in order to run in ndnSIM. The memory re-
quirements can become a limiting factor if one runs ndnSIM on
devices with limited hardware resources (e.g., old or low-end lap-
tops) to simulate large scale scenarios with more than a few hun-
dred nodes. The lack of full backward compatibility of new releases
may also limit the portability of user-implemented features.

Overall, development of ndnSIM faces a number of challenges,
including:
• Every release of NFD and ndn-cxx need to be manually inte-

grated with ndnSIM by applying a set of customization com-
mits to NFD and ndn-cxx (although the set has been shrink-
ing).
• To enable the visualization of NDN simulation scenarios and

data structures (FIB, PIT, CS), we need to patch and extend
the provided NS-3 python bindings which requires substan-
tial efforts, especially when NFD/ndn-cxx make significant
changes in the supporting data structures.
• Unit-testing of software built on top of NS-3 is not always a

straightforward process. The sequence of the events sched-
uled in the simulation environment may vary for each exe-
cution, therefore we need to ensure that existing and newly
added unit tests are resistant against such random variations.
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7.2 Future Work
To make the research community aware of the lower level details

of the simulation development process, we plan to extend our doc-
umentation and publish programming “HOW-TOs” on the ndnSIM
website. We also plan to enrich our collection of plug-n-play sim-
ulation scenarios to demonstrate new interesting use cases and net-
work environments that can take advantage of NDN’s communica-
tion model.

As mentioned in Section 6, we have been working closely with
the NFD Team to enable conditional compilation of NFD compo-
nents for ndnSIM. This can be extended to the implemented NFD
and ndn-cxx optimizations for ndnSIM, so that every new release
of the NDN prototypes can be made automatically compatible with
ndnSIM without requiring manual integration.

To further improve ndnSIM’s scalability, we plan to investigate
in detail the memory consumption of each simulated forwarder in-
stance, and come up with a concrete plan to reduce this memory
consumption. We also plan to make the backward compatibility a
high priority in future releases, to the extend possible we will work
with the ndnSIM user community to minimize, if not eliminate, the
need for users to modify their scenarios and ndnSIM extensions
used in the previous simulations.

In the future, we would also like to incorporate ndnSIM into the
standard NS-3 codebase to promote NDN research and encourage
all NS-3 users to participate.

8. RELATED WORK
Three most common approaches to experimental evaluation of

network architecture designs include testbed deployment, emula-
tion, and simulation.

8.1 Testbed Deployment
The NDN team has been running a testbed since the beginning of

the NDN project. The testbed currently consists of 35 nodes span-
ning four continents. It runs the latest versions of NFD and is open
to all interested researchers to use for their own NDN experiments.
However, one needs to coordinate with the testbed operators first
if one’s experiment requires modifications to any parts of the NFD
and ndn-cxx instances on any of the testbed nodes.

The NDN project team also offers NDN experimentation on the
Open Network Lab (ONL) [14], which contains 14 programmable
routers and over 100 client nodes. Compared to the testbed, ONL
offers a more tightly controlled experimental environment with a
rich set of measurement and monitoring tools.

Years of research efforts have resulted in a number of emulation-
based (i.e., based on various virtualization and containerization tech-
nologies) testbeds being developed and deployed, such as 1) NI-
TOS [39], a facility for cloud-based wireless experimentation; 2)
GENI [23], a federated testbed for network experimentation; 3)
Planetlab [28], a general purpose, overlay testbed for broad-coverage
network services; 4) Motelab [51], a testbed consisting of wireless
sensors; and 5) ORBIT [41], a radio grid facility for wireless pro-
tocols.

The testbed approach has the advantage of requiring no changes
to the software being tested, which simulation approaches often
require porting prototype software to simulation tools. However it
only allows for experimentation with the scale to the number of the
testbed nodes (in some cases, it may require manual setup of the
experimentation software on each node). For experimentation with
larger networks, researchers need to resort to simulations.

