© IEEE, 2017. This is author’s version of this work. It is posted here by permission of IEEE for you personal use. Not for
redistribution. The definitive version was published in the proceedings of IEEE Conference on Computer Communications and

Networks (ICCCN) 2017.

nTorrent: Peer-to-Peer File Sharing in Named Data
Networking

Spyridon Mastorakis, Alexander Afanasyev, Yingdi Yu, Lixia Zhang

University of California, Los Angeles
{mastorakis, aa, yingdi, lixia} @cs.ucla.edu

Abstract—BitTorrent is a popular application for peer-to-peer
file sharing in today’s Internet. In the core of BitTorrent is a
data-centric data dissemination approach, where peers request
pieces of the file(s) from each other, and each retrieved piece can
be verified using cryptographic hashes. This process looks similar
to that of the Named Data Networking (NDN) architecture, but
is realized completely at the application level on top of the
channel-based TCP/IP networking. Consequently BitTorrent has
to maintain an overlay network of peers, discover and share
IP addresses of peers, keep track the quality of established
connections, and incentivize other peers to share data. This paper
presents the design of nTorrent, a BitTorrent-like application that
is based on the natively data-centric NDN network architecture.
Through analysis and simulation-based experimentations, the
paper exposes impacts of the network-level data-centricity on
the design choices, implementation complexity, and protocol
operations.

Index Terms—Named Data Networking (NDN), Information
Centric Networking (ICN), BitTorrent, Peer-to-Peer, File Sharing

I. INTRODUCTION

BitTorrent [1] is a popular peer-to-peer file sharing applica-
tion in today’s Internet. The shared files are split into “named”
blocks, each identified by its sequence number in the torrent.
Any peer can request a data block from any other peers of the
torrent. Each retrieved block can be checked for correctness
using its cryptographic digest which is included as part of the
torrent description. However, this data-centric view exists only
at the application layer; peers need to discover IP addresses
of other peers, select specific IP addresses to use to set up
TCP connections, estimate quality of the connections, as well
as incentivize data sharing through the tit-for-tat mechanism.

Named Data Networking (NDN) [2] is a proposed Internet
architecture that makes named and secured data packets the
centerpiece of the network architecture. NDN enables appli-
cations to focus exclusively on what data to fetch, leaving to
the network to decide exactly from where to fetch the data.

In this paper, our main goal is to understand the impact of
implementing the data-centric logic at different layers in the
network architecture. We first analyze the difficulties that that
BitTorrent faces as a data-centric application protocol running
over TCP/IP (Section [[I). We then identify the similarities
and differences between BitTorrent and NDN, and articulate
how NDN may provide the BitTorrent-like data dissemination
more effectively and efficiently (Section [I). Based on the
above understanding, we sketch out the design of nTorrent

(Section and conduct an in-depth evaluation of the de-
sign through comparative simulations between nTorrent and
BitTorrent (Section [V).

Our contribution of this work is three-fold. First, we analyze
the challenges that BitTorrent faces under different lights:
the incongruity between BitTorrent’s data-centric view at the
application layer and the point-to-point communication model
TCP/IP supports. Second, we design nTorrent to achieve
BitTorrent-like data dissemination in an NDN network, which
results in a much simpler implementation. Third, we report our
findings from the simulation studies which expose new issues
raised by directly using application data names at network
layer. We further discuss possible extensions to the nTorrent
design to make it a useful tool for content sharing over NDN
networks.

II. BITTORRENT DESIGN CHALLENGES

In this section we briefly remind the reader with internals
of the BitTorrent protocol and then discuss the challenges that
BitTorrent faces due to implementing the data-centric logic on
top of the point-to-point TCP/IP network.

A. BitTorrent Background

BitTorrent achieves fast peer-to-peer file downloading and
distribution. A host running BitTorrent, called peer, partic-
ipates in the downloading and sharing process with others
of a collection of data, called forrent. Torrents are divided
into equal sized data chunks, called pieces, each further split
into packets [3]]. Peers that have complete torrent dataset are
called seeders and peers with incomplete torrent are leecher.
Leechers and seeders interested in downloading a common
torrent form a sharing group, called swarm.

To start downloading a torrent, a leecher needs to discover
some other seeders and/or leachers and join the swarm. In tra-
ditional BitTorrent, this is achieved by contacting a rendezvous
point (tracker), which monitors IP addresses of seeders and
leechers in the swarm. The information about the tracker is
included in the .torrent file; obtained by to-be-leachers out-of-
band (e.g., from a website, via email, etc.). Each piece of the
torrent is directly secured through inclusion of its SHA1 hash
in the .torrent file. This way, peers do not need to care from
whom pieces are downloaded, as (accidentally or maliciously)
corrupted data will be simply ignored.

B. Peer Discovery

Because BiTorrent is built on top of TCP/IP, it requires a
knowledge of IP addresses of peers in order to start down-
loading torrent pieces.

Traditionally, BitTorrent uses a tracker or a set of trackers to
discover other peers in the swarm. More recent protocol exten-
sions introduced tracker-less torrents, where peers can discover
others in a decentralized way using a Distributed Hash Table
(DHT) [4]] and a Peer Exchange (PEX) [5] protocol. However,
peers still need to bootstrap knowledge about peers in DHT
either through the .torrent file that includes URLs of the
“mainline” DHT nodes or using hardcoded information about
the bootstrap nodes in the application. A peer first contacts
a mainline DHT bootstrap node to get linked into the DHT,
informs the system of its own existence and discovers more
peers.

C. Peer Selection

After discovering others, a peer has to select the best
subset of peers to fetch the torrent pieces from. Given that
BitTorrent does not possess network topology or routing policy
information, it can only guess which peers are the best based
on download rate estimation. For that, it has to establish to pick
a number of peers, establish TCP connection to each, and try
to request torrent pieces. Given none of the initially selected
peers can give the best performance, BitTorrent constantly
picks news sets and re-evaluates from whom to download.

D. Rarest Piece Prioritization

Peers come and go in an unpredictable manner and if they
go away before uploading their pieces to others, those pieces
might become unavailable. Therefore, a peer has to decide
which pieces to fetch first to benefit data replication and the
overall downloading process for the entire swarm.

