
Real-Time Data Retrieval in Named Data
Networking

Spyridon Mastorakis
UCLA

mastorakis@cs.ucla.edu

Peter Gusev
UCLA REMAP

peter@remap.ucla.edu

Alexander Afanasyev
FIU

aa@cs.fiu.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

Abstract—The Named Data Networking (NDN) architecture
names and secures data directly at the network layer, thus
enabling in-network data caching, which in turn facilitates large
scale data dissemination. Applications fetch the desired data by
names, and the data can come from either the original data
producers or router caches. This data retrieval design works
seamlessly when the applications know the exact names of data,
but poses challenges for realtime applications, such as video
and audio conferencing, where new participants may not know
the exact names of the latest data production when they join.
In this paper we present Realtime Data Retrieval (RDR), a
simple protocol that enables applications to discover the latest
data. Through prototyping and simulation-based study, we show
that RDR can effectively retrieve realtime data with minimal
additional delays.

Index Terms—Named Data Networking (NDN), Information-
Centric Networking (ICN), Realtime data discovery

I. INTRODUCTION

The Named Data Networking (NDN) [1] architecture
changes network communication from pushing packets to
destinations identified by IP addresses to fetching application-
named and secured data packets. Applications running over
NDN can directly request data from the network without
performing any additional mapping between their data names
(e.g., URLs, file names) and the locations used by network
delivery (e.g., IP addresses). By using data names, an NDN
network can fetch the requested data from any available
source, including the original data producer, router caches, or
managed storage (repos).

NDN applications use a combination of inputs from users
and naming conventions [2] to construct exact names to
request data; when the exact names are unknown, an ap-
plication may request data by using a name prefix, and the
network will respond by fetching a data packet whose name
has a matching prefix. A prominent example of the latter
case is video conferencing, where data is being produced
continuously, and a newly joined participant may not know the
current video frame number to construct the exact name for the
desired data. However, when requesting data using a prefix, the
conferencing application needs to be aware that the network
may return data from router caches, which were produced
seconds or minutes ago. Therefore, the new participants need
effective means to discover the latest video frame number in

This work is partially supported by the US National Science Foundation
under award CNS-1719403.

real time, so that they can properly catch up with the ongoing
conference.

Generally speaking, solutions to this problem fall into one
of the following approaches: (i) offering a network service
(e.g., through a centralized server) to let consumers learn the
names of the latest data, or (ii) assuming clock synchronization
among all entities and realtime applications using timestamps
as a part of the data names, so that consumers can construct
desired data names according to their clocks. However, both
approaches rely on the existence of network infrastructure
that can ensure the availability of servers and keep all clocks
synchronized.

In this paper, we present a simple design, called Realtime
Data Retrieval (RDR), that can work in both infrastructure-
based (e.g., the Internet backbone) and infrastructure-free (e.g.,
mobile ad hoc) environments. RDR utilizes NDN protocol
features to let realtime applications discover names of the
latest data, without assuming either infrastructure support or
clock synchronization. As a tool for fetching data produced in
real time, RDR only makes the natural assumption that both
the producer (or its delegate) and consumer applications are
online at the same time. To illustrate the basic mechanisms
of the RDR design, we use NDN-RTC [3], a realtime video-
conferencing library over NDN, as our application use case.

Our contributions in this paper are twofold: (1) we present
the RDR design, which utilizes a few basic NDN protocol
primitives to discover the latest data produced by realtime
applications, and (2) we show our prototype implementation
and simulation evaluation to confirm the effectiveness of RDR
in helping realtime applications discover and retrieve the latest
data.

The rest of this work is organized as follows: §II discusses
some brief background on NDN and NDN-RTC, and prior
related work. §III presents our design, and §IV our preliminary
evaluation. Finally, §V summarizes what we have learned
through designing the RDR protocol.

II. BACKGROUND & PRIOR WORK

In this section, we give a brief overview of the NDN
architecture and the NDN-RTC application. We also discuss
prior work on the development of realtime applications over
NDN.



A. NDN Overview

NDN enables applications to directly fetch data identified
by a given name through a consumer-driven communication
model. A consumer application sends requests (interest pack-
ets) for the desired data, which are forwarded toward the data
producer(s) based on their names by NDN forwarders [4].
Once an interest reaches a node that has a data packet with
the matching name or name prefix, this data packet is returned
back to the consumer by following the reverse path of the
corresponding interest.

