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ABSTRACT
Many emerging IoT approaches depend on cloud services to facili-
tate interoperation of devices and services within them, even when
all the communicating entities reside in the same local environ-
ment, as in many “smart home” applications. While such designs
o�er a straightforward way to implement IoT applications using
today’s TCP/IP protocol stack, they also introduce dependencies on
external connectivity and services that are unnecessary and o�en
bri�le. �is paper uses the design of an IoT-enabled home enter-
tainment application, dubbed Flow, to demonstrate how the Named
Data Networking (NDN) architecture enables cloud-independent
IoT applications. NDN enables local trust management and ren-
dezvous service, which play a foundational role in realizing other
IoT services. By employing application-de�ned naming rather than
host-based addressing at the network layer, and securing data di-
rectly, NDN enables straightforward and robust implementation of
these two core functions for IoT networks without cloud connec-
tivity. At the same time, NDN-based IoT designs can employ cloud
services to complement local system capabilities. A�er describing
the design and implementation of Flow, together with a discussion
on preliminary generalization of the design, as an evaluation the
paper conducts a brief thought exercise of how Flow could be real-
ized using two popular IoT frameworks, Amazon’s AWS IoT service
and the Apple HomeKit framework, and compares that with the
real implementation over NDN.
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1 INTRODUCTION
Internet-of-�ings (IoT) technologies are being rapidly adopted
in the consumer electronics market. �ere has been increasing
deployment of “smart” devices in the home environment to cre-
ate interactive, human-in-the-loop applications and services. In
addition to their use in traditional home automation systems, IoT
technologies have also been applied to home entertainment–for
example, with wireless inertial sensors used to track user body
movement in sports games. Combined with emerging virtual and
augmented reality technologies, IoT o�ers the promise of immersive
and interactive experience for end-users. Common requirements
for such systems include:

• Integration of heterogeneous devices and services from
di�erent vendors;

• Interactive user experience that emphasize real-time feed-
back loops;

• Easy installation and con�guration; and
• Security protection, due to tight integration with the home

network.
Many IoT frameworks and ecosystems have been proposed over

the last few years to facilitate the development ofmore sophisticated
applications like these. �ey typically provide a similar set of
framework-level services, including user and device authentication
and authorization, device and service discovery, device onboarding
and management, publish-subscribe messaging, and remote access.
On top of these common services, IoT developers can further design
and implement application-speci�c functionality. Fig. 1 shows a
common hierarchical architecture of IoT services, where “named
entities” refer to users, devices, and applications that require trust
management and utilize rendezvous services to get interconnected
into a coherent home IoT system.

Existing home IoT systems o�en depend on cloud-based services
provided by device vendors and/or service providers to implement



IoTDI 2017, April 18-21, 2017, Pi�sburgh, PA, USA Wentao Shang, Zhehao Wang, Alexander Afanasyev, Je� Burke, and Lixia Zhang

Named Entity

Trust 
Management Rendezvous

Device 
Management

Pub-sub 
Messaging

Resource 
Discovery

Access 
Control

Gateway 
Interface

Control 
Automation

Machine 
Learning

Persistent 
Storage

Web 
Integration

Event 
Monitoring

Framework

Applications

Figure 1: Hierarchical architecture of IoT services.

the framework services and application functions needed in a local
IoT environment.1 Such dependency on the cloud, for what could
be inherently local functionality, introduces potential negative im-
pacts:

• �e home IoT system requires connectivity to the cloud
to manage local devices and users; the user cannot install
new devices or authorize new users if connectivity to the
cloud is lost.

• With cloud-based services, control and resource access
commands go through the cloud, which acts as the ren-
dezvous point, even when the command issuer resides in
the same local network as the target device. �is introduces
additional delays that may hurt interactive applications.

• Cloud-based services expose data from the home environ-
ment to external parties, introducing potential security and
privacy risks.

• A simple error in the cloud can unnecessarily bring down
services to a large number of IoT systems.

In this paper, we present an alternative approach by leveraging
the Named Data Networking (NDN) architecture [3, 12]. We focus
on enabling IoT functions to be achieved locally, with support for
optional cloud services. Building upon our previous work in [4],
this paper identi�es trust management and rendezvous as two
foundational building blocks of all IoT services, as shown in Fig-
ure 1. It develops a speci�c design and implementation using NDN
primitives.

In Section 2, we �rst give an overview of representative IoT
ecosystems and outline their dependencies on the cloud. We then
describe in more detail these two foundational IoT services, trust
management and rendezvous, which provide the basis for boot-
strapping other services. We show that both of them can be sup-
ported more e�ciently in IoT networks under the Named Data
Networking architecture (Section 3). �e key idea behind such a
cloud-independent architecture design is to leverage NDN’s name-
based forwarding to directly operate on well-established names in
the local context. �is enables straightforward solutions for trust
management, via schematized trust, and rendezvous, via distributed
dataset synchronization.

1Cloud services also support features, such as voice recognition, which can be di�cult
to achieve locally; such advanced services are not critical to the overall design of IoT
systems and thus not our focus in this paper.

�e rest of the paper is organized as follows. Sections 4 and 5
present the design and implementation of Flow, an IoT-augmented
home entertainment application, as a realization of the proposed
IoT approach using NDN. While this implementation focuses on
an interactive home entertainment application, we believe that
our approach should be generally applicable to traditional home
automation systems and many other IoT subdomains. To provide
a qualitative evaluation, Section 6 presents a brief comparison be-
tween Flow and how a similar application could be approached
using AWS IoT and Apple HomeKit services, two popular TCP/IP-
based IoT frameworks.

