
c© 2015 IEEE. This is author’s version of this work. It is posted here by permission of IEEE for you personal use. Not for
redistribution. The definitive version was published in the proceedings of 1st IEEE International Conference on Internet-of-
Things Design and Implementation (IoTDI), 2016.

Named Data Networking of Things (Invited Paper)
Wentao Shang∗, Adeola Bannis†, Teng Liang‡, Zhehao Wang§, Yingdi Yu∗,

Alexander Afanasyev∗, Jeff Thompson§, Jeff Burke§, Beichuan Zhang‡, and Lixia Zhang∗
∗UCLA Internet Research Laboratory

†Carnegie Mellon University, Silicon Valley
‡Dept. of Computer Science, University of Arizona

§UCLA Center for Research in Engineering, Media and Performance

Abstract—The Internet of Things (IoT) is a vision for intercon-
necting all of the world’s “things”—from vehicles to diet scales,
smart homes and electrical grids—through a common set of
networking technologies. Realizing this vision using a host-to-host
communication paradigm, such as that of the Internet Protocol
(IP), is challenging in the context of highly heterogeneous,
constrained devices that connect intermittently to one or more
networks, often using multiple interfaces; communicate within
various security regimes; and require both local and global
communication capability. Using IP and similar protocols as the
narrow waist of interoperability for IoT requires managing data
exchange and security in terms that are largely orthogonal to
application semantics, while simultaneously needing to minimize
resource usage. This paper explores how Named Data Network-
ing (NDN), a proposed future Internet architecture, addresses
the root causes of these challenges and can help achieve the
IoT vision in a more secure, straightforward, and innovation-
friendly manner. NDN’s data-centric communication model aligns
network and application semantics, enabling developers to work
with “things” and their data directly, and for IoT networks to be
deployed and configured easily. To substantiate the high-level dis-
cussion, we give examples of ongoing design and implementation
work in IoT over NDN and compare the architecture to well-
known existing protocols and frameworks. Finally, we discuss
short- and long-term scenarios for employing NDN to enable the
Internet of Things.

I. INTRODUCTION

The Internet of Things (IoT) vision, taken broadly, proposes
to interconnect things of all kinds by leveraging the prolifera-
tion of increasingly small and affordable embedded devices for
processing, sensing, actuation, and wireless communication.
The global realization of this vision will easily exceed the
scale of devices and data objects found in the current Internet
by orders of magnitude [1].

The roll-out of IoT faces two fundamental and often con-
flated challenges. The first is how to enable all different
types of digital devices that provide IoT functionality to
communicate locally and globally. The second is how to
consistently, securely communicate the data associated with
the things themselves, once connectivity is achieved. The latter
is the heart of the IoT vision, providing access to everything
from door lock status and lighting levels in home automation
to the flow of water measured by a municipal meter in a
smart city, an individual’s blood-glucose level, and the soil
pH measured across a field by a truck-mounted sensor. Once
this data can be retrieved in a secure and consistent manner, a

whole host of exciting applications and research opportunities
become achievable [2].

Current IoT frameworks, discussed in Section V, focus
on interconnecting devices, primarily addressing the first
challenge. Building up from the host-to-host communication
paradigm of the Internet Protocol (IP), these frameworks
conflate the embedded devices with their associated real-
world things at the network level. They tend to emphasize
solutions for device-to-device connectivity and then meet
the applications’ need of accessing the associated real-world
data through a series of mappings. To fetch data about a
thing itself, a typical application process, or a stack on its
behalf, may have to traverse a long series of mappings among
interface addresses, devices, channels, and subnetworks, each
of which must be secured. Such mappings add complexity and
brittleness to what are often simple communications of sensor
data, actuation commands, and configuration operations. For
example, consider a light (a thing). To control its intensity
in a contemporary building control system, an application
must be able to get packets to the appropriate VLAN and
IP subnet, as well as know the lighting gateway device’s IP
address and protocol, before dealing with the light itself via an
application-level identifier. While consumer devices have made
this easier, often allowing web-based control over devices on
home wireless networks, they do so by making assumptions
about such mappings—for example, that all devices are on
the same subnet—or rely on cloud services to achieve what is
essentially local communication.

In this paper, we discuss how Named Data Networking
(NDN) can be applied to improve and simplify such IoT
communication. NDN is a proposed future Internet architec-
ture that is a prominent example within the broader field of
Information Centric Networking (ICN).1 NDN fundamentally
shifts the network communication model from host-centric to
data-centric. Instead of sending packets between source and
destination devices identified by numeric IP addresses, NDN
disseminates named data at the network level, forwarding
directly on names that carry application semantics. Moreover,
each packet in NDN is secured at the time of production,
allowing data replication anywhere in the network and pre-
serving security properties of the data over its lifetime. NDN

1For more information on NDN, see [3], [4] and the project website,
http://named-data.net. Given space constraints, we do not compare NDN with
other ICN architectures here; see [5] for a recent survey.

enables applications to name the things of IoT, like the light in
the above example, and have the network forward related data
using those names directly. It enables both IoT applications
and network infrastructure to operate with simpler, more
consistent semantics, less brittleness, and increased security.

II. EXAMPLE USE CASES

To illustrate the challenges of IoT and benefits of NDN, in
the rest of the paper we use three (of many) representative use
cases.

To create smart homes, IoT technologies have been widely
integrated to monitor and control the environment of individual
homes. Products like smart thermostats, smoke detectors, se-
curity cameras [6]; wireless light switches [7]; and intelligent
door locks [8] have been introduced to the consumer market
in recent years. In many cases, these devices allow remote
monitoring and control using smartphones or computers from
anywhere in the world.

New personal health and wellness applications leverage
very small systems on chips (SoCs) that can fit into wear-
able devices, applying machine learning to reveal personally
meaningful patterns in the data that they gather. For example,
smart wristbands and watches [9], [10], [11] have long been
available on the consumer electronics market. Such personal
health devices embed multiple sensors to monitor a user’s
physical activity, body temperature, and heart rate, which
are reported to the user’s smartphone via Bluetooth LE or
similar wireless technologies. In many cases, personal data is
uploaded to cloud-hosted data warehouses for further analysis
by software and/or human professionals.

The precision agriculture industry is applying IoT tech-
nology to improve productivity and yield. Applications in
this domain demonstrate tight integration of IoT and machine
learning technologies, where the IoT sensors generate a large
amount of data that is fed into analytics frameworks for
processing. For example, Fujitsu has partnered with Microsoft
to use IoT devices to control greenhouses for improving
the quality and yield of lettuce production [12]. Another
interesting example is the HealthyCow24 solution from SCR
Dairy [13], [14] that allows farmers to install motion sensors
and microphones on cows to monitor their health and activity.
HealthyCow24 applies machine learning algorithms to detect
when a cow needs medical attention, and to select the best
breeding opportunities to improve milk production.

Many such application examples use a model of request-
response for named data, an approach that is similar to what
NDN offers at the network layer. For controlling smart build-
ings, the Building Operating System Services project [15],
uses hierarchical human-readable names to address devices.
Open mHealth [16] makes consistently described data the “thin
waist” of interoperability within an open ecosystem for health
and wellness applications. To manage data from the mandatory
RFID tags on Australian cattle, in [17] researchers employed
the Global Sensor Network middleware [18], which imple-
ments a request-response pattern using REST over HTTP.

III. IOT CHALLENGES

The IoT vision is broad and faces many challenges. This
paper focuses on the significant networking challenges unmet
by current IP-dependent solutions and other approaches that
focus on host-to-host communication. IoT devices are funda-
mentally different from devices successfully networked with
IP in the past such as mainframes, desktops, and laptops. They
often have a constrained power budget, in many cases are mo-
bile, have limited computational resources, operate in adverse
environments—embedded in buildings and objects, buried, or
immersed—and perhaps with intermittent connectivity. IoT
networking are likely to employ multiple communication tech-
nologies simultaneously, each with different scope, security
properties, and costs, such as cellular, WiFi, and low-power
radios, USB, and serial links. They also may have minimal or
non-existent user interfaces, limiting how users may participate
in bootstrapping and configuration. These properties influence
the following specific networking challenges. Additional in-
depth discussion of challenges for IoT over TCP/IP, in com-
parison with NDN, can be found in [19].