To forward interests and the corresponding data packets,
an NDN forwarder maintains three key data structures: (1) a
Forwarding Information Base (FIB) that contains a number of
name prefixes along with the outgoing interface(s) to direct
interest forwarding, (2) a Pending Interest Table (PIT) that
contains all the interests that have been forwarded, but the
corresponding data packet has not been received yet, and (3) a
Content Store (CS), where recently retrieved data packets are
stored to satisfy future interests.

Figure 1 depicts the overall structure of an interest and
a data packet, as defined by the NDN packet format spec-
ification [5]. An interest contains: (a) a required “Name”
element that identifies the data to be fetched; (b) an optional
“MustBeFresh” flag, indicating that the Interest can only be
satisfied by a data packet that is be considered fresh based
on its “FreshnessPeriod” value (see the next paragraph for
definition); (c) another optional “CanBePrefix” flag to indicate
that a data packet can satisfy this interest if only the prefix of
a data packet’s name equals the name carried in the interest
(otherwise, names in interest and data packets must be equal);
and (d) potentially a few other optional elements to guide
Interest forwarding by intermediate forwarders.

Interest packet Data packet

M
et

aI
nf

o?

Name

FreshnessPeriod?

Content

Signature

Name

Other Optional 
Elements

El
em

en
ts

 to
 

gu
id

e 
fo

rw
ar

di
ng

Other Optional 
Elements

MustBeFresh?
CanBePrefix?

Fig. 1. NDN packet format

A data packet contains: (a) a required “Name” element
that uniquely identifies the data packet,1 (b) an optional
“MetaInfo” section, including a “FreshnessPeriod” element
that specifies for how long a data packet is considered fresh
each time it is cached at a forwarder, (c) a payload, and (d) a
“Signature” element that cryptographically binds together all
the previous elements.

1In addition to the “exact” name carried in this field, data packets also have
a logical “full name” that includes name in the data packet and additional
“implicit digest” name component [5].

B. NDN-RTC

NDN-RTC [3] is a realtime video conferencing library for
NDN, built on top of the WebRTC library [6]. An NDN-
RTC producer collects audio samples and video frames from
media inputs, segments them into data packets, and serves
them in response to incoming interests. Figure 2 illustrates
the structure of the NDN-RTC namespace. All NDN-RTC
data packets are published under a producer-specific prefix.
Audio/video streams are split into different stream types
(“mic”, “cam”), stream qualities (“low”, “mid”, “high”), and
individual frames. Frames are further split into frame types
(“key”, “delta”), and each is assigned a sequential frame
number. As frames usually do not fit into a single network
MTU-sized packet, they are split into multiple segments under
the “data” type. There is also a “parity” type, under which
NDN-RTC publishes additional control information about the
frame. In addition, NDN-RTC uses the “[NDN-RTC prefix]

/session-info” namespace (not shown in Figure 2) to publish
additional meta-information, such as the frame generation rate,
and the estimate number of segments per frame type.

/<conference-prefix>/ndnrtc/user/<producer-id>

…/streams/<stream-type>/<stream-quality>

cammic
Media inputs/streams

low mid hi

Frame info

NDN-RTC prefix

…/frame/<frame-type>/<frame-number>

deltakey 0 1 …

…/<data-type>/<segment-number>

paritydata 0 1 … Frame data

Fig. 2. NDN-RTC namespace

C. Prior Work

In the original design of NDN-RTC [3], newcomers dis-
cover the latest key frame using a “chasing” mechanism.
More specifically, a new consumer Cnew starts by ex-
pressing an interest with the name prefix of a key frame,
e.g., “/<NDNcall>/ndnrtc/user/<Spyros>/streams/cam/mid
/frames/key”. This interest retrieves a data packet D for some
segment of a frame x. Since D may be retrieved from a router
cache, frame x may not be the latest one. To find the latest
frame number, Cnew sends interests for frames x+1, x+2, . . .
at a rate much higher than the frame generation rate (which
is contained in the retrieved data packet D). By monitoring
the inter-arrival gaps of the returned data packets, Cnew can
estimate whether it is receiving data from caches (data packets
arriving at the interest sending rate), or has retrieved fresh
data, i.e., the up-to-date key frame (when frames arrive at the
expected frame generation rate instead of the interest sending
rate). In the latter case, Cnew starts retrieving delta frames for
the fresh key frame. Whenever NDN-RTC consumers suspect a
loss of synchronization, they repeat this chasing process again.
Note that this “chasing” scheme can take a number of round



trip times and lead to large interest spikes during chasing.
Also note that network congestions may interfere with the
data packet arrival rate, reducing the accuracy of consumers
estimates on whether they have caught up with the realtime
data generation.