2 BACKGROUND
2.1 Existing IoT Ecosystems
Many current IoT architectures and frameworks, such as Blue-
tooth [2], ZigBee [14], and Google�read [9], have primarily focused
on achieving device-to-device connectivity and interoperability. For
example, Bluetooth de�nes a seven-layer protocol stack and how
two devices can connect to each other over either point-to-point or
mesh networks, discover the other’s capabilities through applica-
tion layer pro�les, and exchange application data called a�ributes.
Designed as silos, these architectures cannot interoperate with each
other without a special gateway or translator deployed in between,
limiting development and innovation of IoT technologies.

As IoT systems become more powerful and more complex, there
is a growing demand for more comprehensive application-layer
frameworks that can integrate and manage di�erent types of de-
vices across di�erent communication technologies, enable more
intelligent application logic involving a large number of devices,
and provide simpli�ed user experience in operating such systems.
In this subsection, we brie�y review a few popular IoT application
frameworks that emerged in the last three years.

AllJoyn2 (20133) and IoTivity4 (2015) are generic IoT application
frameworks that aim to bridge various IoT transport technologies
and provide a common language for applications and services. �ey
both o�er standardized interfaces for common IoT services such as
device management, resource discovery, application-layer messag-
ing, access control, etc.. While they started with an emphasis on
proximal (i.e., local-area) communications, they also de�ne gateway
interfaces for connecting to external services both locally and in
the cloud. As lower-level frameworks, they do not mandate speci�c
solutions for trust management and rendezvous, but provide com-
mon protocol interfaces for developers to design and implement
applications and services that run either locally or remotely in the
cloud.

AWS IoT5 (2015), Google Weave6 (2015), Azure IoT Suite7 (2015),
and Samsung Smart�ings8 (2014) are examples of cloud-centric IoT
ecosystems that are bound to speci�c cloud service providers and
their implementations of all common IoT services, from authenti-
cation and device management to data processing and application

2h�ps://allseenalliance.org
3�e number in parentheses indicates the year of initial public announcement.
4h�ps://www.iotivity.org
5h�ps://aws.amazon.com/iot/
6h�ps://developers.google.com/weave/
7h�ps://azure.microso�.com/en-us/suites/iot-suite/
8h�ps://www.smar�hings.com

https://allseenalliance.org
https://www.iotivity.org
https://aws.amazon.com/iot/
https://developers.google.com/weave/
https://azure.microsoft.com/en-us/suites/iot-suite/
https://www.smartthings.com
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hosting. �rough tight integration with the cloud, those ecosystems
provide simple and centralized solutions for trust management and
rendezvous. To make devices and applications securely discover
and communicate with each other, the user typically registers all lo-
cal IoT devices and applications with the remote cloud service. �e
cloud then handles the tasks of device authentication and catalog
maintenance of the functionality available in the local environment.
Another bene�t of such cloud-centric architectures is easy integra-
tion with advanced services requiring data access or processing
power unavailable in the local environment, such as search, voice
recognition, and data analytics needed by large-scale IoT systems
including precision agriculture and industrial control.

A notable recent trend among such cloud-centric architectures is
to move certain IoT applications and services into the local network
and execute them on a local hub in order to tolerate intermi�ent
cloud connectivity. For example, Amazon, Google, and Samsung all
created their own home hub devices to connect local IoT devices and
perform simple home automation tasks. �e recently announced
AWS Greengrass9 (2016) even allows part of the AWS IoT control
plane to be hosted on a local server, essentially creating a private
cloud service close to the IoT deployment. However, local data (e.g.,
sensor reading, device status, system con�g, etc.) still need to be
synchronized to the remote cloud to be consumed by cloud-hosted
services.

Apple HomeKit10 (2014) can be viewed as an example of this
recent trend. HomeKit is designed as an IoT framework speci�-
cally for home automation applications that interact with Apple-
certi�ed IoT devices. Di�erent from the pure cloud-centric ecosys-
tems mentioned above, HomeKit’s design enables and encourages
local communications. �e framework stores the home con�gura-
tion in a local database which is synchronized across the devices
that are hosting HomeKit apps (e.g., a user’s iPhone or Apple TV).
A�er obtaining permissions from the user, HomeKit apps on any of
those devices can access the database to discover and communicate
with the home devices directly over the local network. Hence, the
rendezvous service is provided locally through database synchro-
nization so that each device has complete knowledge of the home
network. However, HomeKit still relies on Apple’s iCloud service
for device authentication and trust management: each user and
each new device must be authenticated through Apple and obtain
iCloud IDs �rst. In addition, the replication of the home con�gu-
ration database across user’s Apple devices is done indirectly via
iCloud. Moreover, remote access from outside the home network
requires tunneling the messages through iCloud to a local hub (e.g.,
an Apple TV) inside the home network.

Table 1 summarizes the approaches taken by di�erent IoT ar-
chitectures and ecosystems in providing the trust management
and rendezvous services. Note that all of them are built on top of
the TCP/IP protocol stack, therefore have to provide the mapping
services to resolve named entities to speci�c IP addresses, either
remotely in the cloud DNS service or locally via some zero-con�g
protocol such as mDNS.

9h�ps://aws.amazon.com/greengrass/
10h�p://www.apple.com/ios/home/

Table 1: Comparison of existing IoT architectures and
ecosystems.