Since the TCP/IP network layer is not designed to support
data retention, BitTorrent has to maximize the distribution of
each piece at the application level, forcing peers to prioritize
connections that serve rare pieces. To achieve function, Bit-
Torrent uses the “Rarest Piece First” strategy [6]], to ensure
that each piece of the torrent is stored on as many available
peers as possible.

E. Piece Integrity Verification

The TCP/IP network layer does not verify the integrity of
individual packets, forcing BitTorrent implement this function
at the application layer. In other words, when a peer downloads
a piece, it verifies its integrity to ensure that the fetched data
is not bogus using cryptographic hashes from the .torrent-file.

F. Data Sharing Incentives

To ensure that peers participate in data sharing, BitTorrent
has to incentivize sharing using a game-theory based tit-fo-tat
mechanism. Specifically, peers have to “choke” connections to
“pure downloaders” (i.e., stop sending data to a leecher if it is
not willing to upload data to others) [6]], and “unchoke” only
if the peer shares data. The choking state can be temporary,

as optimistic unchoking [6] ensures that a leecher will be
unchoked when it increases its upload rate.

G. Traffic Localization

The objective of BitTorrent peers is to minimize download
time, while Internet Service Providers (ISPs) would like to
minimize the volume of generated inter-AS traffic. However,
BitTorrent has no knowledge of the underlying connectivity
and make peer selection that goes against both peer and ISP
goals. To address this problem, a lot of research has been
conducted on improving the BitTorrent traffic locality [7]], [8],
[9]. These approaches either leverage some external knowl-
edge of the network topology by the tracker or peers, or
let peers perform path monitoring and latency measurements
at the application layer. Perkins [10] introduced a BitTorrent
extension that uses DNS service discovery to enable peers
within a local network discover each other and exchange
data through this fast single-hop network. Some ISPs adopted
a BitTorrent extension [11] proposing the deployment of a
“local” tracker within a domain to avoid inter-domain traffic.

The approaches mentioned above aim to make BitTorrent
location-aware by using system components external to the
protocol itself. The last approach also forces ISPs to update
their DNS configuration to capture DNS queries about trackers
from peers in their domain and return the address of the “local”
tracker.

III. BITTORRENT IN NDN TERMS

To help the reader gain insight into how the BitTorrent func-
tionality naturally fits in NDN, in this section, we first provide
an overview of NDN and we then present the similarities and
differences between BitTorrent and NDN. We also highlight
the essential NDN properties for an NDN-native BitTorrent
implementation.

A. NDN Overview

The NDN communication model is consumer-driven. Data
consumers express Interest packets (requests for data) contain-
ing a name that uniquely identify the desired data. An NDN
router (Figure [T)) forwards requests towards data producer(s)
(upstream direction) based on the requests’ name and informa-
tion on its name-based Forwarding Information Table (FIB).
When an Interest reaches a node (router or end host) that
has the requested data, this node returns the data packet to
“satisfy” the Interest.

NDN names are hierarchical, for example “/ucla.edu/cs
/spyros/papers/ntorrent.pdf/segment1”. Therefore, an In-
terest can be satisfied by a data packet based on name prefix
matching; the data packet can have a longer name than the
corresponding Interest.

Every router along the Interest forwarding path keeps the
state for each unsatisfied Interest in a Pending Interest Table
(PIT), where simultaneous Interests for the same data are
aggregated, so that a single request is forwarded upstream. A
data packet uses the state set up by its corresponding Interest
at each-hop router to follow the reverse way (downstream

direction) back to all the requesting consumers (inherent
support for data multicast). The corresponding pending Interest
entry in each router’s PIT is satisfied and a closed feedback
loop is created that enables routers to measure data plane
performance. A router can also cache data packets in its
Content Store (CS) to satisfy future requests for the same data.

o P
s

Interest

Forwarding
Strategy Forward

Miss
Data
Aggregate

NACK Interest

NDN Router

Downstream Upstream

Hit Data
PIT E—

Forward
Cache N
Miss

CS Drop

Data
NDN Router

Fig. 1: Packet processing and forwarding by an NDN router

1) NDN Security & Data Integrity Verification: NDN se-
cures data directly at the network layer, so that applications do
not have to care where the data comes from. Each NDN data
packet has a digital signature generated by its producer. This
signature binds the data to its name, so that a data consumer
can authenticate the data directly using the producer’s public
key, rather than relying on a secure channel.

To enable both consumer applications and NDN routers to
verify data integrity without the need of checking the signa-
ture of each individual data packet, consumers can retrieve
data packets using a full name; a concatenation of the data
name and the hash of the entire data packet (called implicit
digest [[12])).

2) NDN Routing and Forwarding: The NDN routing pro-
tocols (e.g., NLSR [13]]) help routers to build their FIB.
With the routing protocol, data producers can announce the
name prefixes of their data to the network, while routers can
propagate the reachability of name prefixes across the network.

The decision of whether, when and through which face(s),
an Interest will be forwarded is made by a network-layer
module running at each router, called forwarding strategy, that
accepts input from the FIB. A forwarding strategy achieves
adaptive forwarding, traffic localization and maximization
of the data retrieval speed through the following mecha-
nisms [[14]:

o Prioritizes next-hops toward local (within the same
network or AS) over remote data. To achieve that, it
leverages the local routing policies.

« Discovers the best data location(s) (producer applications
or in-network caches) to fetch data from in terms of
data plane performance. To determine the performance
of each next-hop, the strategy performs a next-hop (path)
exploration toward the potential locations at the beginning

of data retrieval; it tries all the available faces of a FIB entry
(multi-path Interest forwarding) and measures their perfor-
mance in terms of Round Trip Time (RTT). Throughout the
fetching process, the strategy sends probe Interests through
faces that either have not been explored yet or could not
retrieve data in the past to dynamically discover potentially
better locations.

« Resolves data retrieval errors locally by trying alter-
native next-hops or occasionally repeating the path
exploration phase. During data retrieval, a router might not
be able further forward an Interest (there is no entry for this
prefix in its FIB) or fetch data for it (an Interest reached a
location that does not have the requested data). In this case,
the router returns a Negative ACKnowledgement [[14] back
to its downstream router.

o Fully utilizes the next-hop toward the location with the
best data plane performance first, and then, expands
Interest forwarding to subsequent next-hops, fetching
data in parallel by multiple locations. To achieve con-
gestion control on a hop-by-hop basis, downstream routers
can estimate the bandwidth utilization of each next-hop and
upstream routers can send a NACK downstream to control
the sending rate of a downstream router.