A. Complex Solutions to Simple Communication Needs

Many envisioned IoT applications center around simple
operations of fetching data and controlling actuation, with
analytics in between. However, two innate characteristics of
IoT, described above, lead to complex solutions for even basic
communication over IP: communication technology diversity
and resource constraints.

For example, diverse things make up a given smart home,
agricultural field deployment, or body area network. Each
device that provides things with connectivity may have various
radios, wired interfaces, and serial links, all with their own
addressing scheme, IP subnet, and mapping between network-
layer packets and application-layer messages. To provide ac-
cess to the things by integrating all of these elements requires
either 1) local, application-level middleware to manage inter-
operability, or 2) pushing all data to cloud services, which we
discuss in the next sections below.

IoT middleware and framework developers have the unenvi-
able task of handling the collection and republication of data
from a wide variety of devices and services. They have tended
to standardize around simple, request-response APIs for named
data that resembles examples throughout this paper. However,
to provide this, they must configure and maintain mappings
from interfaces to devices, and further to the intended named
data and control points relating to the things themselves.
Essentially, an overlay must be created that can deal with a
wide variety of underlying communication technologies, all
using the TCP/IP suite of protocols, or modified versions that
fit the resource constraints of IoT. Simply managing IP and
port address assignments is not enough; in more complex
scenarios, a Layer 2 configuration must be created in parallel
to ensure traffic flows among heterogeneous subnets. Typically,
such configuration is done outside the middleware and creates
a complex set of interrelated but independently managed
elements. Security requirements further complicate the picture.

Maintaining such an overlay, however lightweight, on top
of host-to-host communication is made even more challeng-
ing when available devices, interfaces, and channels change
dynamically. Managing changes is likely to be resource-
intensive, conflicting with the second characteristic of IoT
environments discussed above. Further, in each of our use
cases described in Section II, networks of things are put
together by people who are not network experts. Complexity
impacts usability, and thus the innovation attempted in new
products in these target markets.

In summary, a significant amount of effort is expended
in current systems just to get devices to be able to com-
municate by using the existing protocol suite, before one
can even work with the things themselves. If this first step
could be simplified and made robust to dynamically changing
network environments, it would be a fundamental enabler
for an Internet of Things, rather than a set of vertically
integrated application ecosystems. NDN’s proposal is to start
with a secure request-response primitive as the thin waist
of networking, as described in Section IV, building up IoT
functionality using this primitive, as discussed in Section VI.

B. Limitations of Channel- and Session-based Security

The umbrella of IoT includes security-sensitive applications,
with implications from personal privacy (e.g., health mon-
itoring) and safety (home security) to vandalism (precision
agriculture) and corporate espionage. While unsecured IoT
networks are not an option, the security approaches used in
common Internet applications are not a good fit for IoT. As
discussed above, many emerging solutions coordinate device
communication through cloud services to also centralize the
security problem, although this does not realize the vision
of interconnected ecosystems of loosely coupled devices that
make up IoT—including the model of “fog computing” models
[20] that distribute computation to the edge. Even those that
emphasize local communication typically employ session- and
channel-based semantics, such as in DTLS and its variants
[21], that emerge from the TCP/IP paradigm of host-to-host
communications [22]. These approaches are brittle in IoT
environments made up of heterogeneous devices, overlapping
networks with different administrative domains, and intermit-
tent connectivity via multiple communication channels per
device.

A simple example that illustrates the above concerns is
HealthyCow24, which communicates over several interface
types, including low-power low-rate wireless, Ethernet, USB,
and RS232 serial port communication. Performing similar data
acquisition and control tasks over each of the interfaces re-
quires different networking stacks: power-aware delay-tolerant
communication over low-power wireless, IP for Ethernet, file-
based access for USB, custom protocol for RS232. Each stack
has different security solutions, if any at all.

Further, securing a channel or session between devices does
not tackle how to express identity (of a thing) beyond the
addresses of devices, manage the provenance of data, express
trust relationships among communicating elements, or handle

key distribution itself—all of which are required for a robust
Internet of Things [23].

Section IV-B explains how NDN secures data independently
from communication channels, and Sections VI-C and VI-D
explain how this building block can be used to manage trust
and achieve data confidentiality.

C. Poor Integration of Local Communication

Local communication is at the heart of many IoT appli-
cations that require cooperation of colocated devices, a key
part of the IoT vision [1]. The network layer is responsible
for providing efficient support for direct communication be-
tween nearby IoT nodes, possibly leveraging local broadcast
media, such as wireless, LANs, and multi-drop serial. Unfortu-
nately, today’s IP-based solutions face significant limitations in
achieving application-level support, network-layer efficiency,
and secure accessibility of local networks.

First, application support for local communication often
requires bootstrapping from DNS and middleware to bridge
the gap between application-level names and network-layer
addresses. Second, applications and middleware that are built
on IP’s host-to-host communication model do not leverage
the broadcast nature of wireless media typically used for IoT
communications. Systems must either be carefully configured
to leverage multicast over a constrained radio link, or more
likely to use a unicast paradigm over broadcast channels,
resulting in brittleness in the configuration if any one host
changes its participation in those unicast communications.
Finally, typical IoT environments involve multiple overlapping
local communication domains—e.g., one for each wireless
and wired medium—which require orchestration of Layer 2
bridges and configuration of IP subnets. Scoping of commu-
nication must be done either at the application layer or through
the use of VLANs, subnets, and similar techniques.

While some IoT solutions using a host-to-host approach to
communication may successfully tackle the above challenge
for a particular network or device type, e.g., a local subnetwork
of Zigbee devices or a consumer product that accesses cloud
services by an end-user’s WiFi, the vision of an integrated,
interoperable ecosystem that involves local devices and com-
putation as well as cloud services appears difficult to realize
over current protocols like IP.

Section VI-B gives an example of how NDN can leverage
local connectivity for bootstrapping, and Section VI-H dis-
cusses how NDN helps achieve the integration between local
and global communications.

IV. APPLYING THE NDN ARCHITECTURE
TO THE INTERNET OF THINGS

In this section, we describe the core NDN architecture, with
a focus on how it can be applied to IoT environments to
address the aforementioned challenges.

A. Basic Protocol: Named Data Retrieval

Named Data Networking (NDN) [3], [4] makes request-
response for secured, application-named Data packets the

fundamental model of the network architecture—the “thin
waist” of communication. Consumers request data by sending
Interest packets that include names (or name prefixes) of
the desired data, and the NDN network uses the names
to retrieve the requested data. NDN names follow a hi-
erarchical structure. Components can define the scope of
the data (“/LivingRoom”), in order to properly forward re-
quests. They can describe application-specific semantics (“..
./Temperature”). And, they can supply unique identifiers for
specific versions or instances (“.../201601121334”). For ex-
ample, in the smart home environment, a heating, ventilation,
and air conditioning (HVAC) controller may issue requests—
Interest packets in NDN—for “/LivingRoom/Temperature”
data, requesting the current temperature measurement from
the thermometer located in the same room. One of the
thermometers in the room can respond to this request with
a signed Data packet whose name extends the name in the
Interest with a timestamp component “201601121334” for the
specific data reading. After HVAC receives the response, it can
verify that the data was created by an authorized thermometer
and, if needed, take appropriate actions to adjust the room
temperature.