Trust management Rendezvous
Bluetooth P2P peering None (P2P)
ZigBee Pre-shared master key Broadcast

Google �read L2 network-wide key None
AllJoyn / IoTivity Interface only Interface only

AWS IoT Cloud service Cloud service
Google Weave Cloud service Cloud service
Azure IoT Suite Cloud service Cloud service

Samsung Smart�ings Cloud service Cloud service
Apple HomeKit Cloud service Database sync

2.2 Named Data Networking of �ings
Named Data Networking (NDN) is a future Internet architecture
under development. NDN replaces host-addressed IP packets with
named data as the new narrow waist of the “hourglass” protocol
stack. Each data object has a hierarchical name that serves as the
unique identi�er within the application context where the data is
published and consumed. To request a data object, one sends an
Interest packet carrying a pre�x of the data name. NDN forwarders
forward the Interest packet towards where the data may be found.
Each forwarder along the path records the Interest and its incoming
interface in a local Pending Interest Table (PIT). When a matching
Data packet is encountered, either in a forwarder’s cache or from
the original producer, the Data packet is returned to the requester
by following the reverse path of the Interest as recorded in the PITs
of the nodes along the path; those nodes may store a copy of the
Data packet in their local caches a�er forwarding, to be used to
satisfy future requests for the same data. �e Data packet carries a
cryptographic signature generated by its producer, together with
the name of the signing key. �is allows the data consumer to verify
the provenance of received data regardless of its source.

In our previous paper [4], we described that, by naming and
securing the things and data directly at the network layer, how
NDN is able to provide a more straightforward and secure solution
to IoT networking as compared to TCP/IP:

• �e Interest-Data exchange model in NDN closely resem-
bles the RESTful protocols such as HTTP and CoAP that
are widely adopted in today’s IoT systems.

• Name-based forwarding simpli�es the network stack by
removing the extra step of resolving application names to
network identi�ers (e.g., IP and MAC addresses).

• Data-centric security is more e�cient and IoT-friendly
than the channel-based or physical/logical isolation-based
alternatives.

• Ubiquitous in-network data caching helps improve the
e�ciency of information dissemination, especially for re-
source constrained IoT environments.

In [4] we also described various higher-level protocols built on top
of NDN to achieve framework functionalities such as bootstrapping
and discovery, trust management, access control, multi-party com-
munication, and global integration. �e major di�erences between
NDN- and IP-based IoT architectures are illustrated in Fig. 2. We
refer readers to [4] for a complete discussion.

https://aws.amazon.com/greengrass/
http://www.apple.com/ios/home/
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Figure 2: Protocol stack comparison of NDN and TCP/IP.

Expanding on our previous work, our goal in this paper is to
demonstrate the design and implementation of a speci�c IoT system
based on NDN. In particular, we will illustrate how to leverage
naming within the local context to achieve trust management and
rendezvous in an IoT network, which further enables a variety of
local IoT applications and services.

3 CLOUD-INDEPENDENT IOT OVER NDN
In this section, we brie�y review the IoT services commonly sup-
ported by remote cloud infrastructure. �en we discuss how the
same functionality can be achieved more e�ciently by leveraging
local trust management and rendezvous over the NDN architecture.

3.1 IoT and the cloud
IoT applications and services o�en require a set of common services
to be provided by the application-layer frameworks, as shown in
Fig. 1:

• Identitymanagement, authentication and authorization, mak-
ing up the trust management subsystem for users, devices
and services and, in connection-oriented models, access
control;

• Rendezvous and resource discovery, enabling applications
to �nd the devices and services they need;

• Device management, to handle onboarding, monitoring,
con�guration changes, so�ware upgrades, etc. for con-
stituent devices;

• Application data messaging, which supports data exchange
through mechanisms including publish-subscribe (pub-
sub), streaming, etc.; and

• Gateways to external networks, bridging a local IoT network
to external services such as data storage and analytics, as
well as the public Internet (including mobile devices) in
general.

As we discussed in Section 2.1, most IoT ecosystems today rely
on the cloud to implement part or all of those framework services.
For example, in AWS IoT, cloud services play several critical roles
that cover all of the above aspects of an IoT platform. AWS acts as an
identity provider, issuing security credentials for users and devices;
it provides authorization services, whereby device certi�cate issued
by AWS contains the resource access policies prescribed by the
user; and it handles device management and rendezvous, where
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Device
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Figure 3: Typical cloud-centric IoT architecture

all devices in the IoT system register with and report to AWS,
which also collects state for all devices and makes it available to
applications. All messages between IoT devices and services are
tunneled through the cloud for pub-sub dispatching. AWS can host
applications that consume the IoT data and trigger actions when
certain events happen. Users can access the IoT network from
public Internet, the messages are also tunneled through AWS via
the message brokers.

A typical cloud-centric IoT architecture is depicted in Fig. 3.
�e cloud provides a convenient “central hub” for managing the
interconnections of all the devices in an IoT system. By transferring
the control to the cloud, a cloud-centric IoT architecture simpli�es
the system con�guration and management tasks for users, but
sacri�ces the opportunity of using local communication to achieve
higher reliability and e�ciency. It requires local data traverse the
global network unnecessarily. In “human-in-the-loop” application
scenarios, control messages from the user’s smartphone are �rst
routed to the cloud for authentication and logging before being
forwarded to the IoT device. �is extra latency may negatively
impact real-time, interactive applications, such as IoT-augmented
home entertainment experiences. Furthermore, the exposure of
local IoT devices and private data to the global network can be
a potential security risk, making all users depend on the cloud
service providers to protect their data and enforce access control
properly. �e connectivity to the remote servers in the cloud can
also be a single point of failure. For example, a user of a home IoT
systems cannot install or re-con�gure devices at home or access
home network from public Internet if the connectivity from her
home to the cloud is down, or if the cloud service experiences an
outage [1].