B. Similarities/Differences Between BitTorrent And NDN

Because of the common data-centric design model, NDN
and BitTorrent share a number of common design elements.
Given that they perform the data-centric communication model
at different layers, they also have qualitatively different imple-
mentations of these elements, as summarized in Table [I|

TABLE I: Comparison of common NDN and BitTorrent objectives

NDN
Cryptographic signature
and full name per data
packet, can be verified by
both application and
network
At network layer, seamless
to application through
forwarding strategy

BitTorrent

SHAT1 hash per piece, can
be verified by application
only

Data-centric
security

Efficient data
retrieval

At application layer
through peer selection

1) Data-Centric Security: Both NDN and BitTorrent secure
data directly. BitTorrent’s security and integrity model is based
on the .torrent file, while each piece can be verified only by
peers. In NDN, each data packet carries a digital signature
and can have a full name, so that it can be verified both by
applications and routers.

2) Efficient Data Retrieval: NDN and BitTorrent share the
goal of maximizing the data retrieval efficiency.

BitTorrent (without extensions that require infrastructure
support) has no network-level knowledge, therefore it tries
to maximize efficiency by increasing the downloading band-
width; peers measure end-to-end download rates and choke
and unchoke individual connections to find the best peers
through trial-and-errors. The lack of network layer multicast
also forces them to send the same data multiple times to simul-
taneous downloaders, reducing the useful network capacity.

Leveraging directly network layer information, NDN max-
imizes efficiency by retrieving the data that is “the most
available” to consumers (prioritization of local copies with the
best data plane performance, multi-path forwarding, parallel
fetching). Peers can also retrieve recently fetched data from
caches instead of other peers to reduce the retrieval delay and
network load.

C. NDN-Native Peer-to-Peer File Sharing

Based on our previous analysis, we conclude that: 1) a peer
in NDN acts as a consumer and a producer at the same time; as
a consumer, it downloads data from others, and as a producer,
it uploads data to others, which requires the peer to announce
the name prefixes of the data (i.e., the peer is willing to upload)
to the routing system (as explained in section [[II-A2), 2) a
peer in NDN does not have to explicitly discover others and
evaluate their performance; it will express a request for data
and the forwarding plane will bring this data back, 3) an NDN-
native BitTorrent application can get away from needing a
tracker; traffic localization and parallel downloading are done
by the forwarding plane and 4) redundant fetching of the same
data across the same path can be eliminated; NDN’s native
support for multicast data delivery and in-network caching
reduce both network load and data retrieval delay.

IV. NTORRENT DESIGN

In this section, we present the nTorrent design; we first
discuss each individual design concept and then present a brief
application scenario as an example of putting all the design
concepts together.

A. .Torrent File: the Truth of the File Set

To download a torrent (consisting of one or more files), a
peer must first acquire the corresponding .torrent file; a piece
of data uniquely identified by an NDN full name and signed
by the original torrent producer, so that it can be securely
retrieved and verified.

As illustrated in Figure the name of a .torrent file
consists of 4 components; the first one refers to the application,
the second is the name of the torrent, the third refers to the
.torrent file and the last one is the implicit digest of the .torrent
file. Peers learn this name in a similar way as in BitTorrent
(section [[T=A).

With the .torrent file, peers discover the namespace struc-
ture (names of the file set), since it contains two pieces of
information: 1) a description of the file set (e.g., torrent size
and type), 2) the full names of a number of name catalogs
(similar to [15]], [16], [[17]), called file manifests (Figure .
Each of those catalogs contains the full names of the packets
in a specific file in the torrent. The name of a file manifest
consists of 4 components; the first refers to the application, the
second is the name of the torrent, the third identifies a specific
file in the torrent and the last one is the implicit digest of the
file manifest.

In addition to having a full name, a manifest is signed by the
original torrent publisher, therefore, it can be securely retrieved

by peers. By downloading a manifest, a peer is able to securely
retrieve the data packets of a file in the torrent.

The overall process of securely downloading the entire
torrent is hierarchical and starts with the .torrent file, as
illustrated in Figure [3} peers then download the file manifests
and eventually the individual packets of each file in the torrent.

For large torrents, the original torrent publisher, based on
the concept of Application Layer Framing [|18]], segments each
file in the torrent at proper boundaries. In such cases, .torrent
files and file manifests may consist of one or more data packets
(i.e., segments). If one data packet is not big enough to hold
all the names of file manifests or packets in a file, it will
carry some of them (let us assume the first k names), the
second packet will carry the next k, and so on so forth. A
peer interested in specific files contained in a torrent needs to
fetch only the manifests of these files.

B. Naming Conventions
The goal of the nTorrent naming conventions is twofold:

« Easily identify the name of the selected torrent, the files in
a torrent and the individual packets in a file.

o Provide a full name for each packet, so that routers can
directly verify the integrity of the packet (section [V-D).

We use a hierarchical naming scheme to reflect the relation
among torrent name, set of files in a torrent, and individual
data packets in a file as illustrated in Figure [}

o The first component identifies the nTorrent application.

o The second refers to the name of the torrent.

« The next two components specify the offset of the desired
file and packet respectively.

o The last component is the implicit digest of the packet.

C. Sequential Data Retrieval

Data packets are cached in NDN routers, making data
replication inherent across the network and eliminating the
need of a “Rarest Piece First” strategy.

nTorrent should fetch data in a way that maximizes the
utilization of in-network caching. Intuitively, fetching data
sequentially is likely to contribute to the utilization of caches
during simultaneous downloads. A peer requests data, starting
from the first packet in the first file in the torrent, one by one
until the last packet in the last file. Therefore, a sequence of
packets can be cached across the network and be retrieved by
all the peers that download the torrent at the same time.

D. Packet Level Integrity

Peers request data using full names, enabling routers to
verify data integrity on a packet-level basis and ensuring that
an application never receives bogus data. This verification
comes with minimal router processing cost (no signature
validation per data packet); to satisfy a pending Interest with
a full name, the router first computes the implicit digest of
the incoming data packet and then searches for matching PIT
entries. If the computed digest does not match the digest in
the packet name, the router discards the packet.