8.2 Emulation

In addition to the testbed, the NDN team also developed an NDN
emulator, called mini-NDN [5], which is based on the Mininet em-
ulator [46]. A number of other networking emulator extensions
have been built on top of Mininet as well: 1) Mini-CCNx [24], an
emulator for Content Centric Networking (CCN) [19]; 2) Mininet-
WiFi [32], an emulator for Software Defined Wireless Networks;
3) SDDC [30], a software defined datacenter experimental frame-
work; and 4) Maxinet [52], a distributed emulator of software-
defined networks.

Generally speaking, an emulation framework provides more re-
alistic experimental conditions than a simulation framework. In
the case of the NDN frameworks, mini-NDN and ndnSIM pro-
vide comparable result fidelity and result reproducibility. NFD,
NLSR and real-world applications can run on mini-NDN without
any changes, making an emulation experimentation easier than us-
ing ndnSIM. However, mini-NDN can scale up to medium-sized
networks (up to a couple hundreds of nodes), therefore ndnSIM is
again needed for larger scale experimentations.

8.3 Simulation
ccnSim [26] is a chunk-level simulator for CCN networks [19]

(a realization of ICN). It is written in C++ under the Omnet++
framework [48]. Its implementation focuses on the analysis of in-
network caching performance, without being a fully-featured ICN
simulator. CCNPL-SIM [1] is another CCN simulator leveraging
a platform-specific implementation of the CCN principles; every
time the CCN architecture changes, the simulator codebase needs
to be manually updated to include the new features, since it does
not support the integration of the CCN prototype software into the
simulator.

The approach of integrating prototype software in NS-3 has been
taken by a few other simulators as well. OFSwitch13 [25] is a sim-
ulation framework that enhances NS-3 with OpenFlow 1.3 support.
Both OFSwitch13 and ndnSIM utilize the standard NS-3 Channel
and NetDevice abstractions to create communication channels and
make use of an external library, ofsoftswitch13 and ndn-cxx, re-
spectively. However, OFSwitch13 models OpenFlow hardware op-
erations and extends the NS-3 Queue class to provide some basic
QoS, while ndnSIM does not deal with any hardware operations.

The NS3 DCE CCNx [13] project leverages the Direct Code
Execution (DCE) module of NS-3 to simulate the CCNx proto-
type [2], which is the software implementation of the legacy version
of the CCN protocol. NS3 DCE CCNx uses the TapBridge model
provided by NS-3 to connect a real-world host with the simula-
tion network, while ndnSIM exclusively uses the NS-3 NetDevice
abstraction and does not support the connection with an external
Linux process (e.g., an external NFD instance). The DCE mod-
ule is known to cause a number of scaling issues, since every node
in the simulation has to run a full-sized instance of the simulated
protocol code plus a DCE software layer on top of that.

DCE-Cradle [45] is a simulation framework that extends NS-3
to enable the simulation of native Linux protocol stacks by reusing
their original code. DCE Cradle replaces the NS-3 Socket abstrac-
tion to enable NS-3 applications to access the Linux network stack,
which is similar to the direction that ndnSIM takes by allowing both
ndnSIM-specific and real-world applications to access the original
NDN protocol stack, thus reusing the prototype code.

9. CONCLUSIONS
It has been a rather rewarding experience for us to busy work on

ndnSIM extensions while watching the ndnSIM community grow-
ing over the last few years. In this paper we share the design chal-
lenges we encountered, the tradeoffs from the design decisions, and
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the lessons we have learned. We hope that these insights are infor-
mative not only to the existing ndnSIM user community but also to
the network research community at large, and that this paper could
serve as an invitation to everyone to use ndnSIM as a handy tool in
exploring NDN research.
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[31] Pedro de-las Heras-QuirÃşs, Eva M. Castro, Wentao Shang,
Yingdi Yu, Spyridon Mastorakis, Alexander Afanasyev, and
Lixia Zhang. The design of RoundSync protocol. Technical
Report NDN-0048, NDN, April 2017.

[32] Ramon R Fontes, Samira Afzal, Samuel HB Brito,
Mateus AS Santos, and Christian Esteve Rothenberg.
Mininet-wifi: Emulating software-defined wireless networks.
In Network and Service Management (CNSM), 2015 11th
International Conference on, pages 384–389. IEEE, 2015.