3.2 Rethinking IoT Service Architecture
Among the IoT framework services shown in Figure 1, two play
foundational roles:

(1) Trust management, which authenticates IoT system en-
tities (users, devices, and applications), and authorizes how
they may interact with each other; and
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(2) Rendezvous, which provides a means for di�erent entities
to discover and interconnect with each other, over either
local or global networks.

Independent from the lower layer addressing scheme, trust man-
agement and rendezvous at the application layer are built on the
concept of named entities. �e application-layer names are ei-
ther speci�ed by the users or auto-generated by the devices and
applications. �ose names serve as the entities’ identi�ers in an
IoT system and allow those entities to refer to each other and in-
teroperate. To enable authentication, the identity names must be
associated with some form of credentials such as user passwords
or public key certi�cates. �erefore application-layer trust policies
can be composed in terms of names meaningful at the application
layer, rather than low-level device identi�ers and raw key materials.
Named entities also provide the basis for rendezvous: an entity
can discover other entities on the same network by learning their
names.

Other IoT services can be bootstrapped from these two core ser-
vices. As an example, device management is based on discovery (via
rendezvous) and mutual trust establishment to enable communica-
tion between devices and managing services; resource discovery
is a natural extension of rendezvous, enhanced by the ability to
verify a resource’s origin a�er the discovery; pub-sub messaging
and external gateways both require the interplay of rendezvous and
authentication functions. Note that those services may be interde-
pendent; together they form a framework layer, on top of which
IoT developers can create high-level applications and services.

A major bene�t of hosting IoT services and applications in the
cloud is simpli�ed user experience, especially if the system has to
deal with the complexity of registering devices with some local con-
troller, connecting devices with local and remote applications, and
managing security credentials – such operations can be too compli-
cated for ordinary home users to handle. However, we believe the
above-mentioned complexity is an artifact of existing implemen-
tations use of the TCP/IP protocol stack, rather than an intrinsic
nature of IoT systems in general. As we illustrate in Sections 4 and 5,
the usability problem can indeed be addressed in an NDN-based
implementation, which directly utilizes human-friendly, hierar-
chical naming in supporting rendezvous and trust management
services. Human-friendly naming enables intuitive understanding
of the trust relationship among devices and applications for ordi-
nary users, and a hierarchical naming structure provides proper
contexts to facilitate applications in expressing and exploring the
organization of the IoT system, further enabling automated trust
management and rendezvous tools.

Unfortunately, the TCP/IP protocol stack o�ers IP addresses as
the �rst-order names for devices and services,11 accompanied by
per-device or per-service public keys for (D)TLS authentication.
Semantically meaningful names, such as URLs, reside at application-
layer only, and have to be resolved to addresses or port numbers
when the applications access data or services via the network. Nu-
meric names are straightforward for machines to operate on, but
contain no semantic meaning that can be leveraged to make trust

11For example, it is a common practice in cloud computing to assign one or more
virtual IPs (VIPs) to identify cloud services.

decisions, to support rendezvous, or to provide intuitive under-
standing for human users and application developers.

�e NDN architecture o�ers an elegant solution to the naming
problem at the network layer. It allows the IoT services to be
described locally and in a decentralized way without sacri�cing
security, functionality, �exibility, and usability, as described in the
next subsection.

3.3 Achieving Local IoT Functions with NDN
�e NDN architecture bootstraps local IoT communication by nam-
ing the entities in the context of the local IoT network. Instead of
obtaining their identities from cloud service providers, the entities
in the IoT network create local identities associated with asymmet-
ric cryptographic keys that are certi�ed by a local trust anchor. �e
identity certi�cates are all published as Data packets in the local
NDN network under the identity namespace. �e trust anchor is
typically a root key created by the owner of the IoT system and
stored securely on a local authentication server such as a control
hub or a TPM-equipped smartphone.

Note that a local entity may also have other identities for external
communications. For example, a device may have a manufacture-
issued identi�er that is used for signing the device status report or
retrieving so�ware/�rmware updates; users may also have public
identities (e.g., OpenIDs) that can be used for initial authentication
when new users are added to the system. �e practice of using dif-
ferent identi�ers for di�erent purposes is aligned with the principle
of least privilege.

A�er the local identities are created, the NDN-IoT architecture
leverages two powerful tools to provide the two fundamental ser-
vices: using schematized trust [10] for local trust management, and
distributed sync (e.g., [13]) for local rendezvous.

3.3.1 Trust management. IoT system trust policies can be for-
mally described using trust schema to specify the relations between
data names and signing key names using a domain-speci�c lan-
guage designed for pa�ern matching on NDN names. �e NDN
so�ware platform provides tools that automatically sign and ver-
ify the Data packets according to a given trust schema, which are
pre-de�ned and can be integrated into the applications through
client libraries.12 �e trust schema of IoT applications can list the
local trust anchors and specify the trust relationship between local
data and key names, which can be enforced within the scope of the
local network without the intervention of cloud services. If needed,
the trust schema can also include external trust anchors (e.g., the
public keys of a trusted cloud provider) according to the application
requirements.