Torrent File
Name: /NTORRENT /<t It /i t_file/<implicit-digest-of-t it-fil

Content Torrent size
Torrent type

/NTORRENT/<torrent ffile0/<implicit-digest-of-fil
/NTORRENT/<torrent-name>ffile 1/<implicit-digest-of-file-manifest>

/NTORRENT/<torrent-n: fileM/<implicit-digest-of-fil ifest>

Signature of the original torrent publisher

(a) Structure of .torrent file

File Manifest
Name: /NTORRENT/<torrent fiile#/<implicit-digest-of-manifest>
/NTORRENT/<t it plicit-digest-of-pack
Content /NTORRENT/<t it 1 plicit-digest-of-packet1>
/NTORRENT/<torrent- le#/oa plicit-digest-of-packetN:
Signature of the original torrent publisher

(b) Structure of file manifest

Fig. 2: Torrent File & File Manifest

Torrent File

Manifest for file 0

Namém

Name and

Manifest for file 1 Manifest for file n

digest for digest for * digest for
packet 0 packet 1 of packet m of
of file 0 file 0 file 0

Fig. 3: Hierarchical process of secure torrent retrieval

Interest
Name: /NTORRENT/<t it p Pl digest-of-
packet>

Fig. 4: nTorrent Interest format

E. Routing Announcement Trade-Offs

To share data with others, a peer has to announce the data’s
name prefix(es) to the routing system, so that the network can
forward other peers’ Interests towards it. There are 2 majors
decisions to be made about a peer’s routing announcements:
1) what is the granularity of the announced prefixes, and 2)
when the peer makes the announcement.

About the first one, there are three potential cases: a
peer can announce the name prefix of 1) the entire tor-
rent (“/NTORRENT/<torrent-name>”), 2) each file in a tor-
rent (“/NTORRENT/<torrent-name>/file#”) or 3) each individ-
ual packet (“/NTORRENT/<torrent-name>/file#/packet#”’);
an option that cannot scale, since it results in extremely large
FIBs. The relation among the prefixes is hierarchical (hier-
archical NDN namespace), therefore, this decision involves a
trade-off between the accuracy of the routing and forwarding
plane and the number of announced prefixes; coarse-grained
announcements reduce the size of FIBs but, depending on
when the announcements are made (as explained below), they
might result in extended path exploration to find the data or
reduced amounts of time that a peer uploads its data.

About the second one, a peer can make a routing announce-
ment: 1) before it downloads the data for the announced prefix
(approximate), 2) after it downloads the data for the announced
prefix (precise), 3) when it has downloaded a certain amount
of data for the announced prefix. Since a peer can announce
a prefix without having all its data (e.g., the prefix of a file
in the torrent, without having all the packets in the file), this
decision involves a trade-off among the required amount of

path exploration to find the data, the amount of time that a peer
uploads its data and the peer agility in the sense of enabling
peers to download data fast from multiple sources.

We study the effect of routing announcements on our design
in section [Vl

F. Baseline Application Scenario

As illustrated in Figure [5] let us assume that a peer would
like to download a Linux distribution torrent, which consists
of 10 files and each file of 10 data packets.

Network Peer

Interest for /NTORRENT/linux_15.01/torrent_file/92AB13FD

Data for NTORRENT/linux_15.01/torrent_file/92AB13FD

Interest for /NTORRENT/linux_15.01/file0/98A12ED6

Data for /NTORRENT/linux_15.01/file0/98A12ED6

Interest for /NTORRENT/linux_15.01/ile0/packet0/21AC23D4

Data for /NTORRENT/linux_15.01/file0/packet0/21AC23D4

Potential routing announcement for /NTORRENT/linux_15.01/file0

Interest for NTORRENT/linux_15.01/file0/packet9/A23D1F9B

Data for /NTORRENT/linux_15.01/file0/packet9/A23D1F9B

Potential routing announcement for /NTORRENT/linux_15.01/file0
or /NTORRENT/linux_15.01

Interest for NTORRENT/linux_15.01/file9/packet9/A13B1C9B

Data for /NTORRENT/linux_15.01/file9/packet9/A13B1C9B

Potential routing announcement for NTORRENT/linux_15.01

Fig. 5: Example of downloading a linux distribution torrent

The peer acquires the .torrent file first, which is a data packet
with a name like: “/NTORRENT/linux_15.01/torrent_file
/92AB13FD” and contains the full name of the file manifests.
The peer simply expresses an Interest for the .torrent file
using its full name, while the network verifies the data packet
integrity using this full name.

After receiving the .torrent file, the peer expresses Interests
to acquire the desired file manifests that contain the full name
of the data packets in each file (for example, the name of
the manifest of the first file can be “/NTORRENT/linux_15.01
/£i1e0/98A12ED6”). When the peer has acquired the manifest
of a specific file, it can start retrieving each individual data
packet in this file by expressing an Interest for it using its full
name (for example, the name of the first packet in the first file
can be “/NTORRENT/linux_15.01/file0/packet0/21AC23D4”).

Eventually, the peer will announce either the name prefix
of a file in the torrent, or the prefix of the entire torrent. This

announcement can be done when the retrieval of a file (or the
torrent respectively) is complete or when the first packet in a
file (or the first file in the torrent) is retrieved.

V. SIMULATION STUDY

In this section, we perform a simulation study of nTorrent.
Our goal is to examine the tradeoffs of its design and com-
pare its performance with BitTorrent. Our study focuses on
3 aspects: 1) impact of the routing announcements on the
application performance to explore the tradeoffs mentioned
in section 2) utilization of the NDN forwarding plane
by nTorrent to achieve multi-path forwarding and download
speed maximization, 3) swarm performance in flash crowd
scenarios to study the impact of in-network caching in the
case of simultaneous downloads.

The simulation scenarios were implemented in
ndnSIM 2 [19], an NDN simulator based on NS-3 [20]],
featuring the forwarding pipelines of the NDN Forwarding
Daemon (NFD) [21]. We also implemented the plain
BitTorrent functionality with a rarest-piece-first selection
strategy as a separate NS-3 module. We should note that the
nTorrent application [22]] has been deployed and can be used
on the NDN testbed.