The pattern of retrieving named data naturally matches the
semantics of IoT applications. Section VI-A discusses specific
approaches to naming for IoT in more detail. In monitoring
and measurement applications, clients can use the Interest-
Data exchange primitive to retrieve named sensor data over the
NDN network. In actuation applications, controllers can use
Interests to express the actuation commands, with the Interest
names identifying the object and what needs to be done to the
object, e.g., “/LivingRoom/Lighting/OFF”. This way, without
explicitly identifying the specific device, the command can
be executed by the proper actuation unit, e.g., a floor lamp,
that corresponds to the thing identified in the name. Such a
command Interest carries information to authenticate the issuer
of the command, and the response, a Data packet confirming
the execution of the command, includes identification and
authentication information of the specific actuation unit. In
Section VII-D we discuss in more detail our previous work on
authenticated actuation [24] and more recent work on security
frameworks for constrained devices.

B. Data-centric Security

Security amidst heterogeneity is a critical challenge for
IoT networks and applications. NDN’s approach is to directly
secure named data at the network layer. This ensures that
receivers can validate a Data packet independently of where
and how they obtained it and that only authorized parties
can access the data. Combined with the expressive power
of hierarchically structured names, this builds up security
mechanisms that overcome many of the challenges of applying
typical techniques from the current IP Internet.

In NDN, each Data packet is signed at the time of produc-
tion, cryptographically binding the name and the payload of

the data.2 Information about the signing key, i.e. the name
of signing key certificate, is recorded in the KeyLocator
field3 of the Data packet, establishing data provenance and
allowing reconstruction of the authentication chain to verify
the validity of the data. Section VI-A highlights how the power
of hierarchically-structured names can be leveraged to easily
enable complex trust relationships with automated signing
and verification. To handle different application scenarios,
the NDN team is currently exploring various cryptographic
mechanisms, such as asymmetric RSA and ECDSA signatures,
and more lightweight approaches appropriate for typical IoT
messages, such as HMACs and hash chains.

This approach of focusing on securing the data rather than
securing a channel or session provides a building block for
meeting IoT security requirements that is independent of the
specific communication technology used to carry bits about
a thing to and from a device. By securing the named data
directly, NDN enables IoT data to traverse boundaries between
heterogeneous network environments without losing security
properties. It is also possible to store data in an application-
transparent manner in in-network caches and persistent data
storage. NDN allows IoT applications to freely distribute data
to any place in the network without requiring them to trust
any intermediate node to keep data intact and confidential.

In Sections VI-C and Section VI-D, we discuss in more
detail the data-centric approach of NDN to security: mecha-
nisms to manage trust and to sign and authenticate data, and
mechanisms to encrypt data and grant access permission to
it. We also discuss our previous work in securing building
management systems via NDN [26].

C. Name-based Forwarding

The NDN network forwards Interest packets based on
the names they carry. This fundamental distinction between
NDN and IP architectures is what enables NDN-based IoT
applications to operate directly on packets that describe things
and their data.

At each hop, an NDN forwarder first checks an Interest for
locally cached Data in its Content Store that either matches
the Interest name exactly or takes the Interest name as its
prefix; it uses the matched Data packet to satisfy the Interest.
If no match is found, the forwarder checks its Pending Interest
Table (PIT), which keeps track of recently-received Interests
and their incoming interfaces. If the same Interest has already
been forwarded and recorded in the PIT, the forwarder aggre-
gates identical Interests. Otherwise, the forwarder records the
Interest in the PIT, looks up the Interest name in its forwarding
table (FIB) using longest prefix match, and propagates the
Interest according to the forwarding strategy. A matching
Data packet is returned to the consumer(s) that requested
it by following the “bread crumbs” left in the PITs of the
forwarders along the path. The forwarders purge unanswered
PIT entries based on the lifetime field in each Interest. This

2For sensitive applications, the payload and parts of the name can also be
encrypted at the time of production.

3See [25] for more information on the NDN packet format.

“soft state” mechanism effectively prevents NDN nodes from
being overwhelmed by a large amount of unsatisfied Interests.
In order to achieve consumer-driven flow balance, the archi-
tecture requires that one Interest brings back at most one Data.

NDN’s name-based stateful forwarding can be used to real-
ize other important features for IoT, such as a delay-tolerant
style of communication and fast local recovery from losses,
as well as hop-by-hop congestion control [27]. Specifically:
1) There is no need to configure network-dependent addresses
for each interface of every device. 2) Nodes advertise and
discover application names directly at the network layer,
avoiding the necessity of additional indirection from names to
interface identifiers. 3) The stateful forwarding plane allows
fine-grained control and adaptation of forwarding decisions
at each node, adapting to network connectivity changes.
4) Opportunistic in-network caching facilitates efficient data
dissemination in dynamic communication environments with
intermittent connectivity and link diversity.

D. In-network Storage

Securing data directly enables even simple NDN applica-
tions to use the benefits of in-network storage. NDN routers
can opportunistically cache the Data packets they forward,
enabling efficient dissemination of popular data and facilitating
local recovery. Different classes of devices can adjust the
cache size and management policy based on available storage,
power, and processing capabilities. In addition to opportunistic
caches, NDN networks can include persistent data repositories
(repos) that provide long-term managed storage for data [28].

IoT applications may leverage each type of in-network
storage at the same time. For example, sensors with lim-
ited storage deployed in an agricultural field can transfer
monitoring data immediately after its acquisition to a nearby
repository. A remote controller can later retrieve this data from
the repository, more effectively using available bandwidth and
consuming less energy. When measurement data needs to be
stored in multiple repositories, in-network opportunistic caches
and NDN Interest packet aggregation will assist to effectively
multicast data to the repositories. In wireless mesh networks,
in-network caching can significantly improve efficiency of data
dissemination: each intermediate mesh forwarder can cache
recent Data packets to serve retransmitted requests in the
future. In typically disconnected environments, “data mules”
can carry Data packets in their in-network storage, enabling
data to be diffused even when consumers and producers never
have a directly connected channel between them.

V. RELATED WORK

NDN provides a single network protocol that “changes the
game” for deploying the Internet of Things, by providing
name-based, request-response semantics at packet granular-
ity. In this section, we briefly discuss a few representative
IoT frameworks that achieve similar high-level functionali-
ties to what NDN provides, but take fundamentally different
approaches in the lower-layer details. Their relationship is
illustrated conceptually in Figure 1.

IP
packets

v4, v6, 6LoWPAN

Middleware / Frameworks
COAP MQTT HTTP ...

TCP UDP ...

ethernet Zigbee ...

copper radio optical...

CSMA BT 802.15.4 ...

Request-Reponse
for Named Data

copper radio optical...

Strategy

Security, Storage

Name, Data, Trust
Conventions for IOT

IoT Applications

Data
Chunks

 BT 802.15.4 802.11 UDP...

DTLS TLS ...

IoT Applications ...

Forwarded by host interface address Forwarded directly on names

Secures channels

Secures data

Configured based on
L3 and L2 addresses

Configured using
name prefixes

IP-based Approaches Named Data Networking

Fig. 1. NDN changes the “thin waist” of IoT networking from communication
between source and destination hosts to dissemination of named, signed data.

An open architecture that is gaining popularity among many
IoT vendors is specified by a collection of IETF standards, in-
cluding 6LoWPAN [29], RPL [30], DTLS [31] and CoAP [32],
which can be used together to provide request-response ex-
change of data, with session-based security semantics [33].
6LoWPAN defines the link adaptation layer for transporting
IPv6 packets over IEEE 802.15.4 [34] networks. RPL is the
routing protocol for constrained networks to facilitate IPv6
forwarding. CoAP is an application-layer protocol that can
run on top of UDP and 6LoWPAN to provide an HTTP-style
communication interface and optionally use DTLS to provide
channel security. Collectively, these standards provide a full-
stack architecture that supports IoT applications in constrained
environments. While they achieve the functionality of naming
resources, request-response communication, and caching at the
application layer, the underlying layers must deal with inter-
connecting participating devices using a host-to-host model
with secure channels [19], resulting in the complex mapping
problem described earlier. The mismatch between application
and network layers results in inefficiency and brittleness to
configuration changes that impact host to name mapping or
security perimeters. Dealing with such contingencies yields
bulky system implementations.