3.3.2 Rendezvous. NDN Sync protocols such as ChronoSync [13]
allow multiple devices to synchronize the namespace of the shared
dataset without relying on central servers. �is mechanism pro-
vides a convenient rendezvous solution where the application pre-
�xes and device identities are published under a well-known local
namespace and synchronized across multiple devices in the IoT net-
work. �e synchronization protocol can bene�t from local multicast
communication for e�ciency, it may also work in a peer-to-peer

12Trust-schema can also be modi�ed dynamically and redistributed to relevant entities
in the same way as any other named, signed data.
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fashion when multicast is not supported by the constrained de-
vices.13 For large-scale IoT systems, multiple sync groups can be
created under separate namespaces to insulate independent subsys-
tems.

�rough support for decentralized trust management and ren-
dezvous, anNDN-based IoT architecture enables cloud-independence
while providing essential IoT services. Applications can still bene-
�t from cloud services whenever needed, such as archiving data,
performing complex data analysis jobs, or accessing advanced ser-
vices like search and voice recognition. In fact, NDN simpli�es
the integration with the external networks by using the universal
Interest-Data exchange primitive for data communication. Cloud
services become an optional component, rather than a required
piece of the architecture.

Automated local trust management and rendezvous should also
improve user experience by limiting the only manual step of con-
�guration during device setup to a local one–registering the device
with the local trust anchor, e.g. by scanning the barcode of a newly
purchased device.Once the trust is established and a local certi�cate
is generated, the IoT devices and applications can communicate
with each other, exchange useful information, or discover new
devices and applications without human intervention or cloud con-
nectivity.

4 FLOW: A HOME ENTERTAINMENT
EXPERIENCE OVER NDN

In this section, we describe the design of Flow, a home entertain-
ment experience that leverages NDN to realize a cloud-independent,
IoT-supported application, and conclude by summarizing the com-
ponents of a generalized NDN-IoT framework developed based on
this design. Flow is a prototype of a multi-user “exploration game”,
in which participants navigate and interact with a virtual world
rendered in a game engine using a combination of inputs:

(1) Indoor positioning: participants’ positions in physical space,
detected by indoor positioning (person tracking), modify
the virtual landscape;

(2) Wearable sensing: participants directly control orientation
of the environment’s virtual camera using gyroscopes con-
nected to microcontrollers, which can be worn or carried;

(3) Mobile phone interface: participants interact with the vir-
tual environment through controls on their smartphone,
for example to share social media images in the virtual
environment.

In addition to various types of IoT devices and the game engine,
the system on which Flow is built also includes an authentication
server (AS) that performs local trust management. �e AS can be
implemented as an app on the owner’s smartphone, or a service
daemon on a dedicated control hub (e.g., the home router).

Figure 4 shows a typical deployment scenario of Flow in a home
network. NDN interconnectivity between di�erent components
is supported over Ethernet and Wi-Fi, through the home Wi-Fi
router in a hub-and-spoke topology. Sensor devices with limited
networking capability (e.g., the gyroscope in Fig. 4) may be bridged

13See [6] for detailed discussion on the issue with multicast in IoT.
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Figure 4: Typical deployment of the Flow home entertain-
ment experience.

via a helper device. We assume all devices can reach each other
over NDN, which is trivial in a hub-and-spoke topology.14

4.1 Naming and Identity
In Flow, data from the IoT things used by the application are named
using three namespaces:

• Application namespace: a local namespace for publishing
and accessing application data, e.g., gyroscope readings
needed to control the environment;

• Device namespace: a local namespace for publishing device
identity certi�cates and metadata;15

• Manufacturer namespace: a global namespace created by
the IoT device vendors and for trust bootstrapping.

Fig. 5 shows an example of the Flow namespace. In addition to
these three namespaces which name devices, things and their data,
note the discovery branch under the local root pre�x, which is used
for device rendezvous and for application pre�x discovery. Details
of its functionality are described later.

�e device and application namespaces both have as their root a
home pre�x that is either context-dependent (e.g., “/AliceHome” as
in Fig. 5) or globally reachable (e.g., “/att/ucla/dorm1/301”).

�e application namespace starts with a unique instance name
(e.g., “/AliceHome/flow1”) created by the application at installa-
tion. Data produced by each component is named under an appli-
cation label con�gured by the developer (e.g. “/AliceHome/flow1
/tracking1”). �e application label also contains a metadata sub-
tree containing the device name that serves this data (e.g. “/AliceHome
/flow1/tracking1/_meta/_device”).

Devices publish their local identity certi�cates under the device
namespace (e.g., “/AliceHome/devices”). �ey also publish meta-
data (pro�le) information in the “_meta/_app” branch under the
device identity pre�x, including, for example, the application data

14A routing protocol may be required if a sensor mesh topology is deployed inside the
home network.
15Device metadata could include information about devices and their capabilities as
well as bindings to application names.
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Figure 5: Example namespace within the home environment where Flow is deployed.

pre�xes they use to publish. �e device namespace of an authen-
tication server also contains the trust schema of currently active
applications. Schema and trust relationship details are described
later in this section.

�emanufacturer namespace falls under vendor-speci�c pre�xes
that are independent from the home network’s local pre�x. We en-
vision that manufacturers will have globally unique names for their
products used during bootstrapping, over-the-air updates, and sim-
ilar processes. Manufacturers publish their own certi�cates under
this globally unique pre�x so that the devices can authenticate the
data coming from the vendors such as so�ware/�rmware updates
and service noti�cations.16 In the research prototype of Flow, all
devices are con�gured with vendor-provided identity names and
pro�les in their initial provisioning, before being connected to the
home network. �ese are used for device onboarding.