VoCCN [7] was among the first efforts to experiment with
realtime applications over NDN. To provide interoperability
with VoIP solutions, the standard VoIP protocols were encap-
sulated into NDN packets. However, this work did not address
the issue of how to fetch the latest realtime data.

ACT [8] is another NDN audio conferencing tool. It uses
naming conventions to enable users to discover ongoing con-
ference calls and the data producers of each call. An audio
data producer appends a monotonically increasing sequence
number to the name of each generated data packet, and
consumers fetch the desired data using the sequence number.
When a newcomer Cnew to a conference call does not know
the latest sequence number of an audio data stream, Cnew uses
the conference name as a prefix to fetch the first data packet,
whose name shows the sequence number n. Cnew then sends
subsequent interests with increasing sequence numbers after n
at a rate higher than the regular voice data generation rate R.
Cnew catches up with the realtime data generation when the
observed data arrival rate matches R, an approach similar to
“chasing” that used in NDN-RTC.

Zhang et al. [9] proposed VR video conferencing over
NDN through the use of a central signaling server that helps
newcomers discover the latest data names. Each producer
creates a notification for the first frame generated in every
second and sends this notification to the signaling server.
The server broadcasts the notification to all the consumers.
A similar approach is also taken by Jangam et al. [10] in the
implementation of a realtime multiparty video conferencing
service. A network controller is responsible for handling
“join” requests from newcomers and for providing namespace
information to help them join the data generation.

Our approach does not assume the existence of network
services to help consumers discover the latest data. As we
describe in the next section, RDR uses a combination of
metadata, naming conventions, and basic primitives from the
NDN protocol to discover the latest realtime data within sub-
RTT (round-trip time) scales.

III. DESIGN

In the this section, we present the design of Realtime Data
Retrieval (RDR) protocol, and use a simplified scenario based
on NDN-RTC to illustrate the RDR protocol concepts.

A. Protocol Overview

To retrieve dynamically generated data, consumers must be
able to deterministically construct the name for a desired piece
of data. This requires that NDN applications name data in
a systematic way. In NDN-RTC example, frames and frame
segments are named sequentially, so that consumers, after
seeing one piece of data, can construct names for future data
by simply increasing the frame and frame segment numbers.

However, to fetch realtime data with minimal delay, consumers
must know what is the “most recent” frame number and how
many interests need to be pipelined to achieve timely retrieval
of all frames and frame segments produced in real time.

RDR provides the above necessary information to con-
sumers through the use of metadata packets. A realtime
producer publishes metadata about its data production, either
periodically or in response to interests. To let consumers fetch
the metadata in a timely manner in the presence of router
caches, RDR makes a combined use of the “FreshnessPeriod”
carried in metadata packets and the “MustBeFresh” in discov-
ery interest packets (i.e., interests to fetch “fresh” metadata).
As we explain in detail in subsequent subsections, the discov-
ery interest may fetch the metadata packet from a router cache
if the packet is still within its “FreshnessPeriod”, otherwise
the interest will fetch the metadata from the producer directly.

Once the metadata is retrieved, the consumer uses infor-
mation from the metadata to infer the name of desired data
to fetch (e.g., the next key/delta frame number current + 1,
or viewing the frames produced previously), and the timing
of interest packet transmissions. In NDN-RTC, the metadata
provides sufficient information for consumers to send the
necessary number of interests to retrieve all segments of the
next key/delta frame.

B. Packet Formats
The key elements in RDR are metadata data packets (Fig-

ure 3) and discovery interests (Figure 4) that retrieve metadata.
The metadata data packets are named by attaching special

word “metadata” and a version number to the application
prefix (e.g., “[NDN-RTC prefix]/metadata/version”); the ver-
sion number helps uniquely identify the produced metadata.
At the minimum, the metadata includes the name of the latest
generated data (in NDN-RTC, the name of the latest delta and
key frames), i.e., the base name from which consumers can
infer the names of future data. In addition, metadata may also
include application-specific information about the data gener-
ation rate, the estimated number of segments per frame and
frame type, and if the packet size permits, opportunistically
carry a segment of the latest data.