AllJoyn [35] is an application-layer framework that provides
a common software interface across various network tech-
nologies (TCP/IP, Bluetooth, etc.) and heterogeneous systems.
It uses the abstraction of a message bus that spans across
multiple devices to interconnect different applications, hiding
the details of the underlying connectivity. AllJoyn applications
advertise and discover each other’s services via unique bus
names that are similar to hierarchical NDN names. One major
difference between AllJoyn and NDN is that AllJoyn still
preserves the notion of a connected session between AllJoyn
applications, which is provided by the networking technology
under the bus abstraction. Network security is implemented by
protecting the sessions with session keys that are established
by a key exchange process. In contrast, NDN provides a
pure data-centric communication semantics directly at the
network layer with name-based routing and forwarding, which
eliminates the concept of sessions among the network nodes.

The ZigBee Alliance standardized the ZigBee protocol
stack [36], which also runs on top of IEEE 802.15.4 networks
like 6LoWPAN. ZigBee by default does not use IP, but
defines its own network layer that extends 802.15.4 MAC layer
operations to support device addressing, network formation,
routing, and forwarding. On top of the network layer, ZigBee
provides an application framework that allows developers
to specify common application behaviors using service and
device profiles, which is essential for cross-vendor compati-
bility. ZigBee also provides a service discovery framework for
ZigBee nodes to explore applications and neighboring devices
by sending queries that contain profile IDs. This profile-based
service discovery has been incorporated by other industrial
IoT architectures as well, including Bluetooth and Bluetooth
LE [37]. Similar to the frameworks discussed above, ZigBee
focuses primarily on interconnecting individual devices at
the network layer and implements application-layer services,
such as profile-based discovery, on top of the device-oriented
communication model. This is fundamentally different from
NDN’s data-centric semantics, which support naming with
application semantics directly at the network layer.

VI. ACHIEVING IOT FRAMEWORK FUNCTIONALITY

In this section, we describe how to employ NDN’s core
network-layer protocol to achieve IoT framework functionality.

A. Naming Things, Devices, and their Data

NDN uses application-meaningful names at the network
layer, which makes proper naming design a high priority when
creating an NDN application. Although NDN applications are
free to choose any naming model, following common naming
conventions and trust relationships, and data payload formats
can enable interoperability at the network and application lay-
ers. Examples of NDN naming schemes exist for applications
including building management [26], lighting control [24],
person tracking [38], video conferencing [39], scientific data
[40], network routing [41], and others.

NDN names are very flexible. In this paper, we use hier-
archical, human-readable English-language names for clarity,
but names can also include machine-readable and encrypted
components. A forwarder simply treats each name component
as a string of bits. Name length is also flexible, so that appli-
cations can utilize short names to reduce overhead. Hierarchy
is not required, but can be leveraged to support forwarding as
well as security, aggregation, and other critical features. NDN
also allows the use of flat names, which are simply a special
case of hierarchical names that have only one component.

This paper’s examples follow emerging conventions in
our application research for naming things and their data,
as well as devices themselves. In these examples, typical
names include a root prefix that describes the scope and can
be used for forwarding,4 a middle set of components that
name a thing or device, and final components that name the

4Often called the “routable prefix”, early components in names are used
by NDN forwarders to direct Interests towards possible data locations and/or
restrict propagation of Interests and Data within the defined area.

specific instance of data. For example, “/AliceFarms/field/
21SUJ22850705/soil/pH/201412021339” could name an NDN
data object corresponding to a soil pH measurement in a
given U.S. National Grid (USNG) grid square for land owned
by Alice Farms (the thing), measured on December 2, 2014
at 1:39PM. Such a packet can be signed by a device-
specific key (e.g., “/AliceFarms/devices/sensors/field/
soil/685b359aec5b/key/27” for the Alice’s Farms sensing
device with serial number 685b...), providing provenance for
the data. For brevity, such examples omit longer prefixes or
the use of forwarding hints [42] that may be needed to provide
global access to the named data.

In constrained cases, long, human-readable names may lead
to undesirable overhead. A number of techniques can be
employed to let applications work with efficient names while
preserving NDN’s benefits. One may use a combination of
efficient name component encoding schemes, application-side
lookup tables, which can be easily distributed as Data packets,
and encapsulation of packets by more powerful nodes on the
network using techniques such as those discussed in [42].

The remainder of this section explores how in NDN devices
can get their names and keys, and how data consumers can
authenticate the validity of a Data packet and, if necessary,
decrypt it. We will also illustrate how to implement data
aggregation and publish-subscribe communication using NDN
primitives, and conclude with techniques for efficient multi-
party communication and bridging local and global networks.

B. Bootstrapping and Discovery

IoT networks must handle ongoing addition, removal, and
configuration of devices and services. In IP networks, this
involves establishing and securing the many device-, network-,
and application-level mappings. In NDN, devices that produce
data must be configured with the naming prefixes to use and
appropriate signing and encryption keys. Devices that consume
data need to obtain proper trust anchors and decryption keys.

NDN enables nodes to request data without having a name
or address of their own. Bootstrapping in NDN can thus
be achieved through well-known naming and trust schemes
for initial configuration data. For example, a new device
can express a special Interest with a well-known name pre-
fix and information identifying the device and its function
(e.g., “/local/discovery/lighting/serial=123456”). When
received by a bootstrap controller, this Interest can initiative
the device’s initial configuration, secured through a pre-shared
secret, such as an out-of-band PIN, a pre-scanned barcode,
etc. During the initial configuration, the device can be given
its own identity “/LivingRoom/_fixtures/123456” that can
be used for further configuration, associated with a thing
(“/LivingRoom/Lighting/TableLamp”, given a set of functions
(“../ON”, “../OFF”), and configured with a proper set of trust
anchors and trust model(s).

Once devices are named and their root(s) of trust estab-
lished, capability and service discovery can be implemented
by the machine-to-machine (M2M) exchange of metadata as-
sociated by convention with each prefix, e.g., “../TableLamp/

_capabilities”. For example, a controller may need to obtain
device information such as the model and the manufacturer,
while the neighboring devices may want to know what kind of
services the new device can support. In both cases, metadata
with well-known names can be used to describe device in-
formation like “.../TableLamp/_manufacturer” or implement
typical IoT profile mechanisms. In larger networks, name
synchronization schemes can be used to efficiently discover
and manage new devices; this is discussed in more detail
in Section VI-G. In Section VII-B, we describe NDN-IoT, a
software package that implements bootstrapping and discovery
frameworks for generic smart home applications.

C. Schematizing Trust

Managing trust within IoT networks is still an open chal-
lenge within the broader area of IoT security [43]. In NDN,
trust decisions can leverage the structure of names to schema-
tize decision-making on a packet-by-packet basis that does not
require channel- or session-based semantics.5

As each Data packet has its own name and also carries
the signer’s name in the KeyLocator field, NDN enables
applications to express trust relationships through rules that
regulate allowable relationships between the Data packet name
and signing key name. Depending on the specifics of an
application, the desired trust model can be quite fine-grained.
For example, consider a new wearable wellness device that
Alice just bought. To bootstrap, Alice would use a mobile
health app on her phone to performs two functions:

• configure the wearable device to publish activity data
under the prefix “/Alice/health/activity”, and

• assign the device a key (“/Alice/_devices/fitbit,id=
2211213/key”), signing it with Alice’s mobile health root
key.

Later, during physical activity, the wearable device would
periodically—or, as a response to Interests from the mobile
health application—generate step count data under the config-
ured prefix, signing it with the assigned key. For example, a
packet for January 10, 2016 3:34pm would be named “/Alice/
health/activity/step_count/20160110-153400” and signed
by “/Alice/_devices/fitbit,id=2211213/key”).

