
NDN ON RIOT-OS
{ WENTAO SHANG, ALEX AFANASYEV, AND LIXIA ZHANG } UCLA

MOTIVATION
• Named Data Networking (NDN) has shown

great potential in supporting network applica-
tions in the IoT environments [1].

• The goal of this project is to bring NDN proto-
col support to the constrained IoT devices with
100s of KB memory and low-power CPU.

• We build on top of a popular IoT software plat-
form called RIOT-OS [2].

RIOT-OS FEATURES

• Common OS abstraction across multiple plat-
forms (ARM, Arduino, MSP430)

• Multi-threading + IPC
• Custom network stack
• C/C++ programming environment
• Standard build tools (gcc, make)
• Simulator for testing on Linux PCs

REFERENCES

[1] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu,
A. Afanasyev, J. Thompson, J. Burke, B. Zhang,
and L. Zhang. Named Data Networking of
Things. In Proceedings of 1st IEEE International Con-
ference on Internet-of-Things Design and Implementa-
tion (IoTDI’2016). (Invited paper).

[2] RIOT - The friendly Operating System for the Inter-
net of Things. http://www.riot-os.org/.

SOURCE CODE
The source code of this work is available at
https://github.com/wentaoshang/RIOT/
tree/ndn/. It is currently released under LGPL
v2.1, the same license used by RIOT-OS itself.

ACKNOWLEDGMENT
This work has been supported by the National
Science Foundation under award CNS-1345318,
CNS-1345142, CNS-1455794, and CNS-1455850.

SYSTEM DESIGN

Hardware

OS core

Threads

CPU Timer Net Device

Sched IPC Soft_IRQ

APP NDN
Net

Device
Driver

IPC IPC

Software architecture of NDN on RIOT-OS

The NDN protocol is implemented as a kernel thread.
The IPC channel is used for:

• Passing NDN packets from & to APP and network
device driver threads

• Sending configuration commands (e.g., add faces,
register prefixes)

Currently implemented features:

• Basic packet forwarding logic (PIT, FIB, CS)
• Support for Ethernet and 802.15.4
• Memory efficient packet encoding & decoding
• HMAC-SHA256 data signing and verification

APPLICATION INTERFACE
The NDN code on RIOT-OS is C99-compatible.

Object Interface

Name ndn_name_from_uri, ndn_name_append,
ndn_name_print, ndn_name_compare_block,
ndn_name_get_component_from_block

Interest ndn_interest_create,
ndn_interest_get_name,
ndn_interest_get_nonce,
ndn_interest_get_lifetime

Data ndn_data_create, ndn_data_get_name,
ndn_data_get_content,
ndn_data_get_metainfo,
ndn_data_verify_signature

APP Handle ndn_app_create, ndn_app_run,
ndn_app_destroy, ndn_app_schedule,
ndn_app_express_interest,
ndn_app_register_prefix,
ndn_app_put_data

List of API for NDN APP on RIOT-OS

Simple NDN consumer on RIOT-OS

DEMO APPLICATION: NDN-PING

This demo application shows two RIOT-OS nodes
running NDN-Ping client and servers respectively
in a emulated network environment on a Ubuntu
15.10 machine. NDN packets are sent over Ether-
net directly.

Client Server
Interest

Data

Ethernet

Emulated testbed NDN-Ping client

NDN-Ping server Tcpdump output of network packets

text data bss dec hex file name

39636 228 11204 51068 c77c ndn_ping.elf

Code size & static memory usage (compiled for SAM R21 IoT board)

LIMITATIONS & FUTURE WORK

• Currently the code is only tested in emulated
environments. The next step is to try it out
on a real IoT device.

• The current implementation does not have
routing support or FIB/RIB management.
An interesting research direction is to pro-
vide routing functionality for constrained

NDN-IoT networks.
• The current implementation does not in-

clude advanced NDN features such as for-
warding strategies or cache management
policies. It is yet unclear whether it is nec-
essary to support those features on con-
strained devices.