Name: /NDNcall/ndnrtc/user/Spyros/metadata/10

FreshnessPeriod: 10ms

Content

Signature

Latest Key Frame (First Segment)

Latest Delta Frame Name: /NDNcall/ndnrtc/user/Spyros/…/frames/delta/92 

Content

Signature

MetaInfo

MetaInfo

Name: /NDNcall/ndnrtc/user/Spyros/…/frames/key/3/data/%00

Fig. 3. NDN-RTC metadata example

A discovery interest aims to retrieve the latest version of
the metadata. Its name includes only the metadata prefix



without the version number (as it is unknown), and it sets both
“CanBePrefix” and “MustBeFresh” flags. The discovery inter-
est either retrieve the latest metadata directly from the producer
or a “fresh” version from in-network caches; “CanBePrefix”
flag lets NDN forwarders satisfy an interest by a data packet
whose name matches and extends the interest name with a
version number component.

Name: /NDNcall/ndnrtc/user/Spyros/metadata

MustBeFresh

CanBePrefix

Fig. 4. NDN-RTC discovery Interest example

The discovery Interest name in the NDN-RTC example, as
shown in Figure 4, refers to a conference call with prefix
“/NDNcall” and to a producer with prefix “/Spyros”. Its last
name component indicates that this Interest is to fetch the
producer’s “metadata”.

C. Producer Side

When creating metadata packet, the producer selects an ap-
propriate value for “FreshnessPeriod” under the “MetaInfo”
section of the data packet. The “FreshnessPeriod” is a per-
hop metric and specifies how long a data packet can be
considered fresh when cached by an NDN forwarder.2 The
producer sets the “FreshnessPeriod” value based on how
frequently it can handle interests for the metadata, while
making sure that the metadata, when cached at forwarders, stay
fresh enough to allow consumers catch up with the realtime
data production. In NDN-RTC case, to avoid delta frame
information lagging, freshness value of metadata should be
no larger than half of the inter-delta frame generation interval
and can be lower if producer can handle extra requests.

We emphasize that realtime data producer uses the
“FreshnessPeriod” element carried in the metadata to inform
consumers of the latest frame numbers. After retrieving the
metadata, a consumer can fetch all desired data packets by
using exact data names, independent from their freshness. For
example, a latecomer to a conference call may want to fetch
previously produced data, in addition to the new data being
generated in real time.

D. Consumer Side

A consumer is responsible for expressing a discovery In-
terest to fetch the producer’s metadata and measuring the
round trip time (RTT). Upon receiving the metadata packet,
the consumer discovers the latest generated data (within
“FreshnessPeriod” plus network delay) and infers names of
the data generated in the recent past and data that will be
generated in the future. Thus, the consumer is able to request

2Note that a forwarder starts counting down the “FreshnessPeriod” upon
receiving a data packet. Therefore theoretically speaking, a data packet D
with a freshness period s msec may still look “fresh” after n× s msec since
its departure from the producer, if D has traveled through more than n hops
and stayed at each hop close to s msec before being pulled to next forwarder.
However in practice, such cases are unlikely.

either previous or future key frame and delta frames using
exact data packet names. In our example metadata packet
(Figure 3), as soon as the consumer decodes its content, it
deduces that it fetched the first segment (sequence number 0)
of the latest key frame (key frame number 3). It also infers
that the latest generated delta frame is number 92, which is
the 6th delta frame generated for the latest key frame.3

At this point, the consumer knows: (a) the data generation
rate and the average number of segments per frame (this
information can be either published under the “session info”
namespace or be included in the metadata’s content by the
producer), (b) the approximate RTT to the producer, and (c) the
latest generated key and delta frame names. Therefore, the
consumer can estimate when the next delta and key frames
will be generated by the producer and decide when and
how many interests to express to effectively fetch all frame
segments, e.g., using the average number of segments per
frame from metadata and the measured RTT estimate. Note
that the metadata-based inference of when and which data
is generated allows consumers to synchronize their interest
transmissions accordingly, minimizing the number of interests
staying in routers’ PIT tables.