In this example, besides simply verifying signature validity,
the analytics application would want to restrict Alice’s health
data to be signed by keys within the “/Alice/_devices”
namespace only. When an analytics application on the phone
retrieves the step count data, it can also retrieve the key that
signed the data, and, recursively, the keys that signed the keys.
The chain from data to key (to key...) is considered verified
when these recursive operations terminate at an already trusted
key, such as Alice’s mobile health root key. In this way, the
relationship between data and key’s hierarchical names gives
the context for data authentication.

We have proposed a policy language to express various
trust models in terms of relationships between data and key

5NDN can support channel- and session-based solutions as well, but these
schemes inherit the limitations of perimeter-based security in highly hetero-
geneous IoT networks, as well as brittleness with intermittent connectivity.

names [44]. With this formalization, it is possible to automate
authentication and simplify key bootstrapping. Note that in
resource-constrained contexts such as IoT, generation, assign-
ment and evaluation of keys can be done on more powerful
devices and the resulting trusted keys for publishing and
consuming data can be stored on the constrained nodes.

D. Name-Based Access Control

Just as NDN enables trust to be evaluated independently
of how data is communicated, it can also provide channel-
independent, data-centric confidentiality through per-packet
encryption. Building on schematized trust, names can further
be used to organize fine-grained access control, an example
of which is found in recent work on Name-based Access
Control [45]. NAC enables a data owner, like Alice in the
preceding example, to enforce access control policies based on
data names. It aims to enable the principle of least privilege
security to be applied to NDN data access.

Utilizing NDN’s power of fetching named data, NAC makes
use of an additional access control namespace, which is paral-
lel to the actual data namespace, to facilitate the distribution of
encryption and decryption keys. For example, a mobile health
application can designate the namespace “/Alice/activity/
NAC/read” for the access control for Alice’s activity data by
publishing in this namespace:

• the public (encryption) key “/Alice/activity/NAC/
ekey” to be used by wearable devices to encrypt produced
data under “/Alice/activity” prefix;

• the private (decryption) key, encrypted for each
authorized device, application, or group of applications
and devices: “/Alice/activity/NAC/dkey/FOR/
Alice-Family/health/...”, “/Alice/activity/NAC/
dkey/FOR/UCLA-Health/physicians/...”, etc.

To encrypt the data, the wearable device would simply retrieve
the encryption key. To access the data, the data owner (Alice)
will need to give explicit permission to each legit device or
user by encrypting the data decryption key with their public
key, then simply publish these encrypted decryption keys.

The above illustrates the high-level idea of NAC; the pro-
posed protocol includes several additional elements to improve
performance and security [45]. The building management
application in Section VII-A includes an experimental imple-
mentation of the NAC protocol.

E. Data Aggregation

After the IoT devices establish network connectivity and
trust relationships, a common function in IoT networks is to
aggregate data in a subsystem. Just as in the previous sections,
names can be leveraged in this case as well.

IoT systems can generate a large amount of data on an
ongoing basis. As it is often inefficient and, in some cases,
infeasible to archive and analyze the raw data, it is common
for IoT systems to pre-process and aggregate the raw data
stream immediately after the data is captured. The processed
and aggregated data is then transferred to some permanent

storage for future retrieval and analysis by other IoT appli-
cations. If the system can determine in advance what kind of
analysis the high-level IoT applications are interested in, those
analytic operations can be distributed down to the intermediate
gateways who can execute them as data becomes available.

NDN’s data-oriented semantics facilitate such data aggrega-
tion. NDN IoT applications first define the naming convention
of how to encode sensor data information, such as the data
type, the location of measurement and the time when it
is taken. The aggregation gateways then construct Interest
packets following that naming convention, and retrieve the
data over the NDN network. The gateways can either pull the
sensor data periodically or use a publish-subscribe framework,
as described in Section VI-F, to subscribe to certain sensor
data. In-network caching makes data retrieval efficient and fail-
safe, especially if the device deployment features a hierarchical
topology, where the data is pulled from the lower level of the
hierarchy to the higher level and cached along the way. The
building management application discussed in Section VII-A
implements this approach as proof-of-concept.

F. Application-Level Publish-Subscribe

Publish-subscribe (pub-sub) is a common communication
paradigm for asynchronous messaging applications. For exam-
ple, in simple IoT applications employing a pub-sub model,
sensors “publish” their data as it is generated, while ag-
gregators, analytics engines, and actuators “subscribe” to
such data sources of interest to receive notifications of new
data. It is a common misconception to confuse NDN’s ba-
sic Interest-Data exchange model with the pub-sub pattern.
The core NDN protocol implements a pull-based request-
response paradigm. To ensure flow balance at the network
layer, it does not directly provide persistent subscriptions with
publisher-initiated communication of new data. However, it
is straightforward to build application support for pub-sub
communication using NDN. Hierarchical NDN names can
be used to define the categorization of various Data packets.
The Interest-Data exchange mechanism enables asynchronous
fetching of existing data. Data publishers announce the name
prefix, through the NDN routing system, under which they
will publish new data. Subscribers issue Interest packets with
those names. To implement push-style notification for new
data at the application layer, a consumer needs only to ensure
that this soft state is refreshed at the minimum acceptable
notification time, which can be supported by the library. PITs
in each node collapse duplicate Interests and provide efficient
multicast distribution when new data is available. The building
management application in Section VII-A implements this
mechanism to obtain the sensor data it uses in multi-level
aggregation as described in the previous section.

G. Sync: Efficient Multi-party Communication

Pub-sub, while useful, is challenging to employ when there
are many producers in the same namespace, a likely scenario
in IoT. For example, consider all of the data that might be

published, by all sorts of devices, as part of the Smith family
smart home, “/smith/family/house”.

Building on Interest-Data exchange, NDN can provide new
types of high-level data dissemination functionality that are
useful in such circumstances. Distributed synchronization of
shared data sets is one such example. In NDN, synchronization
(sync) refers to a multi-party communication paradigm that
aims to efficiently reconcile collections of named data. Specific
example protocols are given in [46], [47], which allow the
participants in the sync group to exchange their knowledge
about data published under a namespace. When new data is
generated, nodes advertise their updated knowledge about the
collection, using tools such as digest trees to represent them
efficiently, and synchronize with other nodes.6

NDN sync is suitable for high-level device, thing, and
service discovery as well as for implementing lightweight data
sharing across multiple IoT devices and repositories in a local
environment. Names that are synchronized can correspond to
prefixes that identify things, enabling efficient discovery on
shared media, or reachable by multicast, as an extension to the
basic bootstrapping process described in VI-B. Or, the names
of Data objects themselves, such as sensor readings, can be
synchronized, enabling multi-publisher scenarios.

NDN’s approach to synchronization is session-less and
based on representing the knowledge of each participant. This
makes it particularly useful to assist information dissemina-
tion in disruptive environments where the network exhibits
intermittent connectivity, dynamic topology, or can commu-
nicate over multiple media. For example, in agricultural IoT
applications, solar-powered sensors may need to periodically
shut down the wireless network interface to conserve energy,
leaving only a small time window for communication. In
those environments it is often impractical to achieve long-
lasting, session-based data transfer. Synchronization, on the
other hand, allows a group of IoT nodes to quickly discover
the missing (or new) data over short-lived ad-hoc links, which
can be used to implement efficient message forwarding across
wireless mesh networks with lots of sleeping nodes.

H. Integrating IoT with the Global Internet

Finally, the IoT vision is of an Internet connecting things at
a global scale. While the discussion above has focused on local
communication, NDN is being developed as a future Internet
architecture suitable for a wide variety of applications de-
ployed globally. For example, scalability of NDN forwarding
is discussed in [48], and some of the wide variety of research
on NDN’s applications and opportunities is covered in [49].