4.2 Trust Management
Flow demonstrates a multi-step process for trusting new devices
in a home IoT network and enabling their data to be used in an
application. First, a device is assigned a device-level name and added
to the trust hierarchy for things in the home. �en, it is con�gured
with one or more application-level names for its data, and these
names are added to application trust hierarchies. Finally, the device
is con�gured to respond to requests in application namespaces.

�e authentication server acts as the trust anchor. It can be
coordinated with but does not depend on a remote cloud services.
While the devices and users may have public identities outside the
home environment, they all need to obtain local identities that are
certi�ed by the authentication server (AS) before they can start
interacting with other local entities.17

�e process of establishing a trust relationship between a new
device and the home through the AS is similar to the Bluetooth

16Reachability of data in this pre�x is not addressed here but can be accomplished
through encapsulation supported by the home router, for example.
17�e public identities may be used to assist the onboarding process, but will not
be required for local communication once the initial con�guration has �nished. For
example, a new user can authenticate with the AS using her public identity (e.g.,
OpenID or Google/Facebook account) before creating her local identity that is used
solely by the home environment.

Device AS

Interest: /[device-prefix]/cmd/add/[ts]

Data: content={“status”: “200”}
Interest: /[as-prefix]/cert_req/{key name, key bits}

Enter shared secret

Data: content={signed certificate}

Interest: /[as-prefix]/ID-CERT/[ts]

Cert request

Data: content={gateway certificate}

Verify ID-Cert

Generate ID-Cert

Fetch AS Cert

Figure 6: Bootstrap trust relationship for new device.

pairing process. To bootstrap a new device, the user—or a con�gura-
tion application on her behalf—provides a shared secret and a local
device name. �e shared secret may be a device barcode, identity
communicated by NFC, or simply a PIN number. �e AS sends a
command Interest to the device, signed using a key derived from
the shared secret, to ask that it generate a public/private key pair
associated with the device’s new name on the local network. �e
device replies with a Data packet containing an identity certi�cate
request, also signed by the shared secret. �e AS generates the
identity certi�cate based on this request. �e device, now part of
the trust hierarchy, can advertise its services or participate in an
application over the local network. �is process is illustrated in
Fig. 6. If the device has been issued a public identity certi�cate by
its vendor, the AS may optionally authenticate its public identity,
e.g., by asking the device to sign an AS-generated challenge.

Applications in Flow are “installed” in a similar way to devices,
with the AS signing both identity certi�cates and trust schema
for the application. �e application’s trust schema expresses what
device identities are authorized to publish under what application
pre�xes and is published as a normal Data object on the local NDN
network. For example, in Fig. 5 “flow1” is a speci�c Flow instance
and “schema” branch contains the trust schema of this instance. �e
schema name includes a monotonic version number at the end, so
when there is a change in the schema a newer version is published.
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Producer AS

Interest: /[as_prefix]/requests/
{app_prefix, app_name, cert_name}

Data: content={“status”: “200”}

Consumer

Interest: /[as_prefix]/[app_name]/schema/
exclude=[last_received_ts]

Data: content={trust_schema_string}

/AliceHome/devices/as1/

/AliceHome/devices/raspberry_pi/234

/AliceHome/flow1/gyro1/data/#seq

signs

signs

AS identity 
(trust anchor)

Device identity in 
“/AliceHome”

Application data produced 
by that device

Producer authorization &
Consumer trust schema update

Trust relationship example

Figure 7: Schematized trust between producers and con-
sumers.

�e technical details of how to specify a trust schema are described
in [10].

When a device that produces data is installed, it sends a command
Interest to the AS that includes the application pre�x it intends to
publish under and its own local identity. If the request to publish
data in the home network is granted, the AS will update the trust
schema with the authentication rules for data published by this
device. �e rule binds a device identity with the application pre-
�xes it’s authorized to publish under.18 Schematized trust enables
�ne-grained control over what devices can publish what data for
which application instances. Consumer devices fetch the latest
trust schema over the network via NDN and follow the rules to
authenticate the data packets published in the network. �e pro-
ducer authorization process, as well as an example of the resulting
trust relationship, is shown in Fig. 7, in which the AS signs a device
identity, and the device signs a piece of application data it publishes.

4.3 Rendezvous
Flow also demonstrates a name-based, distributed rendezvousmech-
anism for devices and applications to discover each other over
NDN. As described in the previous section, the key idea is to
synchronize the set of device and application names (called the
rendezvous dataset) across the devices in the network that are
interested in learning about them. �e synchronization process
utilizes the decentralized and serverless ChronoSync [13] proto-
col to e�ectively synchronize pre�xes of active devices and appli-
cations under “/AliceHome/discovery/devices” and “/AliceHome
/discovery/apps” sub-namespaces, respectively.

When a new device is installed in the Flow system, it joins
both the “devices” and “apps” sync groups and announces its local
identity and application pre�xes in the rendezvous dataset, which
is propagated via ChronoSync across the network. Applications
running on each device look up the local copy of the rendezvous
dataset directly using a common API. Once an application obtains
18�is binding addresses potential collision in application labels–for example, by
default the AS does not authorize a second device to publish under an application
namespace claimed by another.

the name pre�x of the target device or application, it can follow
the namespace structure described in 4.1 to construct Interests
for fetching the certi�cates and metadata, enabling it to bootstrap
high-level service communication.