E. Baseline Example Scenario

To illustrate protocol operations, let us assume that the
NDN-RTC Producer in Figure 5 starts generating data at
time T = 1. After a few seconds (T = 2), Consumer 1
comes online. Given that Consumer 1 has no knowledge
about the exact name of the latest data, it sends a discovery
interest “/NDNcall/ndnrtc/user/Spyros/metadata” with the
“MustBeFresh” and “CanBePrefix” flags enabled, which is
forwarded to the producer (through forwarders C and E)
and fetches the producer’s metadata “/NDNcall/ndnrtc/user
/Spyros/metadata/0”.

Let us also assume that Consumer 2 and Consumer 3
come online around the same time at T = 3. Con-
sumer 2 starts first and expresses a discovery interest (again
with name “/NDNcall/ndnrtc/user/Spyros/metadata” and
“MustBeFresh” and “CanBePrefix” flags) that is forwarded to
the Producer through forwarders A, C, and E. At forwarders
C and E, the metadata retrieved by Consumer 1 might still be
cached, but because of 10 ms freshness period of the metadata
packet with version 0 (Figure 3), it does not satisfy the interest.
Therefore, the discovery interest from Consumer 2 will reach
the Producer and retrieve another version of the metadata
(“/NDNcall/ndnrtc/user/Spyros/metadata/1”). The discov-
ery interest of Consumer 3 will follow the path to the Producer
through forwarders C and E. This interest is either getting
aggregated with the interest from Consumer 1 or retrieves
metadata from CS of forwarder C as it would still be fresh
(i.e., within 10 ms since the arrival at forwarder C).

3We assume that for each key frame, 29 delta frames are generated, and
that the frame number for both key and delta frames starts from 0. Therefore,
93 delta frames have been generated in total (93 mod 29 = 6).



NDN

Consumer 1

Consumer 2

Producer

Consumer 3

Forwarder A Forwarder B

Forwarder C

Forwarder D

Forwarder E

Fig. 5. NDN-RTC Latest Data Discovery Example

IV. PRELIMINARY EVALUATION

In this section, we show preliminary evaluation of our
design through simulation-based study of a conceptual NDN-
RTC client/server,4 and a small-scale study of the prototype
NDN-RTC conferencing application.5 In our study we focused
on (a) delays between realtime data generation and retrieval
of data by consumers, (b) impact of different network delay,
and (c) effects of in-network caching on data retrieval.

A. Simulation Setup

For our simulation evaluation we use ndnSIM module for
NS-3 network simulator [11]. Given that the collection of
shortest path from all consumers to a producer forms a tree,
we use a simple 4-level tree topology with a conceptual NDN-
RTC producer at the root node and NDN-RTC consumers at
the leaves (Figure 6). All the other nodes in the topology act
as NDN forwarders. The NDN-RTC producer generates 30
frames per second, and each delta and key frame consists of
5 and 30 segments respectively. The “FreshnessPeriod” of
the metadata is set to 10 ms, and the metadata is generated
upon requests (i.e., every time that a discovery interest reaches
the producer). Each consumer has a random starting time in
the range 1-2 seconds from the beginning of the simulation
(Poisson distribution). The producer starts at time T = 0
seconds, and the simulation lasts for 30 seconds. We run our
experiment in 4 different scenarios (Table I) and run each
experiment 20 times.

Producer

Consumer 1 Consumer 2 Consumer 3 Consumer 4 Consumer 5 Consumer 6 Consumer 7 Consumer 8

Intermediate
Node 1

Intermediate
Node 3

Intermediate
Node 4

Intermediate
Node 5

Intermediate
Node 6

Intermediate
Node 2

Level 1

Level 2

Level 3

Level 4

Fig. 6. Simulation topology

4https://github.com/spirosmastorakis/ndn-rtc-simulations
5https://github.com/remap/ndnrtc

TABLE I
SIMULATION SCENARIOS

Scenario
Case Links Link Delay Scenario

1 All links 10ms All links are fast.

2
Level 1 - 2 10ms Producer links are fast.

Consumers’ link is slow.Level 2 - 3 10ms
Level 3 - 4 40ms

3
Level 1 - 2 40ms Producer links are slow.

Consumers’ link is fast.Level 2 - 3 10ms
Level 3 - 4 10ms

4
Level 1 - 2 40ms Producer and consumer

links are slow.Level 2 - 3 10ms
Level 3 - 4 40ms

B. Simulation Results
In Table II, we present the average and standard deviation

of the time between the generation of frames by the producer
and their retrieval by the consumers. The results show that our
design enables NDN-RTC consumers to fetch the generated
key and delta frames as soon as they are generated by the
producer, achieving retrieval times close to the ideal case (i.e.,
the network delay between the producer and the consumer,
which is equal to half of RTT). As we vary the link delay, the
time between frame generation and retrieval does not change
significantly. This demonstrates that our design provides an
effective mechanism for consumers to discover the latest
generated data in face of arbitrary network delays.