Local and global NDN networks can be bridged by lever-
aging the approaches introduced in previous sections: data-
centric security protects authenticity and confidentiality of
data without relying on secure channels, name-based forward-
ing and signature verification can be used to limit traffic

6Unlike more familiar cloud-based synchronization solutions (e.g., Drop-
box, Google Drive), the sync protocols in NDN are decentralized and server-
less, and further benefit from the in-network caches in the NDN forwarders.

that traverses local networks, while caching, persistent in-
network storage, and Interest aggregation in forwarders make
it straightforward to handle many consumers of data from
resource-constrained devices. Forwarding hints and encap-
sulation, discussed further in [42], can be used to bridge
namespaces.

In practice, an application-level example that has proved
useful in our work is IoT integration with existing Web tech-
nologies. NDN allows easy integration of Web components
with IoT applications in a protocol-independent fashion, since
the network layer and all application protocols share the same
data unit: the NDN Data packet. This universal data unit can
be conveniently transported across different network environ-
ments, storage, and platforms via basic Interest-Data exchange.
For example, as a proof-of-concept, the NDN team developed
a JavaScript library that implements NDN communication
support directly in web browsers, which is used to provide
user interfaces that directly access data from IoT nodes in
many of the examples in the next section [50].

VII. IMPLEMENTATIONS

In this section, we describe a few ongoing research projects
that apply NDN to various IoT scenarios.

A. NDN-BMS

NDN-BMS [26] is an application-driven project that designs
and implements an NDN-based building management system
to be used by facility management personnel. The prototype
system deployed on the UCLA campus captures, archives,
and visualizes time-series data generated by industry standard
sensors located in campus buildings. In NDN-BMS, the sensor
data namespace is based on naming the things being measured,
such as electrical current and chilled water flow, according to
the physical hierarchy of the building structure. For example,
the prefix ”/bms/building1/floor1/room1 covers the data gener-
ated in Room1 on Building1s first floor, including such child
Data objects as ”.../current/201602101210” for the current
draw measured for the room at 12:10 p.m. on February 10,
2016. This namespace facilitates routing and caching: each
node could register the physical location name it represents
with its upstream node, expect to receive Interest for data
generated by itself or its downstream nodes, and cache data
from downstream for later access. The system employs a basic
encryption-based access control scheme that limits data access
within a group of authorized users.

Mini-BMS [51] is an extension of this work that adopts a
data namespace design similar to NDN-BMS, while incorpo-
rating more recent work on schematized trust (Section VI-C),
name-based access control (Section VI-D), and data aggre-
gation. It uses Mini-NDN, a Mininet-based NDN network
emulation tool [52], to emulate nodes in a larger BMS net-
work driven by real data from the UCLA campus. Following
the basic design in Section VI-E, each node implements
application-level pub-sub semantics by keeping outstanding
Interests for the data produced by its child nodes to gather
the data for aggregation in a fixed time window. The system

uses a hierarchical trust schema in which the certificate of a
child node is signed by its parent, and a predetermined root of
trust is installed on each node. Its name-based access control
system allows managers of the system to configure data access
privileges based on the thing’s physical location and data type.

B. NDN-IoT

NDN-IoT [53] is a development toolkit for setting up simple
smart home networks. It provides an experimental platform
running on Raspberry Pi devices which can be outfitted with
a number of simple sensors via GPIO pins. NDN-IoT contains
templates for two types of nodes—controllers and devices—
that implement the basic bootstrapping and discovery mecha-
nism described in Section VI-B. The controller node maintains
a directory of available services, represented by NDN names
and an internal mapping from service names to the supporting
devices on the network. It controls the addition and removal
of devices by requiring a pairing code provided by a device
to be entered by the user during initial bootstrap. When a
new device is added, it also issues credentials, e.g., identity
certificates, that allow for authenticated interactions between
devices.

The other type of node is a device node, which manages
sensors and/or actuators (the things) connected to it. When de-
vices are added, they provide a description of their capabilities
to the controller who will add this information to the service
directory so that other devices can search for the services they
need. For example, the NDN-IoT toolkit includes a sample
application that incorporates infrared proximity sensors and an
HDMI connection to a television that can process Consumer
Electronics Control (CEC) commands. The sensing process
consults the service directory to discover the television control
service provided by a different device and uses that service to
switch the television on and off depending on room occupancy.

C. NDN over Arduino

Arduino single-board microcontrollers represent a class of
constrained devices with a low-power, slow-speed CPU and
a few kilobytes of RAM and Flash. When deploying IoT
applications in wide-area infrastructure-less environments such
as agricultural fields, it is common to employ sensors and
actuators running on such constrained hardware platforms. To
bring NDN applications to such platforms, we developed a
special version of the NDN client library called NDN-CPP
Lite [54].

The Lite API, combined with HMAC signature support,
can be used to fit an NDN producer application in a few
tens of kilobytes. Given the highly constrained memory and
CPU, NDN Arduino applications may be “hard-wired” to
sending and receiving Interests under a single namespace.
In these cases, the memory and processing footprints can be
further reduced by eliminating the dynamic data structures of
PIT, CS, and FIB. For example, the “NDN over Bluetooth
Low-energy” [55] project uses NDN-CPP Lite to implement
a demonstration producer application on an RFduino device

using Bluetooth Low Energy interface. This project demon-
strates the possibility of adapting an NDN application to run
on a Arduino-class device, with open engineering challenges
further discussed in Section VIII.

D. NDN-ACE

When running IoT applications on constrained devices, a
common challenge is that the device themselves may not have
enough storage or computational power to support complex
security mechanisms, such as maintaining per-device security
materials for each peer or executing expensive public key
cryptography. NDN-ACE [56] is an access control framework
for securing actuation operations using constrained IoT de-
vices, which is designed to meet those challenges. It adopts a
protocol architecture where the constrained actuators offload
the authorization and key management tasks to a trusted third-
party called an authorization server (AS) that runs on more
powerful platforms. It assumes that a basic bootstrapping
mechanism described in Section VI-B is available for estab-
lishing a trust relationship between the devices and the AS.

In NDN-ACE, the actuator generates a root symmetric key
and shares the key with the AS. The AS authorizes the access
request from the client devices through identity verification
via schematized trust as described in Section VI-C. It then
computes per-client, per-service access keys, derived from the
root key via HMAC chaining. Upon receiving the command
Interests, the actuator recomputes the access key using the
local root key and the client information carried in the Interest
packets, and then verifies the command signature using the
derived key. Compared with the simple CoAP+DTLS ap-
proach, NDN-ACE avoids the overhead of maintaining secured
sessions and key materials per client, which makes it suitable
for constrained devices and a thing-based naming approach.

VIII. OPEN PROBLEMS

Several open problems exist for realizing IoT over NDN.
This section discusses some of the most significant.

A. Naming with Multiple Hierarchies

Through our application research, it has become clear that
IoT applications often desire to publish the same data under
different namespaces, in order to simplify data discovery
and facilitate access to data. For example, in NDN-BMS
(see Section VII-A), applications might wish to organize
data by both data type (e.g., voltage) and location (e.g.,
which building). This can simplify data retrieval and access
control. For example, using the NAC framework described
in Section VI-D, a consumer who is authorized to access all
the voltage data only needs to register its read-access under
the “/Voltage” prefix, rather than having multiple registration
under the “.../Voltage” sub-namespace of every location
prefix. Given that an NDN network supports data retrieval
by one-dimensional names, the challenge of supporting multi-
dimensional naming is two-fold. First, the number of possible
combinations grows exponentially with the number of com-
ponents in a name. Second, multiple combinations of name

components lead to names not present in router FIBs. For
example, if routers propagate reachability to data based on
locations, they know how to forward interests with prefix of
“/location/voltage/”, but not “/voltage/location/”. At the
time of this writing, several solutions are being explored to
ensure that the Interests designated to different namespaces
can be satisfied, including approaches at both the network and
application layer, as well as hybrids of the two.

