Named Data Networking

Introduction and hands on tutorial by

Alex Afanasyev, UCLA Steve DiBenedetto, CSU

Goals for today

- Introduce Named Data Networking (NDN)
- Describe the project and its goals
- Illustrate NDN concepts
- Show how to write simple applications and now to experiment with NFD forwarder

Share This Presentation?

What about video? What would happen if it became popular?

What is the best way for me to share these slides with you right now?

Sending This Message?

From: C. D. (Dan) Mote, Jr. <dmote@email.edu>

Date: Mon, May 13, 2013 at 7:39 PM

Subject: Congratulations!

To: Alex Afanasyev <alex@email.edu>

Dear Dr. Afanasyev,

I write to inform you that you have been elected a Fellow to the National Academy of Engineering. As you may understand, this designation follows a process of nomination and subsequent vote by existing Fellows. Congratulations.

Sincerely,

C.D. Mote, Jr.

President-Elect, National Academy of Engineering

Use Connected Environment/IoT?

Challenges Caused By a Single Problem

Telephony/Internet Process

- 1. Find the **number/address** for the one you want to talk to.
- 2. Use that number to establish a **point-to-point connection**.
- 3. Communicate!

Sharing *Must know address*

Trust Place all trust in address

IoT Know & trust all addresses

A Simpler Way

Suppose your device could ask for what it wanted?

/this_room/alex/talks/GEC21.pptx

/youtube.com/video/ndn/van2006

/ucla/boelter_hall/4th_flor/room412/ thermostat/1/status

The Web Has Named World's Data!

http:///www.youtube.com/watch?v=oCZMoY3q2uM

http://www.youtube.com/watch?
feature=player_detailpage&v=oCZMoY3q2uM#t=1736s

Core Idea

Use names directly at the networking level

Focus on data, not host-to-host connections

Closed-loop communication

Named Data Networking

- Leverages the strengths of the Internet, addresses weaknesses
 - Layers efficiently atop Ethernet, UDP, TCP, ...
- Naturally accommodates
 - Mobile devices
 - Wireless and other broadcast-based link types
 - Data authentication and security, privacy, anonymity
 - Policy-based forwarding, routing with loops
- With NDN, we aim to show that
 - Communication is more secure
 - Infrastructure is more efficiently utilized
 - Applications are simpler

NDN Project

- Project launch:
 9/2010, part of NSF
 FIA Program
 5/2014, part of NSF
 FIA-NP Program
- Research Areas:
 Architecture, Routing,
 Security,
 Applications, Scalable
 Forwarding

UCLA: Van Jacobson, Jeff Burke, Deborah Estrin, **Lixia Zhang**

University of Arizona: Beichuan Zhang

University of California, San Diego: Kim

Claffy, Dmitri Krioukov

Colorado State University: Christos

Papadopoulos

University of Illinois, Urbana-

Champaign: Tarek Abdelzaher

University of Memphis: Lan Wang

University of Michigan: Alex Halderman

Washington University: Patrick Crowley

Northeastern University: Edmund Yeh

University of Maryland: Katie Shilton

Two Packet Types

Interest Packet

Selectors (order preference, publisher filter, exclude filter, ...) Nonce Guiders (scope, Interest lifetime)

Data Packet

- No addresses
- Publishers bind names to data; receivers verify

NDN Interest Forwarding

1. Do I have this data?

2. Is a request already pending?

3. Which next hop might lead to the source?

1 Emit Interest: xkcd.com/949/1

interest list.

- 1 Emit Interest: xkcd.com/949/1
- 2 Interest arrives at switch

- 1 Emit Interest: xkcd.com/949/1
- 2 Interest arrives at switch
- 3 Interest arrives at gateway

- Emit Interest: xkcd.com/949/1
- 2 Interest arrives at switch
- 3 Interest arrives at gateway

- 1 Emit Interest: xkcd.com/949/1
- 2 Interest arrives at switch
- 3 Interest arrives at gateway
- 4 Laptop moves to WiFi

Data arrives

Enterprise
Network

3

Data packet arrives

- 1. Store data packet in buffer.
- 2. Send packet out any matching interfaces on the pending interest list.
- 3. Remove pending entries.

- 1 Emit Interest: xkcd.com/949/1
 - 2 Interest arrives at switch
 - 3 Interest arrives at gateway
 - 4 Laptop moves to WiFi
 - **5** Data arrives
 - 6 Interest resent

Enterprise Network 3

I: xkcd.com/949/1 Finished!