TABLE II
SIMULATIONS: AVERAGE AND STANDARD DEVIATION OF TIME BETWEEN

FRAME GENERATION BY THE PRODUCER AND RETRIEVAL BY THE
CONSUMER

Scenario
Case

Time between frame generation
by the producer and retrieval

by the consumer
ms RTTs

1 30.11± 0.03 0.50± 0.001
2 60.50± 0.09 0.50± 0.001
3 60.61± 0.11 0.50± 0.001
4 91.11± 0.27 0.51± 0.002

In Table III, we present the average and standard deviation
of the time between the generation of frames by the producer
and their retrieval by each consumer for a varying metadata
FreshnessPeriod (FP) value. The results show that when the
FP is greater than the producer’s generation period (which
is about 33 ms for NDN-RTC), and a consumer fetches
cached metadata, the retrieved metadata might contain stale
information (i.e., an older key/delta frame name). This can lead
to consumer lagging a few delta frames behind the producer.
For metadata with a short “FreshnessPeriod”, as presented in
Table II, the retrieval of cached metadata does not impact the
retrieval delay of realtime data.

C. Prototype Implementation Results
We integrated our design with the NDN-RTC prototype

implementation and reproduced the topology of Figure 6. For
rapid application deployment, we used docker [12] and de-
ployed one docker container per node. The producer generates

https://github.com/spirosmastorakis/ndn-rtc-simulations
https://github.com/remap/ndnrtc


TABLE III
SIMULATIONS: AVERAGE AND STANDARD DEVIATION OF TIME BETWEEN

FRAME GENERATION BY THE PRODUCER AND RETRIEVAL BY THE
CONSUMER

Scenario
Case

Time between frame generation
by the producer and retrieval

by the consumer
FP = 30ms FP = 60ms FP = 90ms

1 0.50± 0.002 0.52± 0.006 0.53± 0.009
2 0.51± 0.002 0.52± 0.006 0.54± 0.010
3 0.52± 0.003 0.53± 0.008 0.57± 0.012
4 0.52± 0.004 0.54± 0.008 0.57± 0.012

a 320x240 video (1 KB bitrate). The consumers randomly join
between the 1-2 seconds since the start of the experiment and
start fetching the video. We ran the experiment 10 times for
each scenario presented in Table I.

The results presented in Table IV show that the time
between the generation of frames by the producer and their
retrieval by the consumers is slightly higher than the time
indicated in the simulation results. We estimate that this
increase is mostly attributed to the processing delay added
by intermediate forwarders and applications, which is not
modeled in the simulation-based study. Overall, the prototype
implementation results follow the same trend as the simulation
results, and we verified that consumers fetch the frames as
soon as they are generated.

TABLE IV
PROTOTYPE IMPLEMENTATION: AVERAGE AND STANDARD DEVIATION OF

TIME BETWEEN FRAME GENERATION BY THE PRODUCER AND
RETRIEVAL BY THE CONSUMER

Scenario
Case

Average Measured
RTT

Time between frame generation
by the producer and retrieval

by the consumer
ms ms RTTs

1 62.86 32.69± 0.170 0.52± 0.010
2 84.13 43.75± 0.273 0.52± 0.012
3 83.64 44.33± 0.329 0.53± 0.014
4 182.03 100.12± 0.936 0.55± 0.017

V. CONCLUSION

In this paper, we presented the design of the Realtime Data
Retrieval (RDR) protocol which enables realtime applications
to discover the names of latest data production, without requir-
ing infrastructure service support or clock synchronization. In
concluding the paper, we step up a level to share our insights
in the solution development and to address a few questions
that have been raised repeatedly.

