DoS and DDoS resiliency of NDN architecture

Alexander Afanasyev (UCLA), Ilya Moiseenko (UCLA), Lixia Zhang (UCLA), Ersin Uzun (PARC), Priya Mahadevan (PARC)

Motivation

- (Distributed) Denial of Service (DoS) attacks are significant threats to the current Internet
- NDN is fundamentally different than IP
 - No push: request needed for Data transmission
 - Interest/Data flow balance
 - Interest and data follow the same path
 - immediate feedback to routers
 - simple multi-path forwarding
- Most current (D)DoS attacks on IP are not applicable to NDN.
 - no spoofing or reflector attacks
 - not as easy to target a specific host
- New NDN-specific attacks?

Two major threats

- Content Poisoning:
 - Adversary introduces junk or fraudulent content
 - pollutes router caches and consumes bandwidth
 - invalid signatures or valid signatures by invalid producers
 - Not easy to implement: cannot unilaterally push content
 - there will likely be trust mechanisms to register namespaces, etc.

• Interest flooding:

- Adversary injects a large number of spurious interests
 - non-sensical distinct interests: not collapsible by routers
 - consumes PIT state in intervening routers as well as bandwidth
 - legitimate NDN traffic suffers...
- Easy to implement
- Current CCNx has no countermeasures

Current primary focus

Interest flooding attacks

- Why Interests can be used for DoS?
- Interests are unsolicited
 - each non-collapsible interest consumes state (distinct PIT entry) in intervening routers
 - Interests requesting distinct data cannot be collapsed
 - Interests routed towards data producer(s), thus can cause DoS at or near producer(s)
- Can such attacks be prevented?

- Unlike IP routers, NDN routers maintain rich state information that can be used to detect and react to interest flooding
 - don't accept more than can be served
 - try not to accept bad Interests

Exploring the solution space

Simulation-based small experimentations

- ndnSIM modular NDN simulator
 - http://ndnsim.net
- different scale topologies
 - binary trees (3, 31, 127 nodes)
- 10Mbps links
- propagation delays randomized from range 1-10ms
- no caching (worst case scenario)
- simple attacker model
 - sends targeted interests (common prefix) for nonexisting content
 - up to 25% attacker population
 - only client nodes can be malicious, routers are not compromised and fully cooperate
- Emulation-based verification of the simulator on DETER testbed
 - small-scale topology (3-node binary tree)
- Large scale simulations for promising mitigation techniques

Physical (bandwidth) limits

- Current CCNx code does not currently limit the PIT size, or the # of Pending interests for any interface
 - downstream can send more interests than physically possible to satisfy.
 - **NDN** architecture provides opportunities to set limits
- NDN has balanced flow between Interests & Data
 - number of Interests defines upper limit on Data packets
- The number of pending Interests to fully utilize a link with Data packets is:

Interest limit = delay(s)· avg Data packet size (Bytes)

The limit alone is not sufficient

- In small topologies, prevents attackers from injecting excessive # of interests
- Does not work in larger topologies
- as the number of hops between clients and producers increases, it becomes impossible to identify good and malicious Interests in the traffic mixture

Utilizing the state information

- Theoretically, NDN routers have all the information needed to be able to differentiate good Interests from malicious ones
 - to be most effective in DoS, malicious Interests need to be insuppressible and request nonexisting content
 - malicious interests ~ unsatisfiable
 - on the other hand, good Interests will likely be satisfied with a content packet
 - good interests ~ satisfiable
 - experimenters with more sophisticated attacker strategies are underway
- Keep per incoming interface, per prefix (FIB entry) interest satisfaction statistics in routers
- Use the statistics to detect and control malicious traffic

Weighted round-robin on Interest queues

Interest processing algorithm

- if (per-prefix/per-face) pending Interest limit is not reached
 - accept Interest and create PIT entry
- if limit is reached
 - "buffer" Interest in per-outgoing face/prefix queue (within per-incoming face sub-queue)
 - set weight for per-incoming face sub-queue proportional to observed interest satisfaction ratio
- when new PIT slot becomes available
- accept and create PIT entry for an Interest from queues based on weighted round robin sampling
- Performance: subpar
 - more fair sharing of resources
 - not effective at differentiating bad and good traffic (no-cache scenario)
 - setting queue sizes and lifetime can get tricky
 - will most likely improve if supplemented with NACKS (under investigation)

Interest processing algorithm

- "accept" if the outgoing face is utilized under a threshold
- otherwise, accept with probability proportional to the satisfaction ratio on this face
- even if satisfaction ratio is 0: "accept" with a low ("probe") probability
- All "accepted" Interests are still subject to (per-prefix/per-face) pending Interest limit

Performance: reasonable

accurate statistics)

 parameter selection is important but may not be easy due to topology variances. may result in link under-utilization

might perform better with NACKs (more

Dynamic Interest limit adjustments

Incorporate "active" PIT management

- Limit # of pending Interests per incoming face periodically for every FIB prefix for all faces announce limit for # of pending Interests proportional to the satisfaction ratio
- Do not over-limit
 - the sum of all announced limits is at least equal to the sum of output limits

Performance: effective on all tested topologies

- Does not require much parameter tweaking
- limit announce period
- statistics averaging and time-decaying factors
- Optimization possible to reduce control overhead announce only when limits change

Large scale experimental setup

Probabilistic Interest acceptance

- Rocketfuel Sprint topology (and others in future e.g. ATT)
- Only adjacency = no link characteristics info
- Extract
 - 535 backbone routers
 - 3339 gateway routers
 - 3463 customer routers
- Realistic topology approximation Backbone <-> Backbone links are 100Mb with 70ms delay
 - Backbone <-> Gateways links are 10Mb with 20ms delay

Gateway <-> Customer links are 1Mb with 20ms delay

5% of malicious clients Sprint is 7337 routers and 10 000 links