Interest packet arrives

- 1. Do my buffers contain **xkcd.com/ 949/1? Yes, send it.**
- 2. Is a pending request for it in flight?
- 3. Where should I forward the interest? Add arriving interface to the pending interest list.

nternet

IP Nodes and Routes

IP Nodes and Routes

NDN Nodes and Routes

Questions

- Can NDN efficiently support host-to-host patterns?
- Can NDN efficiently support user-specific data and services?
- Can you count clicks and ad impressions in NDN?

Yes!

- Can you efficiently route all those names?
- Can you scale the forwarding plane?
- Can you prove security and privacy properties?

Yes, mostly!

Conclusion (1/2)

- Growing evidence that with NDN
 - Communication is more secure
 - Infrastructure is more efficiently utilized
 - Applications are simpler
 - New things are possible

Conclusion (2/2)

- In coming years
 - Growing commercial interest and experimentation
 - Deployments in greenfields / IP trouble spots
 - IoT, building automation, healthcare, vehicular
- Research community is growing
 - We share an open-source code base with related projects and groups moving forwarding in Europe and Asia
 - NDN Consortium, launched this month, already includes
 14 universities, 5 for-profit corporations, and 1 non-profit.

NDN Components

NDN Libraries

- All libraries now reflect fundamental architectural abstractions directly in objects, and wire format manipulation is abstracted.
 - Name, Component
 - Interest, Selectors
 - o Data, MetaInfo, SignatureInfo, SignatureValue, KeyLocator
 - Face
 - KeyChain, Validator
- Multiple library efforts
 - NDN-CXX: "C++ for eXtended eXperimentation"
 - C++ (soon to be C++11), Boost (Asio, Filesystem, ...)
 - NDN-CCL: "Common Client Libraries"
 - C++
 - Python (2 and 3)
 - JavaScript (browser and node.js)
 - Java
 - Enables diversity of coding choice
 - o Drives us towards specification (and not just implementation)

Security Support

http://named-data.net/doc/ndn-cxx/0.2.0/ tutorials/security-library.html#signing

Supported Security Features

- Asymmetric cryptography
 - o RSA
 - o ECDSA
- Symmetric cryptography*
 - o AES
 - HMAC
- Trivial cryptography
 - o SHA256 digest
- Signing/verification granularity
 - Data packet
 - Set of Data packets*

NDN Platform

- Provide a coherent, usable, and well-documented "platform" for exploring NDN in practical applications – for the NDN project team and external users.
- Use a release "heartbeat" to stimulate interoperability testing and discussion of how the various moving parts work together.
- Along the way, improve access to and consistency of various NDN code projects.
- Open and lightweight process, with no unrealistic centralization or overmanagement but clear ownership of each component project.
- Managed nodes on the testbed run the Platform.

NDN Platform 0.3 (August 2014)

- NFD NDN Forwarding Daemon, version 0.2.0 (1)
- ndn-cxx library, version 0.2.0
 - The NDN C++ library with experimental extensions (CXX)
 - The ndnsec security tools to manage security identities and certificates
- NDN-CCL NDN Common Client libraries suite, version 0.3
 - NDN-CPP C++ / C library
 - PyNDN2 Python library
 - NDN-JS JavaScript library (with Node.js support)
 - o jNDN Java library (preliminary)
- NLSR Named Data Link State Routing Protocol, version 0.1.0
- repo-ng next generation of NDN repository, version 0.1.0
- ndn-tlv-ping ping application for NDN, version 0.2.0
- **ndn-traffic-generator** traffic generator for NDN , version 0.2.0
- ndndump packet capture and analysis tool for NDN, version 0.5
- Partial binary package support on Ubuntu, MacOS X, others...

Community Outreach

- One public Github repo for all code
 - o http://github.com/named-data
- Public Redmine with Wiki documentation for components
 - o http://redmine.named-data.net
- Components website
 - o NFD: http://named-data.net/doc/NFD/
 - o ndn-cxx: http://named-data.net/doc/ndn-cxx/
 - o NLSR: http://named-data.net/doc/NLSR/
 - NDN-CCL: http://named-data.net/doc/NDN-CCL/
- Code review
 - o http://gerrit.named-data.net
- Technical reports and NDN technical memos
 - http://named-data.net/publications/techreports/
- Mailing lists
 - o http://named-data.net/codebase/platform/support/mailing-lists/

Open to contributors and collaborators!

Ready for the Action?