A. Simulation Setup

We use the topologies shown in Figure [6] The first one
(Figure [6h) offers multiple paths with different costs (in terms
of delays) to peers (the bandwidth of the links is the same).
The second one (Figure[6b) has bottleneck links to the majority
of peers. These topologies were used to study the specifics
of the nTorrent design and the benefits of NDN forwarding.
Figure 6k illustrates the Rocketfuel AT&T topology, consisting
of 625 nodes and 2,101 links. This topology represents a large
Autonomous System (AS) and was used to study our flash
crowd scenario.

We assume that the .torrent file is known by all the peers,
and the torrent to be downloaded contains 100MB data and
consists of 100 files. For the nTorrent simulations, each file
consists of 1000 data packets, and for the BitTorrent simula-
tions, of 1000 pieces. Each piece is retrieved as a single packet
(in both nTorrent and BitTorrent, the size of each packet is
1KB). Unless otherwise stated, background traffic is generated
(30% of the total traffic with Poisson distribution acting as link
capacity nuisance and cache pollution) to study the system
behavior under semi-realistic network conditions.

We experimented with the following two cases of routing
announcements by peers:

« Precise announcements on a per file basis: peers register
the prefix of a file in the torrent for routing announcements
when they download all the packets in the file.

« Approximate announcements on a per torrent basis:
peers register the prefix of a torrent for routing announce-
ments when they have a complete file in the torrent.

Routers’ FIB is initially populated by a link-state routing
protocol that uses the Dijkstra’s algorithm. Routers also use the
forwarding strategy discussed in section [[II-A2] which probes

faces to discover potential better next-hops for data retrieval.
The implemented probing algorithm sets one timer per router
face. When the timer of a face F' expires, the next Interest
that reaches the router, and there is a FIB entry with F' as
an outgoing face, is forwarded through F'. When data does
not come back from a probed face (or a NACK comes back),
an exponential back-off timer specifies when the router will
probe this face again. The initial value of the timer is 1 second
and the maximum 32 seconds.

In the BitTorrent experiments, the peers follow the rarest-
piece-first strategy, while for nTorrent, they request packets
sequentially as explained in section

B. Impact Of Routing Announcements

We first study the impact of routing announcements on
nTorrent. We measure the amount of NACKSs generated and the
time needed for data retrieval. We use the topology illustrated
in Figure [6p, where a seeder initially uploads a torrent and
some leechers download it. We have disabled in-network
caching to examine the worst-case scenario of the nTorrent
performance.

Peer 4 acts as the seeder and announces prefixes across
the network. The announcements propagate among the routers
due to the routing protocol. Peer 1 starts downloading data
first. When it downloads 40% of the torrent, peer 3 starts
downloading data. When peer 3 downloads 40% of the torrent,
peer 2 starts its downloading; both peers 1 and 3 still act as
leechers allowing us to study the effect of NDN forwarding.

For precise routing announcements, no local error recovery
is required (Table [II); all the data can be retrieved through
each outgoing FIB entry face.

For approximate routing announcements, local error re-
covery is low (Table [MI), since the forwarding plane avoids
constantly probing faces that cannot bring data back due to
the exponential back-off timer. Specifically, peer 1 initially
downloads data from the seeder. When peers 2 and 3 download
the first file in the torrent, they announce the torrent prefix.
Therefore, faces at the routers towards them become available
and are probed by the forwarding plane. At that time, peer 1 is
requesting data close to or even beyond the torrent midpoint,
while peers 2 and 3 have files at the beginning of the torrent
(sequential data fetching). In the same manner, peer 3 initially
downloads data from peer 1, but when peer 2 announces the
torrent prefix, a few requests of peer 3 are used as probes
towards peer 2 that still has files at the beginning of the torrent.
When peer 2 joins the swarm though, sequential fetching
“masks” off part of the negative effect of the approximate
announcements; the data is already available at peers 1, 3 and
4, therefore peer 2 downloads the torrent without triggering
any local error recovery.

The torrent distribution duration is illustrated in Table [IIl
This duration is measured from the moment the first peer starts
downloading data until the last peer downloads a copy of the
torrent. The results for both the cases of routing announce-
ments are close, since the required local error recovery amount
for approximate announcements is low.

Router 4

20,

2 Peer 1

Router 1

15ms
Router 3

o
Router 2

Peer3

10 ms

Peer 2

(a) Topology with router node degree equal to 4

10 Mbps / 10 msec

(b) Topology with router node degree equal to 3

Router 2 2 Mbps / 25 msec

(c) Rocketfuel AT&T topology

Fig. 6: Simulation topologies

0 2 4 6 810

Link Bandwidth (Mbps)

Data Retrieval Time (s)
Peer 2

N \i

Peer 1 Peer 3

0 2 4 6 8 10

Link Bandwidth (Mbps)

Router 1

/ Router 3

Data Retrieval Time (s)

Peer4

Peer 5

0 2 4 6 810

Ll

Link Bandwidth (Mbps)

10

Data Retrieval Time (s)
Fig. 7: nTorrent download speed (seeder peers having the

entire torrent content)

TABLE II: Local error recovery amount (percent of peer Interests
resulted in NACKSs)

Peer Precise routing | Approximate routing
announcements announcements
(per file) (per torrent)
Peer 1 0 % ~0.009 %
Peer 2 0 % 0 %
Peer 3 0 % ~0.005 %

TABLE III: Duration until all the peers download the torrent

[Precise routing announcements (per file) 124 £ 2 sec]
[Approximate routing ts (per torrent) [127 & 3 sec |

C. Multi-path Forwarding And Download Speed Maximiza-
tion

To study how NDN multi-path forwarding enables the
utilization of all the available paths and the maximization of
download speed by nTorrent, we use the topology illustrated
in Figure [6p. Peer 1 expresses Interests for packets in the
torrent with a rate that linearly increases the utilization of
the link reaching router 1. We have disabled the generation of
background traffic to focus on the speed achieved by nTorrent.