[33] Giulio Grassi, Davide Pesavento, Giovanni Pau, Rama
Vuyyuru, Ryuji Wakikawa, and Lixia Zhang. Vanet via
named data networking. In Computer Communications
Workshops (INFOCOM WKSHPS), 2014 IEEE Conference
on, pages 410–415. IEEE, 2014.

[34] Giulio Grassi, Davide Pesavento, Giovanni Pau, Lixia
Zhang, and Serge Fdida. Navigo: Interest forwarding by
geolocations in vehicular named data networking. In World
of Wireless, Mobile and Multimedia Networks (WoWMoM),
2015 IEEE 16th International Symposium on a, pages 1–10.
IEEE, 2015.

[35] AKM Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan
Zhang, Lixia Zhang, and Lan Wang. NLSR: Named-data
Link State Routing Protocol. In Proceedings of the 3rd ACM
SIGCOMM workshop on Information-centric networking,
pages 15–20. ACM, 2013.

[36] Spyridon Mastorakis, Alexander Afanasyev, Ilya Moiseenko,
and Lixia Zhang. ndnsim 2: An updated ndn simulator for

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



ns-3. Technical report, Technical Report NDN-0028,
Revision 2, NDN, 2016.

[37] Spyridon Mastorakis, Alexander Afanasyev, Yingdi Yu, and
Lixia Zhang. nTorrent: Peer-to-Peer File Sharing in Named
Data Networking. In 26th International Conference on
Computer Communications and Networks (ICCCN), July
2017.

[38] NDN Project Team. ndn-cxx.
[39] Katerina Pechlivanidou, Kostas Katsalis, Ioannis Igoumenos,

Dimitrios Katsaros, Thanasis Korakis, and Leandros
Tassiulas. Nitos testbed: A cloud based wireless
experimentation facility. In Teletraffic Congress (ITC), 2014
26th International, pages 1–6. IEEE, 2014.

[40] Daniel Posch, Benjamin Rainer, and Hermann Hellwagner.
Saf: Stochastic adaptive forwarding in named data
networking. IEEE/ACM Transactions on Networking, 2017.

[41] Dipankar Raychaudhuri, Ivan Seskar, Max Ott, Sachin Ganu,
Kishore Ramachandran, Haris Kremo, Robert Siracusa,
Hang Liu, and Manpreet Singh. Overview of the orbit radio
grid testbed for evaluation of next-generation wireless
network protocols. In Wireless Communications and
Networking Conference, 2005 IEEE, volume 3, pages
1664–1669. IEEE, 2005.

[42] Klaus Schneider, Cheng Yi, Beichuan Zhang, and Lixia
Zhang. A practical congestion control scheme for named
data networking. In Proceedings of the 2016 conference on
3rd ACM Conference on Information-Centric Networking,
pages 21–30. ACM, 2016.

[43] Wentao Shang, Adeola Bannis, Teng Liang, Zhehao Wang,
Yingdi Yu, Alexander Afanasyev, Jeff Thompson, Jeff
Burke, Beichuan Zhang, and Lixia Zhang. Named data
networking of things. In Internet-of-Things Design and
Implementation (IoTDI), 2016 IEEE First International
Conference on, pages 117–128. IEEE, 2016.

[44] Hassan Sinky and Bechir Hamdaoui. Cloudlet-aware mobile
content delivery in wireless urban communication networks.
In Global Communications Conference (GLOBECOM),
2016 IEEE, pages 1–7. IEEE, 2016.

[45] Hajime Tazaki, FrÃl’dÃl’ric Urbani, and Thierry Turletti.
Dce cradle: simulate network protocols with real stacks for
better realism. In Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques, pages
153–158. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering),
2013.

[46] Mininet Team. Mininet. http://mininet. org, 2014.
[47] Michele Tortelli, Luigi Alfredo Grieco, Gennaro Boggia, and

Kostas Pentikousisy. Cobra: Lean intra-domain routing in
ndn. In Consumer Communications and Networking
Conference (CCNC), 2014 IEEE 11th, pages 839–844. IEEE,
2014.
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