
VectorSync: Distributed Dataset Synchronization over Named
Data Networking

Wentao Shang
UCLA

wentao@cs.ucla.edu

Alexander Afanasyev
Florida International University

aa@cs.fiu.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
Distributed dataset synchronization (sync for short) provides an
important abstraction for multi-party data-centric communication
in the Named Data Networking (NDN) architecture. Since the be-
ginning of the NDN project, several sync protocols have been devel-
oped, each made its own design choices that cause inefficiency un-
der various conditions. Furthermore, none of them provides group
membership management, making it difficult to remove departed
nodes from the protocol state maintained at each node. This poster
presents VectorSync, a new NDN sync protocol that is built upon
the lessons learned so far, provides groupmembership management,
and improves the efficiency of dataset synchronization.

CCS CONCEPTS
• Networks → Network protocol design;

KEYWORDS
Named Data Networking, Distributed dataset synchronization
ACM Reference Format:
Wentao Shang, Alexander Afanasyev, and Lixia Zhang. 2017. VectorSync:
Distributed Dataset Synchronization over Named Data Networking. In
Proceedings of ICN ’17, Berlin, Germany, September 26–28, 2017, 2 pages.
https://doi.org/10.1145/3125719.3132106

1 INTRODUCTION
The proposed Named Data Networking (NDN) architecture [5]
replaces the host-oriented communication model in TCP/IP with
a data-centric one. At its network layer, NDN employs a basic
Interest-Data exchange primitive to provide best-effort retrieval of
individual named and secured data objects. While this simple yet
powerful primitive significantly narrows the semantic gap between
the application layer and the network layer, it remains cumbersome
to use directly by applications. Early on in the NDN research effort,
we identified sync as an important abstraction to simplify the devel-
opment of distributed applications over NDN. Essentially, one may
view sync as playing a transport layer role in the NDN architecture
that bridges the gap between the functionality required by appli-
cations and the delivery semantics offered by network primitives,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICN ’17, September 26–28, 2017, Berlin, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5122-5/17/09. . . $15.00
https://doi.org/10.1145/3125719.3132106

…
/ucla/alice/14
/ucla/alice/15

…
/ucla/bob/78
/ucla/bob/79
/ucla/bob/80

…
/att/ted/112
/att/ted/113
/att/ted/114

Shared
Dataset

/ucla/alice: 15 /ucla/bob: 80 /att/ted: 114
Version
Vector

[15, 80, 114]
0: /ucla/alice
1: /ucla/bob
2: /att/ted

Membership info

State
Vector

Figure 1: Representing the dataset with a state vector

similar to the role TCP plays in bridging the gap between applica-
tions’ need for reliable data delivery and IP’s datagram service.

Several sync protocols have been developed for the NDN ar-
chitecture, each having its own design trade-offs that affect the
performance under various conditions (see Table 1). In this poster
we present the design and implementation of VectorSync, a new
NDN sync protocol that integrates a leader-based group membership
management to synchronize the view of the current group member-
ship among the active participants while nodes join and leave the
group over time. Maintaining the group membership information at
the sync layer facilitates data authentication and access control and
improves the sync protocol efficiency by removing the departed
nodes from the protocol state.

2 PROTOCOL DESIGN
The design of VectorSync consists of two interdependent compo-
nents: a dataset state synchronization mechanism for maintaining
a consistent state of the shared dataset, and a group membership
synchronization mechanism for maintaining a consistent view of
the current group members.

Similar to ChronoSync [6], VectorSync adopts a sequential data
naming convention of each node naming its data under a unique
publishing prefix with continuous sequence numbers. This enables
VectorSync to represent the state of the shared dataset efficiently
using a version vector [2] (called state vector) that contains the
latest data sequence number from each producer in the group.
The order of the producers in the version vector follows the group
membership list, where the producers are ordered canonically based
on their prefixes. Therefore, the producers’ data prefixes can be
omitted from the state vector, minimizing the cost of transmitting
the full vector over the network. Figure 1 illustrates an example of
the state vector representing the namespace of a dataset with three
producers.