Q2 o le)

2 7] i —
S o

£ o]

sl

S [———
2 s

4 ™

B o~ 5

x -

=

-

0

Data Retrieval Time (s)
Router 2

~

Peer 1 Peer3

Link Bandwidth (Mbps)

0 2 4 6 8 10 Router 1

/ Router 3

« Precise announcements (per fle)
|| Approximate announcements (per torrent)

o 2 4 6 8 10
Data Retrieval Time (s)

Data Retrieval Time (s)

Peer 4

Peer5

Link Bandwidth (Mbps)

Fig. 8: nTorrent download speed (leecher peers)

We first consider the case, where peers 2, 3, 4 and 5 act as
seeders that have the entire torrent content. In Figure [/} we
illustrate the bandwidth of the links between peer 1 and router
1, router 1 and each of routers 2 and 3 respectively. The results
are the same for both cases of routing announcements. When
a router receives more Interests than it can forward, it sends
a NACK downstream to control the incoming rate. Therefore,
nTorrent can fully utilize all the available paths starting from
the one with the best data plane performance (RTT). When a
path is fully utilized, Interest forwarding is expanded to the
path with the next best performance; all the previously selected
paths stay fully utilized and the remaining traffic is forwarded
to the new one.

We conducted the same experiment with peers 2, 3, 4 and 5
acting as leechers; we randomly distributed the torrent packets
among them, so that each packet is available at exactly one
leecher. As illustrated in Figure [§] the achieved bandwidth
approaches the maximum possible, while the convergence to
this maximum is faster for precise announcements, since no
local error recovery is required.

D. Flash Crowd Scenario

In this experiment, we simulate a flash crowd scenario
(topology [6F). Such scenarios are challenging for BitTorrent,
since the upload bandwidth of a seeder is dominated by
leechers’ requests. As a result, the seeder serves data to only a
subset of the requesting peers, while the rest of them have to
wait until data is replicated and served by others. For nTorrent,
we expect that in-network caching can reduce the number
of requests forwarded to peers, thus reducing the overall
download time when simultaneous downloads take place.

We randomly select 1 initial torrent seeder and leechers at
random positions. We vary the number of leechers and the size
of in-network caches (Least Recently Used (LRU) replacement
policy) to study the impact of caching and simultaneous
downloading to the overall performance of the swarm. In
Table we present the download time until all the peers
download a copy of the torrent and we compare the results to
the ideal case (every peer downloads data from the closest, in
terms of RTT, peer or cache) and BitTorrent. In Table E we
present the percent of requests received by peers in nTorrent
(in BitTorrent, all the requests are received by peers). Below,
we present two of our experiments as examples to elaborate
on those results.

For our first experiment, we gradually increase the number
of leechers and keep the CS size constant. We randomly select
25 leechers, while the cache size is 100 MB. nTorrent achieves
faster data downloading than BitTorrent and almost 4 times
less requests reach the peers.

We randomly select additional leechers to reach a total
number of 50 and 100 downloaders respectively. The results
show that the larger number of simultaneous downloaders of
the same torrent has a beneficial effect on the overall download
time (it gets closer the ideal case), since the data is available
in more caches across the network. Therefore, fewer requests
are satisfied by peers.

For our second experiment, we keep the previous distri-
bution of 100 peers and vary the size of in-network caches.
We first run our simulation with caches of 50 MB. The
results show that the nTorrent download time diverges from the
ideal case. We observed that the LRU replacement policy in
combination with sequential fetching by peers can result in ei-
ther constructive or destructive caching depending on whether
peers fetch cached data before background traffic evicts cached
torrent data. Specifically, if peers fetch data before any evic-
tions take place, the LRU policy evicts background traffic
(constructive caching). If evictions happen before the peers
fetch cached data, the LRU policy evicts torrent data, and,
since peers request data sequentially, their requests result in
consecutive cache misses (destructive caching).

We increase the size of caches to 200 MB; now there is
enough space in cache for both torrent data and background
traffic, therefore, the download time approaches the ideal. The
data is served almost exclusively by caches and only about 2
% of the requests are satisfied by peers.

In Table we present the total traffic amount generated
by nTorrent and BitTorrent for 100 peers and varying cache

size. The results show that nTorrent generates about half the
traffic compared to BitTorrent even if the cache size is smaller
than the size of the torrent.

Overall, peers achieve fast data retrieval because of in-
network caching when simultaneous downloads take place. As
the number of simultaneous downloaders grows, the download
time approaches the ideal. Cache size also plays an important
role in the swarm performance, since it reduces the generated
traffic amount and the number of requests served by peers.

VI. NTORRENT DESIGN EXTENSION TO SCALE NDN
ROUTING

In the previous sections, we presented the nTorrent design
assuming the native NDN approach of routing directly on
application names. Since there is an unbounded number of
application names, there may be concerns on how to keep the
FIB size under control across the global Internet to maintain
the scalability of NDN forwarding. Afanasyev et al. [23]]
proposed the SNAMP scheme, which is briefly discussed
below. We also discuss how nTorrent leverages SNAMP.

A. SNAMP Overview

SNAMP [23]] proposes a secure mapping of application
names to a set of globally routable name prefixes used for data
retrieval across the Internet. A producer creates an association
between a data prefix and a number of globally routable name
prefixes. This association is called LINK, which is a piece of
named data signed by this producer. A consumer application
attaches the LINK to the expressed Interest, which will act as
guidance (hint) for the Interest forwarding across the Internet.
A LINK is published by the data producer in NDNS (DNS
for NDN) [24]] and the consumer will retrieve it from there.
To reduce the danger of cache poisoning, in-network caches
may store the LINK along with a data packet, so that only
Interests carrying the same LINK retrieve the cached data.

SNAMP does not impose changes to local communication;
LINK is needed by Internet backbone routers that do not
know how to further forward an Interest based solely on the
application name. When an Interest reaches a domain, where
the attached routable prefix is available, the Interest forwarding
is performed based on its name. The goal of SNAMP is to
provide a framework to achieve NDN forwarding on Internet
scale with minimal changes to the application logic.