B. Routing over Infrastructure-less Environments

Network routing protocols provide the essential support for
scalable and efficient packet forwarding in an established net-
work infrastructure, without having to flood packets through
the network. However, many IoT systems are deployed in
infrastructure-less environments, e.g., distributing the sensors
and actuators in agricultural fields or embedding them inside
the structure of a large building, where running a routing
protocol is infeasible. The key to solving this challenge in
NDN is to use the expressiveness of NDN names to encode
information that can assist Interest forwarding, and to employ
the stateful forwarding layer to make intelligent forwarding
decisions. For example, in an agricultural monitoring system
like the example of Section VI-A, data names that contain
geographic grid coordinates can be used by infrastructure to
guide the Interest toward the location where nodes are cap-
turing and storing the data. Additionally, the NDN forwarding
layer maintains soft-state information about the reachability of
the names that have been requested over the network, which
allows each forwarder to independently adapt to the network
environment, whether static or dynamic. Per-prefix forwarder
strategies complement traditional routing announcements by
enabling powerful and application-specific forwarding logic
in the NDN data plane. It remains an active research area for
how to combine all the new features provided by NDN to
support real applications at scale.

C. Implementation for Highly Constrained Devices

Many IoT systems are deployed on constrained devices
that typically operate on battery power and have stringent
requirements on energy efficiency. As demonstrated by the
NDN over Arduino project mentioned above, it is feasible to
deploy NDN on microcontroller-class devices which typically
have tens of kilobytes of RAM and flash, and low-power
processors clocked at tens of megahertz. However, limitations
in memory, processing, and power do create engineering
challenges in the implementation of the core NDN protocol
and higher level frameworks.

Unlike stateless IP forwarding, NDN’s stateful forwarding
mechanism requires every node to maintain PIT, CS and FIB
tables. Due to memory limitations, constrained nodes cannot
keep track of a large number of pending Interests or cache a lot
of data. The number of FIB entries will also be limited, which
can be a problem for mesh networks where no default route is
available for the intermediate forwarders. NDN’s requirement
of per-data packet signatures also requires careful selection and
optimization of authentication schemes that are appropriate

for constrained platforms. Finally, energy limitations require
higher-level protocols and frameworks, such as NDN sync,
to minimize network transmission operations and always con-
sider sleeping nodes in their protocol design.

D. Push-Style Data Collection

As a specific way to reduce network transmission and
accommodate the sleep time of power-constrained nodes, some
have proposed to change NDN’s Interest-Data exchange model
to allow a producer, such as a constrained sensor node, to push
out data as soon as it is produced without having to stay online
and wait for an incoming request. It is feasible to engineer such
optimized solutions for a local environment. There are at least
two ways to implement data push at the network layer in NDN.
For data that is small in size, an energy-constrained device may
include the data itself in an Interest packet to send to a less
constrained collector. Another engineering optimization would
be to establish a stable PIT entry on a forwarder that accepts
unsolicited Data packets from a nearby sensor, eliminating
the need for Interest packets. This second approach is distinct
from the pub-sub framework described in Section VI-F, where
subscribers assume a relatively stable network forwarding
plane and keep refreshing the outstanding Interests for the
subscribed data.

We would like to emphasize that such engineering ap-
proaches trade off functionality to obtain effective local op-
timization. As such, they should not be considered as general
solutions for large-scale environments. For example, it is
important to keep NDN’s Interest-Data exchange communi-
cation model intact for flow balance and to prevent abuses
of these optimizations, including data flooding through such
hypothetical stable PIT entries.

IX. CONCLUSION

This paper aimed to show that the semantics of NDN
naturally fit the inherent requirements of IoT applications,
consequently the Internet of Things can be enabled at scale
by NDN’s data-centric model for networking.

NDN enables applications to name things and their data,
and have the network forward packets directly based on
those names, addressing core challenges of the IoT vision by
closing the gap between application and network semantics.
Instead of building up new layers to achieve request-response
communication of named data, as today’s frameworks do,
NDN implements this functionality at the network layer as
the common “thin waist”. Rather than struggling to define
and manage security in terms of subnetworks, channels, and
sessions that are largely orthogonal to application security
requirements, NDN’s data-centric security solutions provide
a robust alternative to building up granular, packet-level au-
thentication and access control. It does so for realistic IoT sce-
narios, where devices use a variety of means to communicate
in networks supporting heterogeneous applications. The archi-
tecture also naturally and effectively supports local machine-
to-machine communication, while providing mechanisms for
secure integration with global networks. The paper described

the current design and implementation work in each of these
areas.

Here, we introduced the basic NDN protocol and illustrated
how to build framework-level solutions on top of it without any
use of IP. Because NDN can operate over any medium that can
carry bits, it can also be deployed over existing IP architecture.
In fact, this is how the NDN testbed currently operates.7 This
suggests an evolutionary path for IoT deployment, where NDN
can be used natively in IoT subnetworks, while gateways
between subnetworks can use NDN over IP transport for
interconnection.

We are continuing to validate the applicability of NDN’s
core protocol and the framework concepts given above by
developing prototype applications and software packages that
target various IoT use cases. There are still challenging open
problems, such as those described in naming, routing, and
power-efficient communications. We invite researchers from
different backgrounds to join the NDN community and explore
this exciting way to realize the vision of a Named Data Internet
of Things.

ACKNOWLEDGMENT

This work has been supported by the National Science
Foundation under award CNS-1345318, CNS-1345142, CNS-
1455794, and CNS-1455850, as well as by Huawei and
Qualcomm Research.

REFERENCES

[1] R. Want, B. N. Schilit, and S. Jenson, “Enabling the Internet of Things,”
Computer, no. 1, pp. 28–35, 2015.

[2] C. C. Aggarwal, N. Ashish, and A. P. Sheth, “The Internet of Things:
A survey from the data-centric perspective,” 2013.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th International Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009, pp.
1–12. [Online]. Available: http://doi.acm.org/10.1145/1658939.1658941

[4] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73, Jul.
2014. [Online]. Available: http://doi.acm.org/10.1145/2656877.2656887

[5] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of
information-centric networking research,” Communications Surveys &
Tutorials, IEEE, vol. 16, no. 2, pp. 1024–1049, 2014.

[6] Nest Labs, “Nest Thermostat,” https://nest.com/thermostat/
meet-nest-thermostat/, accessed on Jan. 29, 2016.

[7] Belkin International, Inc., “WEMO Light Switch,” http://www.belkin.
com/us/p/P-F7C030/, accessed on Jan. 29, 2016.

[8] KIWI.KI GmbH, “KIWI Homepage,” https://kiwi.ki/en/, accessed on
Jan. 29, 2016.

[9] Fitbit Inc., “Fitbit Official Site,” https://www.fitbit.com/, accessed on
Jan. 29, 2016.

[10] Misfit Inc., “Misfit Homepage,” http://misfit.com/, accessed on Jan. 29,
2016.

[11] Jawbone, “Jawbone Homepage,” https://jawbone.com/, accessed on Jan.
29, 2016.

[12] C. Arkan, “How IoT enables smart agriculture,” https:
//www.microsoft.com/enterprise/industry/caglayan-arkan-blog/articles/
how-iot-enables-smart-agriculture.aspx, accessed on Jan. 29, 2016.

[13] SCR Dairy, “HealthyCow24 Solution,” http://www.scrdairy.com/
cow-intelligence/hc24-solution.html, accessed on Jan. 29, 2016.

7See http://named-data.net/ndn-testbed/, which uses UDP tunnels between
NFD [57] forwarders.

[14] L. Heikell, “Connected cows help farms keep up
with the herd,” http://news.microsoft.com/features/
connected-cows-help-farms-keep-up-with-the-herd/, aug 2015.

[15] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro,
N. Kitaev, and D. Culler, “Boss: building operating system services,”
in Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), 2013, pp. 443–457.

[16] D. Estrin and I. Sim, “Open mhealth architecture: an engine for health
care innovation,” Science, vol. 330, no. 6005, pp. 759–760, 2010.