192

https://doi.org/10.1145/3125719.3132106
https://doi.org/10.1145/3125719.3132106

ICN ’17, September 26–28, 2017, Berlin, Germany Wentao Shang, Alexander Afanasyev, and Lixia Zhang

Table 1: Design comparison between VectorSync and existing sync protocols

Sync state
representation

Interest frequency Factors affecting
Interest size

Min data dissemination
delay

CCNx Sync [3] Name tree (large) Periodic Node hash Depending on Interest
period + tree walk

iSync [1] IBF (large) Periodic IBF digest Depending on Interest
period + 3.5 RTT

ChronoSync [6] “prefix:seq#” list (small) Long-lived Interest State digest (with
exclude filter)

1.5 RTT (+ additional RTT
to fetch simultaneous data)

VectorSync State vector (small) One per data (with
heartbeat)

View ID + data
name

1.5 RTT

Ted

Bob

1. Notification Interest:
/group1/…/ucla/alice/15

2. Reply

2. Reply

3. In
terest:

/ucla/alice/app1/15

3. Interest:/ucla/alice/app1/15

4. Node Data:
/ucla/alice/app1/15,

state vector = [15, 80, 114]

Alice

Seq# = 15

Seq# = 80

Seq# = 114

Figure 2: Publishing new data in the group

When a new data item is published, VectorSync uses a notifica-
tion Interest to announce the name of the new data so that others
can fetch the data immediately upon receiving the notification.
The data carries the state vector of the producer at the time of the
data’s production; this full vector allows each receiving node to
detect and reconcile inconsistency caused by various factors such
as packet loss and network partition. Upon receiving the data, a
node updates its local vector with the entry-wise maximum of the
local and received vectors. An entry in the received vector with a
higher sequence number than in the local one indicates missing
data in the shared dataset. Figure 2 shows an example of a new data
production and dissemination process in a group of three parties.

VectorSync utilizes a leader-based protocol to maintain a consis-
tent view of the group membership among the participants. Each
view is identified by a monotonically increasing view number and
the leader’s data prefix (to disambiguate multiple views with the
same number during group partition). To maintain its member-
ship, a node periodically publishes heartbeat packets in the shared
dataset to assert its existence. The node with the highest-ordered
prefix among the existing nodes is selected as the leader and mon-
itors the heartbeats of each group member. When a node joins
or leaves the group, the leader increments the view number and
publishes its knowledge of the group membership in a Data packet
(called ViewInfo packet) under the name “/[group-prefix]/vinfo
/[view-number]/[leader-prefix]”.

A notification Interest name carries the view identifier (i.e., leader
prefix plus view number) of the producer’s current view. Upon re-
ceiving a notification Interest with a higher view number, a node
will fetch the corresponding ViewInfo and adjust the state vec-
tor by adding and/or removing the entries according to the new

membership list. If multiple views (i.e., subgroups) are created by dif-
ferent leaders due to network partition, the leader with the highest-
ordered prefix is responsible for merging those views and creating
a new view that contains the members from all previous views.

VectorSync requires all participants to obtain a public key cer-
tificate from the application-defined trust anchor before joining
the sync group. After verifying the certificates, the leader may put
the members’ public keys together with their data prefixes in the
ViewInfo packet, making a certificate bundle for the current view.
The group members can directly use the public keys in the ViewInfo
packet to authenticate the data published in the shared dataset. To
achieve access control, the leader may periodically generate a sym-
metric data encryption key and distribute the key to every node on
the membership list [4].

3 CONCLUSION AND FUTUREWORK
Leveraging the lessons learned from our previous efforts, Vec-
torSync represents our latest result from pursuing an effective and
efficient sync protocol. It utilizes version vectors to reconcile the
state of the shared dataset and supports group membership man-
agement. Table 1 compares VectorSync with a few previous sync
protocols on several key design aspects. Our plan for next step is
to conduct extensive evaluation of VectorSync through large-scale
simulations and to integrate VectorSync with real-world applica-
tions to demonstrate its utility.

ACKNOWLEDGMENT
This work is partially supported by the National Science Foundation
under awards CNS-1345318, CNS-1629922, and CNS-1719403.

REFERENCES
[1] Wenliang Fu, H. Ben Abraham, and P. Crowley. 2015. Synchronizing Names-

paces with Invertible Bloom Filters. In ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS). 123–134.

[2] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton, J. M.
Chow, D. Edwards, S. Kiser, and C. Kline. 1983. Detection of Mutual Inconsistency
in Distributed Systems. IEEE Transactions on Software Engineering SE-9, 3 (1983).

[3] ProjectCCNx. 2012. CCNx Synchronization Protocol. CCNx 0.8.2 documentation.
(2012).

[4] Yingdi Yu, Alexander Afanasyev, and Lixia Zhang. 2016. Name-Based Access
Control. Technical Report NDN-0034, Revision 2. NDN Project.

[5] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. ACM Computer Communication Review 44, 3 (July 2014).

[6] Zhenkai Zhu and Alexander Afanasyev. 2013. Let’s ChronoSync: Decentralized
Dataset State Synchronization in Named Data Networking. In Proc. of IEEE
International Conference on Network Protocols (ICNP).

193

	Abstract
	1 Introduction
	2 Protocol Design
	3 Conclusion and Future Work
	References