B. nTorrent Leveraging SNAMP

The requirement that a LINK has to be signed by the
original data producer has arisen from concerns that any router
along the path could change the LINK content and forward an
Interest towards compromised data sources. nTorrent uses full
names to guarantee the integrity of received data, which can
be verified both by the peers and the network, thus, the use
of unsigned LINKSs can be allowed. This property is critical
for peer-to-peer environments, where peers come and go in
an unpredictable fashion, therefore, a requirement for signed
LINKs would introduce significant complexity. The implicit
digest appended to the data name also allows for Interests to

TABLE IV: Duration until all the peers download the torrent (seconds)

25 leechers 50 leechers 100 leechers
Cache size 50 MB 100 MB 200 MB 50 MB 100 MB 200 MB 50 MB 100 MB 200 MB
Ideal Case - nTorrent ~171 ~171 ~171 ~195 ~195 ~195 ~213 ~213 ~213
nTorrent - Precise ts (per file) 204 £+ 2 197 + 2 ~176 225 + 2 211 +1 ~199 244 + 2 224 +1 ~214
nTorrent - Approximate announcements (per torrent) 216 + 3 210+ 2 ~181 238 + 2 222+ 2 ~202 259 + 2 233+ 1 ~216
BitTorrent 225 +3 | 225+3 | 2254+3 | 261 +3 | 261 +3 | 261 +3 | 319+3 | 319+3 | 319+£3
TABLE V: Percent of requests received by peers
25 leechers 50 leechers 100 leechers
[Cache size [50MB [100 MB [200 MB [50 MB [100 MB | 200 MB | 50 MB | 100 MB | 200 MB
| nTorrent ~55% | ~28% | ~16 ~33% | ~16% | ~7 ~19% | ~T% | ~2%
TABLE VI: Total Generated Traffic (Gigabytes)
100 leechers
Cache size 50 MB 100 MB 200 MB
nTorrent - Precise announcements (per file) ~33.7 ~30.5 ~289
nTorrent - Approximate ts (per torrent) ~34.5 ~31.1 ~29.7
BitTorrent ~65.8 ~65.8 ~65.8
be satisfied by a cached data packet no matter if the cached T
LINK matches the Interest LINK or not. Name: /NTORRENT/<torrent peer’ table-prefix>(JOIN

SNAMP preserves the desired nTorrent properties: 1)
SNAMP requires applications to attach routable prefixes to
the Interests to help the forwarding plane find the data across
the Internet. However, this is fundamentally different from
explicitly managing point-to-point connections as imposed by
TCP/IP to BitTorrent, 2) the download speed maximization
property holds, since the forwarding strategy logic does not
change, 3) the cache hit/miss behavior is the same; cached
data can be retrieved no matter if an Interest’s LINK matches
the cached LINK, so that peers do not have to satisfy every
single Interest, and 4) data integrity verification based on full
names is not affected by SNAMP.

We should note that a routable prefix is fundamentally dif-
ferent than a peer/publisher identification; it merely indicates
a direction (hint) for Interest forwarding. Therefore, a single
torrent may be available across the Internet under a number of
routable prefixes, and under a single routable prefix a number
of torrents may be available. For example, a torrent may be
available under the “/ucla” and “/att” prefixes, and under
the “/ucla” prefix, torrents for all the linux distributions may
be available.

After downloading the .torrent file, a peer will query NDNS,
where a LINK for the desired torrent is stored. This LINK
will include a number of routable prefixes, under which the
desired torrent is available. When the peer fetches the LINK
from NDNS, it can: 1) start downloading file manifests and/or
packets in the torrent; it creates an unsigned LINK containing
a number of routable prefixes and attaches it to its Interests,
and/or 2) acquire more routable prefixes; it sends Interests
towards known routable prefixes to contact other peers in the
swarm. The format of those Interests is shown in Figure [9}
The first component refers to the nTorrent application and the
second is the torrent name. The third is the sender peer’s own
routable prefix, under which the torrent data will be published
when downloaded; the peer injects its routable prefix into
the swarm, so that others can attach it to their Interests to

LINK: [<routable-prefix-1>

<routable-prefix-2>

<routable-prefix-N>

Fig. 9: Interest expressed by a peer to acquire routable prefixes

download data. The last component indicates that the peer
wants to join torrent downloading and learn routable prefixes.

As peers come and go, some routable prefixes may become
obsolete or even malicious locations may inject false routable
prefixes into the system. To deal with these cases, peers attach
diverse routable prefixes (i.e., names with no or small prefix
matching) to their Interests, so that the forwarding plane can
decide which prefix(es) to use to fetch data. If needed, peers
can retrieve new routable prefixes, while obsolete ones can be
evicted by maintaining a per routable prefix “’soft state”.

Overall, the state required by nTorrent to follow the SNAMP
approach is maintained: 1) across the network (FIBs) in the
form of globally routable prefixes (FIB entries), and 2) in
NDNS (fully distributed database) in the form of LINKSs
containing routable prefixes to help newcomer peers bootstrap
into the swarm.

VII. RELATED WORK

BitTorrent [1] is the most popular protocol for peer-to-peer
file sharing designed to operate on top of TCP/IP’s point-
to-point packet delivery. In [25], a scheme for peer-to-peer
video streaming in Information Centric Networking (ICN) [26]]
cellular environments is presented. In [27], an application for
peer-to-peer file synchronization in NDN is presented, but it
does not provide an in-depth analysis of BitTorrent and does
not deal with NDN routing scalability issues.

A protocol for peer-to-peer file sharing in ICN environments
is presented in [28]. The “Peer-Aware Routing protocol”
constructs a shared topology-aware tree connecting all the
peers and each Interest is being flooded across it. This protocol

does not take advantage of the hierarchical NDN names, but
uses flat name-based routing to achieve file sharing.

In [29] - [31], a number of approaches for user-assisted
caching in ICN are presented. They all conclude that the cache
replacement policy affects the data fetching overhead, while
user assistance could lead to the efficient utilization of network
resources. For nTorrent, user-assisted caching could further
reduce the number of requests satisfied by the peers and, thus,
the torrent download time.

VIII. CONCLUSIONS

This paper describes our design and experimentation with
nTorrent. We have learned several lessons from this exercise,
which seem worth sharing with the broader community. First,
by letting the network directly use application names for data
fetching, NDN enable applications to focus on what data to
fetch, leaving to the network to decide from where to fetch
data. This not only simplifies the design of nTorrent, but also
leads to most efficient and resilient data dissemination as an
NDN network is able to fetch data nearest available locations,
make use of multiple paths, quickly adapting to failures as
well as data source changes, and obeying routing policies.

At the same time, letting networks share application data
names also brings up routing scalability concern. We propose
to use the developed solution of NDN LINK to mitigate this
issue, and notice that new work is needed to handle the binding
between data names and the LINKSs needed to reach them, to
fully achieve the goal of “applications focusing on what data
to fetch only.”

Finally, compared to BitTorrent’s handling of data authen-
tication at application level, NDN enables data authenticity
checking at network packet level. There for in disseminating
static data, nTorrent can embed data digests in NDN packet
names to enable routers to detect and drop bogus contents at
very first router they cross.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation under award CNS-1345318 and CNS-1629922.