4.4 Generalizing IoT functionality in NDN
�rough the design of Flow, we explored how to use NDN to provide
the functionality discussed in Section 3.1 without reliance on any
cloud services, and generalized it in a framework called NDN-IoT,
which provides the following features besides trust management
and rendezvous services:

• Device management: In addition to device onboarding and
bootstrapping, NDN-IoT also supports device monitoring
by publishing device status (e.g., power level, CPU/memory
usage, so�ware/�rmware versions, etc.) periodically. �e
information can be visualized by a user-friendly dashboard
application running on the user’s smartphone or computer
which sends out Interests to fetch the status of interested
devices either periodically or on demand.

• Pub-sub messaging: �e pub-sub messaging protocol in
NDN-IoT currently supports two types of application data
naming schemes. If the publisher names the data using con-
tinuous sequence numbers (e.g. “/AliceHome/flow1/gyro1
/data/[0,1,2,...]”), the subscribers pipeline their Inter-
ests, following a built-in congestion control algorithm, to
fetch the data using full names that include the trailing se-
quence numbers. If the data name contains timestamp (e.g.
“/AliceHome/devices/pc1/_status/20170104T1130”) that
cannot be predicted, the subscribers issue Interests using
the pre�xes of the data (excluding the timestamp compo-
nent) periodically or immediately a�er the previous data
is received, in order to keep outstanding PIT entries in
the network. Some of the authors are involved in an on-
going research project that investigates the use of sync
protocols for implementing pub-sub semantics in IoT envi-
ronment [7].

• Gateways to external network and services: �e local IoT
system can request data from the public Internet using
globally reachable names. Meanwhile, its local data can
be made available to the public Internet by publishing un-
der a globally reachable name pre�x directly or having a
gateway service that generates data named under a glob-
ally reachable pre�x to encapsulate data from the local
system (e.g. “/att/ucla/dorm1/301/flow1/gyro1/data/1”
→ “/AliceHome/flow1/gyro1/data/1”).

• Access control: NDN-IoT provides access control capabil-
ity using the Name-based Access Control framework [11],
which encrypts the content of the data and passes the
decryption key to authorized consumers only (encrypted
separately with each consumer’s public key). �e detailed
speci�cation of the access control protocol for NDN-IoT is
currently under development.

5 IMPLEMENTATION
We have implemented the NDN-IoT framework and a prototype
of the Flow entertainment system to verify the design introduced
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in the previous section. �e implementation follows a modular
structure and di�erentiates between the framework-level services
that we believe are common to many home IoT systems and the
functionality that supports Flow-speci�c application logic. �e
NDN-IoT framework is implemented as a set of libraries using
JavaScript, Python, C# and C++. It is built on top of the NDN
Common Client Libraries [8], providing further abstractions to
facilitate application development in a home IoT environment.

In our prototype, each of the Flow application components is
implemented as the following:

(1) Indoor positioning: We use OpenPTrack19, a multi-camera
person tracking system. �eNDNproducer for OpenPTrack20
(wri�en in C++) publishes the position of each person at
a 30Hz rate, along with lower rate metadata about active
tracks.

(2) Wearable sensing: We use an RFduino 22301 with gyro-
scope MPU6050 a�ached to provide virtual camera control.
�e RFduino cannot perform asynchronous signing oper-
ations quickly enough, so we introduced a Raspberry Pi
controller as a gateway for bridging RFduino to the NDN
home network. �e data exchanged between RFduino and
Raspberry Pi is signed with a shared secret key negoti-
ated a�er Bluetooth pairing. �e Raspberry Pi generates
a public/private key pair on behalf of the RFduino to be
associated with the RFduino’s device identity. �e RFduino
runs a minimum NDN producer, implemented with the
ndn-cpp-lite library21, which generates data at roughly
2Hz rate. When new data is generated, the RFduino pushes
the data (signed by the pre-negotiated shared secret) to
the Raspberry Pi controller over the Bluetooth LE channel.
�e controller receives the data, repackages the data and
signs the data using RFduino’s private key, and then pub-
lishes the data on the home network. �e RFduino data
publishing process is shown in Fig. 8.

(3) Mobile phone interface: We employ an Android phone that
loads a control webpage (wri�en in NDN.JS [5]) in a mo-
bile browser to interact with the virtual environment. �e
phone sends out two types of command Interests: the �rst
one matches an OpenPTrack track ID with that of the
mobile, and the second one drops an image onto the vir-
tual environment where the user’s avatar is standing. ID
matching is introduced so that the visualization knows the
location of the user’s avatar (identi�ed by a track ID) when
an image drop command Interest is issued by the same
user (identi�ed by the mobile’s ID).

(4) Visualization: We use the Unity3D22 game engine for visu-
alization. �e game engine runs C# NDN data consumers
that receive person tracking and virtual camera control
data, and a producer that receives image dropping com-
mand Interests from the mobile Web interface.

�e implementations for both NDN-IoT framework and Flow
application are available online23. We installed two instances of

19h�p://openptrack.org/about/
20h�ps://github.com/OpenPTrack/ndn-opt/
21h�ps://github.com/named-data/ndn-cpp/
22h�ps://unity3d.com
23h�ps://github.com/remap/ndn-�ow
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Push data (signed by K) 

Repackage data and sign 
with RFduino private key

Bluetooth LE NDN over Wi-Fi

Register RFduino
producer with AS

Figure 8: RFduino data publishing with assistance of Rasp-
berry Pi controller

the Flow application testbed at UCLA and Huawei. Fig. 9 shows a
diagram of the system and its message �ows a�er all devices are
bootstrapped with an authentication server, which in our installa-
tion is running on another Raspberry Pi device.