[17] K. Taylor, C. Griffith, L. Lefort, R. Gaire, M. Compton, T. Wark,
D. Lamb, G. Falzon, and M. Trotter, “Farming the web of things,”
Intelligent Systems, IEEE, vol. 28, no. 6, pp. 12–19, 2013.

[18] K. Aberer, M. Hauswirth, and A. Salehi, “The global sensor networks
middleware for efficient and flexible deployment and interconnection of
sensor networks,” Tech. Rep., 2006.

[19] W. Shang, Y. Yu, R. Droms, and L. Zhang, “Challenges in IoT
Networking via TCP/IP Architecture,” NDN Project, Tech. Rep. NDN-
0038, February 2016.

[20] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 27–32,
2014.

[21] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight secure CoAP for the Internet of Things,” Sensors Journal,
IEEE, vol. 13, no. 10, pp. 3711–3720, 2013.

[22] T. Heer, O. Garcia-Morchon, R. Hummen, S. L. Keoh, S. S. Kumar, and
K. Wehrle, “Security Challenges in the IP-based Internet of Things,”
Wireless Personal Communications, vol. 61, no. 3, pp. 527–542, 2011.

[23] R. Roman, P. Najera, and J. Lopez, “Securing the Internet of Things,”
Computer, vol. 44, no. 9, pp. 51–58, 2011.

[24] J. Burke, P. Gasti, N. Nathan, and G. Tsudik, “Securing instrumented
environments over Content-Centric Networking: the case of lighting
control,” in Proc. of IEEE INFOCOMM 2013 NOMEN Workshop, Apr.
2013.

[25] NDN Project Team, “NDN Packet Format Specification,” http://
named-data.net/doc/ndn-tlv/, accessed on Feb. 11, 2016.

[26] W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang, “Securing
building management systems using Named Data Networking,” Network,
IEEE, vol. 28, no. 3, pp. 50–56, May 2014.

[27] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and
L. Zhang, “A Case for Stateful Forwarding Plane,” Comput. Commun.,
vol. 36, no. 7, pp. 779–791, Apr. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.comcom.2013.01.005

[28] NDN Project Team, “Repo-ng,” Available at https://github.com/
named-data/repo-ng.

[29] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944 (Proposed
Standard), September 2007.

[30] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” RFC 6550 (Proposed Standard),
Mar. 2012.

[31] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” RFC 6347 (Proposed Standard), Jan. 2012.

[32] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252 (Proposed Standard), Jun. 2014.

[33] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung, “A
survey on the IETF protocol suite for the Internet of Things: Standards,
challenges, and opportunities,” Wireless Communications, IEEE, vol. 20,
no. 6, pp. 91–98, 2013.

[34] IEEE, “IEEE Standard for Local and metropolitan area networks–Part
15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs),” IEEE Std 802.15.4-2006, June 2006.

[35] AllSeen Alliance, “AllJoyn Framework,” https://allseenalliance.org/
framework, accessed on Jan. 29, 2016.

[36] ZigBee Alliance, “ZigBee Specification,” ZigBee Document
053474r20, September 2012, available at http://www.zigbee.org/
zigbee-for-developers/network-specifications/zigbeepro/.

[37] Bluetooth Special Interest Group (SIG), “Bluetooth Specification
Version 4.2,” dec 2014, available at https://www.bluetooth.com/
specifications/adopted-specifications.

[38] P. Gusev, Z. Wang, J. Burke, L. Zhang, T. Yoneda, R. Ohnishi, and
E. Muramoto, “Real-time streaming data delivery over named data
networking,” IEICE Transactions, 2016.

[39] P. Gusev and J. Burke, “NDN-RTC: Real-time videoconferencing over
Named Data Networking,” in Proceedings of the 2nd International
Conference on Information-Centric Networking. ACM, 2015, pp. 117–
126.

[40] C. Fan, S. Shannigrahi, S. DiBenedetto, C. Olschanowsky, C. Pa-
padopoulos, and H. Newman, “Managing scientific data with named
data networking,” in Proceedings of the Fifth International Workshop
on Network-Aware Data Management. ACM, 2015, p. 1.

[41] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“NLSR: Named-data link state routing protocol,” in Proceedings of
the 3rd ACM SIGCOMM Workshop on Information-centric Networking,
2013, pp. 15–20.

[42] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “SNAMP:
Secure namespace mapping to scale NDN forwarding,” in Proceedings
of 18th IEEE Global Internet Symposium (GI 2015), April 2015.

[43] L. Belli, S. Cirani, L. Davoli, A. Gorrieri, M. Mancin, M. Picone, and
G. Ferrari, “Design and Deployment of an IoT Application-Oriented
Testbed,” Computer, no. 9, pp. 32–40, 2015.

[44] Y. Yu, A. Afanasyev, D. Clark, k. claffy, V. Jacobson, and L. Zhang,
“Schematizing trust in named data networking,” in Proceedings of the
2Nd International Conference on Information-Centric Networking, ser.
ICN ’15. New York, NY, USA: ACM, 2015, pp. 177–186. [Online].
Available: http://doi.acm.org/10.1145/2810156.2810170

[45] Y. Yu, A. Afanasyev, and L. Zhang, “Name-Based Access Control,”
NDN Project, Tech. Rep. NDN-0034, Revision 2, jan 2016.

[46] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking,” in Network Protocols
(ICNP), 2013 21st IEEE International Conference on, Oct 2013, pp. 1–
10.

[47] W. Fu, H. Ben Abraham, and P. Crowley, “Synchronizing namespaces
with invertible bloom filters,” in Architectures for Networking and
Communications Systems (ANCS), 2015 ACM/IEEE Symposium on, May
2015, pp. 123–134.

[48] T. Song, H. Yuan, P. Crowley, and B. Zhang, “Scalable name-based
packet forwarding: From millions to billions,” in Proceedings of the 2nd
International Conference on Information-Centric Networking. ACM,
2015, pp. 19–28.

[49] A. Afanasyev, Y. Yu, L. Zhang, J. Burke, J. Polterock et al., “The Second
Named Data Networking Community Meeting (NDNcomm 2015),”
ACM SIGCOMM Computer Communication Review, vol. 46, no. 1, pp.
58–63, 2016.

[50] W. Shang, J. Thompson, M. Cherkaoui, J. Burkey, and L. Zhang,
“NDN.JS: A JavaScript client library for Named Data Networking,”
in Computer Communications Workshops (INFOCOM WKSHPS), 2013
IEEE Conference on, April 2013, pp. 399–404.

[51] Z. Wang and J. Meng, “NDN EBAMS node running in Mini-NDN,”
Available at https://github.com/zhehaowang/bms-node.

[52] NDN Project Team, “Mini-NDN,” Available at https://github.com/
named-data/mini-ndn.

[53] A. Bannis, “Named Data Network Internet of Things Toolkit (NDN-
IoTT),” Available at https://github.com/remap/ndn-pi.

[54] NDN Project Team, “NDN Client Library for C++ and C,” Available at
https://github.com/named-data/ndn-cpp.

[55] ——, “NDNcomm Hackathon: Demonstrate NDN over Bluetooth LE
on the Arduino,” Available at https://github.com/ndncomm/ndn-btle/tree/
arduino.

[56] W. Shang, Y. Yu, T. Liang, B. Zhang, and L. Zhang, “NDN-ACE: Access
Control for Constrained Environments over Named Data Networking,”
NDN Project, Tech. Rep. NDN-0036, Revision 1, dec 2015.

[57] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moi-seenko, Y. Yu,
W. Shang, Y. Huang, J. P. Abraham, S. DiBenedetto, C. Fan, C. Pa-
padopoulos, D. Pesavento, G. Grassi, G. Pau, H. Zhang, T. Song,
H. Yuan, H. B. Abraham, P. Crowley, S. O. Amin, V. Lehman, , and
L. Wang, “NFD Developers Guide,” NDN Project, Tech. Rep. NDN-
0021, Revision 5, oct 2015.