First, retrieving realtime data across a network full of
caches requires an effective means to limit the time that all
valid responses can stay in router caches as they cross the
network. RDR’s main advantages over server-based solutions,
e.g. [9], [10], include simplicity (no server/server configuration
needed), robustness, and NDN’s native scalability with the
number of receivers through multicast delivery and in-network
caching of metadata packets.

Second, RDR achieves its design goal by using two ex-
isting NDN protocol primitives: the “MustBeFresh” flag in

interest packets and the “FreshnessPeriod” of data packets. It
showcases the power of exploring the combination of protocol
features to achieve desired application functions.

Third, data producers may view “FreshnessPeriod” in their
data packets as an effective means to defend against overload.
If a producer application sets the “FreshnessPeriod” of an
outgoing data packet D to n seconds, it should not receive
another request for D from the same neighbor node within n
seconds, bar the case of caches running out of space.6

Finally, to answer a commonly asked question of whether
a data packet must be removed from cache when its freshness
period expires, we would like to point out that the lack of
freshness (staleness) is a different concept from obsoleteness.
A piece of stale data can still be useful to some applications.
On the other hand, if a cache becomes full, it is up to the
cache management policy to decide the preferences of data
removals.

As next step, we plan to explore the use of RDR to
serve other realtime applications running over NDN, such as
augmented reality [13], and to identify further improvement
of the protocol from different usage scenarios.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM Computer Communication Review, July 2014.

[2] NDN Team, “NDN Technical Memo: Naming Conventions,” NDN
Technical Report NDN-0022, 2014.

[3] P. Gusev and J. Burke, “NDN-RTC: Real-time videoconferencing over
Named Data Networking,” in Proc. of ACM ICN, 2015.

[4] A. Afanasyev, J. Shi et al., “NFD developer’s Guide,” NDN, Technical
Report NDN-0021, 2015.

[5] “NDN Packet Format Specification,” https://named-data.net/doc/ndn-
tlv/.

[6] A. Bergkvist, D. C. Burnett, C. Jennings, A. Narayanan, B. Aboba,
T. Brandstetter, and J.-I. Bruaroey, “WebRTC 1.0: Real-time communi-
cation between browsers,” Working draft, W3C, vol. 91, 2012.

[7] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart,
J. D. Thornton, and R. L. Braynard, “VoCCN: voice-over content-centric
networks,” in Proc. of Workshop on Re-architecting the internet, 2009.

[8] Z. Zhu, S. Wang, X. Yang, V. Jacobson, and L. Zhang, “ACT: audio
conference tool over Named Data Networking,” in Proc. of ACM
SIGCOMM Workshop on Information-Centric Networking, 2011.

[9] L. Zhang, S. O. Amin, and C. Westphal, “VR video conferencing over
Named Data Networks,” in Proc. of Workshop on Virtual Reality and
Augmented Reality Network, 2017.

[10] A. Jangam, R. Ravindran, A. Chakraborti, X. Wan, and G. Wang,
“Realtime multi-party video conferencing service over information cen-
tric network,” in Proc. of IEEE Conference on Multimedia & Expo
Workshops (ICMEW), 2015.

[11] S. Mastorakis, A. Afanasyev, and L. Zhang, “On the evolution of
ndnSIM: An open-source simulator for NDN experimentation,” ACM
SIGCOMM Computer Communication Review, 2017.

[12] “Docker Containers,” https://www.docker.com/what-docker.
[13] J. Burke, “Browsing an augmented reality with Named Data Network-

ing,” in Proc of ICCCN, 2017.

6It is important to choose an appropriate “FreshnessPeriod” value. Ideally,
it could be the time gap between the current data Dn and next data Dn+1

production (i.e., Dn is no longer considered fresh when Dn+1 comes).
However, given “FreshnessPeriod” is a per-hop metric (§III-C), one must
take into consideration the possibility of the same data packet being cached
at multiple hops. A sound engineering value could be something between
the inter-arrival gap of metadata interests that the producer can comfortably
handle and half of the time period to the next data production.


	Introduction
	Background & Prior Work
	NDN Overview
	NDN-RTC
	Prior Work

	Design
	Protocol Overview
	Packet Formats
	Producer Side
	Consumer Side
	Baseline Example Scenario

	Preliminary Evaluation
	Simulation Setup
	Simulation Results
	Prototype Implementation Results

	Conclusion
	References