REFERENCES

[1] B. Cohen, “Incentives build robustness in BitTorrent,” in Workshop on
Economics of Peer-to-Peer systems, vol. 6, 2003, pp. 68-72.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson et al., “Named data
networking,” Comp. Comm. Review, 2014.

[3] S. Tarkoma, Overlay Networks: Toward Information Networking. CRC
Press, 2010.

[4] A. Loewenstern, “DHT protocol,” BitTorrent. org, 2008.

[5] D. Wu, P. Dhungel, X. Hei, C. Zhang, and K. W. Ross, “Understanding
peer exchange in bittorrent systems,” in Proc. of Peer-to-Peer Computing
(P2P), 2010.

[6] B. Cohen, “The BitTorrent protocol specification.”

[7]1 R. Bindal, P. Cao, W. Chan, J. Medved ef al., “Improving traffic locality
in BitTorrent via biased neighbor selection,” in Proc. of International
Conference on Distributed Computing Systems, 20006.

[8] S. Le Blond, A. Legout, and W. Dabbous, “Pushing BitTorrent locality
to the limit,” Computer Networks, 2011.

[9] D. R. Choffnes and F. E. Bustamante, “Taming the torrent: a practical
approach to reducing cross-isp traffic in peer-to-peer systems,” in ACM
Comp. Comm. Review, 2008.

[10] R. Perkins, “Zeroconf peer advertising and discovery,” BEP 26, 2008.

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]
[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

D. Harrison, S. Shalunov, and G. Hazel, “BitTorrent local tracker
discovery protocol,” October 2008.

NDN Project, “NDN Packet Format Specification,” Online: http://
named-data.net/doc/ndn-tlv/, 2014.

A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“NIlsr: Named-data link state routing protocol,” in Proceedings of the 3rd
ACM SIGCOMM Workshop on Information-centric Networking. ACM,
2013, pp. 15-20.

C.Yi, A. Afanasyev, 1. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A
case for stateful forwarding plane,” Computer Communications, vol. 36,
no. 7, pp. 779-791, 2013.

I. Moiseenko, “Fetching content in Named Data Networking with
embedded manifests,” NDN, Tech. Rep. NDN-0025, 2014.

M. Baugher, B. Davie, A. Narayanan, and D. Oran, “Self-verifying
names for read-only named data.” in INFOCOM Workshops, vol. 12,
2012, pp. 274-279.

C. Tschudin and C. Wood, “File-like icn collection (flic),” Internet En-
gineering Task Force, Internet-Draft draft-tschudin-icnrg-flic-00, 2016.

D. D. Clark and D. L. Tennenhouse, “Architectural considerations for a
new generation of protocols,” ACM SIGCOMM Computer Communica-
tion Review, vol. 20, no. 4, pp. 200-208, 1990.

S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnsim 2: An
updated ndn simulator for ns-3,” Technical Report NDN-0028, Revision
2, NDN, Tech. Rep., 2016.

“NS-3 Simulation Framework,”
Available: http://www.nsnam.org/

A. Afanasyev, J. Shi et al., “NFD Developer’s Guide,” NDN, Tech. Rep.
NDN-0021, 2015.

“nTorrent Implementation.” [Online]. Available: https://github.com/
spirosmastorakis/nTorrent

A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “SNAMP:
Secure namespace mapping to scale NDN forwarding,” in Proc. of IEEE
Global Internet Symposium, April 2015.

A. Afanasyev, “Addressing operational challenges in Named Data Net-
working through NDNS distributed database,” Ph.D. dissertation, UCLA,
September 2013.

A. Detti, B. Ricci, and N. Blefari-Melazzi, “Peer-to-peer live adaptive
video streaming for information centric cellular networks,” in Personal
Indoor and Mobile Radio Communications (PIMRC), 2013 IEEE 24th
International Symposium on. 1EEE, 2013, pp. 3583-3588.

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Communications
Magazine, vol. 50, no. 7, 2012.

J. Lindblom, M. Huang, J. Burke, and L. Zhang, “FileSync/NDN: Peer-
to-peer file sync over Named Data Networking,” NDN, Tech. Rep NDN-
0012, 2013.

Y. Kim, I. Yeom, and Y. Kim, “Scalable and efficient file sharing in
information-centric networking.”

H. Lee and A. Nakao, “User-assisted in-network caching in information-
centric networking,” Computer Networks, vol. 57, no. 16, pp. 3142—
3153, 2013.

F. M. Al-Turjman, A. E. Al-Fagih, and H. S. Hassanein, “A value-
based cache replacement approach for information-centric networks,”
in Local Computer Networks Workshops (LCN Workshops), 2013 IEEE
38th Conference on. 1EEE, 2013, pp. 874-881.

H. Lee and A. Nakao, “Efficient user-assisted content distribution over
information-centric network,” in NETWORKING 2012. Springer, 2012,
pp. 1-12.

http://www.nsnam.org/. [Online].

http://named-data.net/doc/ndn-tlv/
http://named-data.net/doc/ndn-tlv/
http://www.nsnam.org/
https://github.com/spirosmastorakis/nTorrent
https://github.com/spirosmastorakis/nTorrent

	Introduction
	BitTorrent Design Challenges
	BitTorrent Background
	Peer Discovery
	Peer Selection
	Rarest Piece Prioritization
	Piece Integrity Verification
	Data Sharing Incentives
	Traffic Localization

	BitTorrent in NDN terms
	NDN Overview
	NDN Security & Data Integrity Verification
	NDN Routing and Forwarding

	Similarities/Differences Between BitTorrent And NDN
	Data-Centric Security
	Efficient Data Retrieval

	NDN-Native Peer-to-Peer File Sharing

	nTorrent design
	.Torrent File: the Truth of the File Set
	Naming Conventions
	Sequential Data Retrieval
	Packet Level Integrity
	Routing Announcement Trade-Offs
	Baseline Application Scenario

	Simulation Study
	Simulation Setup
	Impact Of Routing Announcements
	Multi-path Forwarding And Download Speed Maximization
	Flash Crowd Scenario

	nTorrent Design Extension To Scale NDN Routing
	SNAMP Overview
	nTorrent Leveraging SNAMP

	Related Work
	Conclusions
	Acknowledgment
	References