6 EVALUATION
In this section, we qualitatively compare Flow and the NDN-IoT
framework with conceptual implementations of a similar gaming
system over AWS IoT and Apple HomeKit (using TCP/IP architec-
ture). �e goal of this side-by-side comparison is to highlight the
di�erences between the proposed architecture and the current prac-
tice in the industry, and to articulate how the cloud-independent
IoT system can bene�t from the NDN architecture. Fig. 10 shows
three di�erent designs of home entertainment system over AWS
IoT, Apple HomeKit, and NDN-IoT, respectively.

As shown in Fig. 10a, all the local devices must be certi�ed by
the AWS IoT Registry service in order to join the IoT system. Ap-
plication data generated by the person tracking device and the
user smartphone go through the pub-sub message brokers (e.g., via
MQTT) in the cloud, which then routes the messages to the game
engine back in the local network, or other AWS services in the
cloud according to user-de�ned rules. �ere is a signi�cant amount
of work performed by the AWS infrastructure to map user-de�ned
device names to the endpoints of the underlying TLS tunnels, main-
tain state about device con�guration and latest status, present a
consistent view of the local IoT network to all applications and ser-
vices both locally and in the cloud, manage the pub-sub relationship
between data producers and consumers, and enforce authentication
and access control policies during message forwarding.

Being the least cloud-dependent among the existing IoT ecosys-
tems, HomeKit limits an application like Flow’s dependency on the
cloud to two key services only: authenticating devices and users
during the bootstrap phase, and synchronizing the home con�gu-
ration database across multiple devices. �e game engine device
in Fig. 10b can look up its local copy of that database to discover
the person tracking device and gyroscope sensor in the same local
network. �ere is a separate auto-con�guration process based on
mDNS to discover network addresses and set up secured connec-
tions among devices over local Wi-Fi or Ethernet. Although its

http://openptrack.org/about/
https://github.com/OpenPTrack/ndn-opt/
https://github.com/named-data/ndn-cpp/
https://unity3d.com
https://github.com/remap/ndn-flow
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Figure 9: Application components and message �ows in Flow
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Figure 10: Comparison of IoT-enabled home entertainment systems over three di�erent ecosystems.

reliance on cloud services is signi�cantly reduced as compared to
the AWS-based system, the HomeKit-based implementation still
su�ers from usability problem when the home network is discon-
nected. Without cloud connectivity, the user would not be able
to add new devices or invite new users. Further, con�guration
changes made to the existing devices would not be synchronized to

other local devices, leading to an inconsistent view of the system
among IoT applications and services.

Compared to the two cloud-based systems, the Flow application
and NDN-IoT framework depicted in Fig. 10c show the following
advantages:
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• Users can add or remove IoT devices (e.g., upgrading to
a new game control stick) at any time without requiring
connectivity to the public Internet.

• New devices are discoverable by existing applications and
services as soon as it obtains certi�cation for its local iden-
tity and starts advertising itself in the local “discovery”
sync group.

• Messages exchanged between the game controller and the
game engine are forwarded over the local network (typ-
ically relayed through the home Wi-Fi access point) and
experience minimum delay, improving real-time gaming
experience.

• In the case of online gaming, the data generated by remote
players is retrieved in the same way as the local data is
consumed. �e Interest-Data exchange between players in
di�erent geo-locations can be forwarded along the short-
est path through the Internet between the players’ home
networks, without relaying through the cloud service.

• Like all other NDN applications, the Flow game system
secures the data itself at production, which gives the appli-
cations full control over how their data is protected, rather
than depending on remote services in the cloud to execute
their security policies correctly.

7 CONCLUSION AND FUTUREWORK
�e Internet-of-�ings bring a revolution to local communications
as much as in global communication. However the intrinsic lim-
itations in the address-based TCP/IP architecture, and its lack of
security support in particular, make cloud-based IoT implementa-
tions a “path of least resistance”. As IoT becomes an essential part
of our everyday life, the implications of its cloud-dependency must
be addressed. As we were �nalizing this paper, a benign operational
error brought down Amazon cloud service [1] and impacted a large
number of IoT services as well as other applications. �is incident
reminds us that cloud services are not immune to failures, further
underscoring the value of this work. Robust solutions are also likely
to expand the market to the long tail of dwellings (from houseboats
to motorhomes), and to “the next billion” in the emerging markets
with challenging communications conditions, where the cloud may
be accessible but not always reliable.

It is with these opportunities in mind that we have developed the
cloud-independent design described in this paper. We have shown a
speci�c design for the two fundamental functions in IoT, trust man-
agement and rendezvous, in a way that is independent from, but can
readily incorporate, cloud-based services. As a proof of evidence,
we have implemented a running home entertainment application.
We built our solution on top of Named Data Networking archi-
tecture, assuring resiliency of local “smart” IoT features in face of
external failures. At the heart of the design are application-de�ned

hierarchically named and secured data packets exchanged at the
networking level, from which trust management and rendezvous
can be built.

Signi�cant challenges remain for the IoT and NDN research com-
munities, many of which have been mentioned earlier. For example,
designs for easy-to-use, encryption-based access control in net-
works with heterogeneous computational capabilities of individual
devices remain to be developed, as do designs for global access
to the manufacturer namespaces in our examples. Application de-
velopment paradigms for Named Data Networking of �ings, and
NDN applications in general, largely remain as an open area of
future research.
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