NDNS: scalable and distributed name mapping service for NDN

Alexander Afanasyev, Yingdi Yu, Lixia Zhang

Internet Research Laboratory

Overview

- Similarly to DNS in IP architecture, DNS in NDN can be used as a distribute database to store various types of information.
- DNS in NDN can be utilized to
 - manage NDN namespace (i.e., provide an authoritative delegation of specific namespaces to specific organizations),
 - provide storage and lookup service for public key management similarly to DNSSEC and DANE
 - in many other solutions
- Design principles
 - DNS has been working well enough over last 25 years
 - Unless it is proven necessary, the existing DNS design should be kept intact, with minimal modification to adapt the system to communication primitives (Interest-Data) provided by Named Data Networking architecture

Use case: Interest forwarding scalability problem

- NDN is data-centric with names that are generally not tied to any provider
- Number of such names is almost innumerable
 - over 200 million 2nd-level DNS names
 - number of application names several orders of magnitude larger, if not infinite
 - assuming FIB-based Interest forwarding in NDN even with all aggregation possible using hierarchical names, it could be way too many names
- Forwarding alias in NDN is the same map'n'encap approach proposed many years back to scale IP routing
 - hint for NDN routers of a direction where the requested application data can be located
 - can be mapped from the data name using DNS system, the same way domain names are mapped to IP addresses

Scaling Interest forwarding with map'n'encap approach

General map'n'encap idea

- Core of the Internet maintains default-free zone (DFZ)
 - every ISP (dedicated ISP's address) has a route in DFZ
- Customer networks
 - prefixes for all internal networks and servers
 - default route to DFZ
- When sending packets between customer networks
 - map destination address to ISP address
 - encapsulate original packet inside a new packet with ISP address

Applying map'n'encap in NDN

- All NDN names are applications names
 - small number of them are directly routable world-wide
 - most of them routable only inside ISP networks
- Globally routable names
 - scalable DFZ FIBs contain only top-level ISP and large content provider's
 - FIBs in ISPs may contain more specific location-dependent names
 - In ATT network, there could be /net/att/europe and /net/att/northamerica
- Routable only inside ISP networks
 - Example applications names:
 - /com/cnn/news/2013-01-14 /org/wikipedia/NDN
 - ISPs and content providers can forward Interests based on application names
 - In ATT: /com/cnn, /com/ndnsim, /org/wikipedia
 - In Google: /com/google/youtube

Example of IP map'n'encap: dual-homed ndnsim.net server ndnsim.net 1.1.1.1 2.2.2.0/24 **UCLA CS** 1.1.1.0/24 Customer's 2.0.0.0/8 1.0.0.0/8 FIB: 3.0.0.0/8 5.0.0.0/8 4.0.0.0/8 5.0.0.0/8 CENIC FIB: 3.0.0.0/8 3.0.0.0/8

Naming for NDN-DNS queries

Encapsulating in NDN

Forwarding hint

- Carried in Interest packets
- Used by routers in forwarding, if content name is unknown

- Interest forwarded only if /net/ ndnsim/www is known
- Discarded otherwise

Forwarded toward /edu/ucla/ cs if /net/ndnsim/www is unknown

Mapping in NDN

NDN-DNS lookup

- Two types of queries
 - iterative queries by caching resolvers
 - recursive queries by end clients
- New record record (RR) type
 - mnemonic: FH

FH data:

ID: 65429 (0xFF95)

wire format: NDN name in ccnb encoding

text format: URI-encoded NDN name

priority: the lower priority should be tried first

weight: probability of selection is proportional to the weight

Iterative query

- Interest – Name: /dns/<domain_name>/<rr_type>
- Forwarding Hint: /<DFZ-prefix>
- Data
 - Name: /dns/<domain_name>/<rr_type> Signature: signature of the auth DNS server
 - Content: RFC1035 formatted RR packet

Recursive query

Interest

– Name: /<scope>/dns-r/<domain_name>/<rr_type> • Optional <scope> to select specific caching resolver, if wanted

Data

– Name: /<scope>/dns-r/<domain_name>/<rr_type>

Signature: signature of the caching resolver

Name: /dns/net/ndnsim/FH Content: encapsulated data from the auth DNS server

lame: /dns-r/net/ndnsim/FH

Name: /dns/net/ndnsim/FH

ndnsim.net. IN FH 00/edu/ucla.edu

ndnsim.net. IN FH 10 0 /net/telia/latvia

Name: /dns-r/net/ndnsim/FH

Hint: /net/telia/latvia

lame: /dns/net/ndnsim/FH

Content:

: answer

Content

Interest

ContentObie

encapsulated ContentObject

4.0.0.0/8

NDN-DNS server roles

NDN-DNS lookup

Example of NDN-DNS lookup for ndnsim.net

remote DNS servers

any NDN router on the path