

(D)DoS in CCN: Evaluation & Countermeasures

September 12, 2012

Ongoing collaborative work between PARC, UCLA and UCI Presenter: Ersin Uzun

What is DoS attack?

- Goal: Prevent legitimate resource usage – i.e., attack on availability
- Resources, e.g.,
 - Memory, CPU, Bandwidth, Storage etc.
- Distributed DoS (DDoS) attacks are common on today's Internet

(D)DoS in CCN: IP vs. CCN

• CCN is fundamentally different than IP

- Not push based
 - Data transmission must be preceded by a request for that data.
 - Most DoS attacks in IP are possible because unsolicited data can be sent anywhere
- Reliable Forwarding Plane
 - Interest and data follow the same path (i.e., immediate feedback to routers)
 - Easy to secure routing (remains challenging in BGP)
 - Better resiliency with multi-path routing
- Most current DoS attacks on IP are not applicable to CCN.
- What about new DoS attacks, specific to CCN?

(D)DoS in CCN: Two Major Threats

• Content Poisoning:

- Adversary introduces junk or fraudulent content
 - Pollutes router caches and consumes bandwidth
 - Invalid signatures or valid signatures by invalid producers
- Not easy to implement: cannot unilaterally push content
 - there will likely be trust mechanisms to register namespaces, etc.

• Interest flooding:

- Adversary injects a large number of spurious interests
 - Non-sensical distinct interests: not collapsible by routers
 - Consume PIT state in intervening routers as well as bandwidth
 - Legitimate CCN traffic suffers...
- Easy to implement
- Current CCNx has no countermeasures implemented

This talk is focused on interest flooding

Interest Flooding Attacks

- Why interest packets could be used for DoS?
 - Interests are unsolicited
 - Each non-collapsible interest consumes state (distinct PIT entry) in intervening routers
 - Interests requesting distinct data cannot be collapsed
 - Interests (usually) routed towards data producer(s)
- Can such attacks be prevented?
 - Short Answer: Yes
 - Unlike IP routers, ccn routers maintain rich state information that can be used to detect and react to interest flooding

Picture of an (interest flooding) attack

Exploring the solution space

- Simulation-based small experimentations
 - ndnSIM modular NDN simulator
 - <u>http://ndnsim.net</u>
 - different scale topologies
 - binary trees (3, 31, 128 nodes)
 - 10Mbps links
 - propagation delays randomized from range 1-10ms
 - No caching (worst case scenario)
 - simple attacker model
 - Sends targeted interests (common prefix) for non-existing content
 - up to 50% attacker population
 - various mitigation techniques
- Emulation-based verification
- Large scale simulations for promising mitigation techniques

Brief intro to ndnSIM

ndnSIM: NS-3 based NDN simulator

Respecting physical (bandwidth) limits

- Current CCNx code does not limit the PIT size, or the # of Pending interests for any interface
 - Downstream can send more interests than physically possible to satisfy.
- CCN has balanced flow between Interests & Data
 - Number of Interests defines upper limit on Data packets
- The number of pending Interests to fully utilize a link with data packets is:

Interest limit = delay(s)
$$\cdot \frac{\text{bandwidth (Bytes/s)}}{\text{avg data packet size (Bytes)}} + \varepsilon$$

That limit alone is not sufficient

- In small topologies, prevents attackers from injecting excessive # of interests.
- As expected, it does not work in big topologies
 - No differentiation between good and bad traffic.

Utilizing the state information in routers

- Theoretically, CCN routers have all the information needed to be able to differentiate good interests from bad ones.
 - To be effective in DoS, bad interests need to be insuppressible and requesting non-existing content.
 - On the other hand, good interests will likely be satisfied with a content
- Keep per incoming interface, per prefix (FIB entry) interest satisfaction statistics in routers
- Use the statistics to detect and control bad traffic.

Weighted round-robin on interest queues

- when an Interest arrives
 - If (per-prefix/per-face) pending Interest limit is not reached
 - accept Interest and create PIT entry
 - If limit is reached
 - "buffer" Interest in per-outgoing face/prefix queue (within perincoming face sub-queue)
 - set weight for per-incoming face sub-queue proportional to observed interest satisfaction ratio
 - when new PIT slot becomes available
 - accept and create PIT entry for an Interest from queues based on weighted round robin sampling

Weighted round-robin results

- Partially works
 - more fair share of resources
 - Not very effective at differentiating bad and good traffic (no-cache scenario)
 - Setting queue sizes and lifetime can get tricky
 - Will most likely improve if supplemented with NACKS (under testing)

Probabilistic Interest acceptance/drops

- When an Interest arrives
 - "accept" if the outgoing face is utilized under a threshold
 - Otherwise, accept with probability proportional to the satisfaction ratio for Interests on this face and perprefix
 - Even if satisfaction ratio is 0: "accept" with a low ("probe") probability
- All "accepted" Interests are still subject to (per-prefix/per-face) pending Interest limit

Probabilistic Interest acceptance Results

- Parameter selection is important but may not be easy due to topology variances.
- May result in link under-utilization
- Works in general,
- Might perform better with NACKs (more accurate statistics)

Dynamic Interest limit adjustments

- Incorporate "active" PIT management
 - Periodically
 - for every FIB prefix
 - for all faces
 - » Announce NoPI limit proportional to the satisfaction ratio
 - Min limit is 1 and sum of all announced limits is at least equal to sum of output limits

$$\sum_{face} (ratio_{face} \times Limit_{out}) \ge Limit_{out}$$

Illustration of Dynamic limits

Dynamic limits results

400 Packets per second 300 200 Does not require Туре --- InData 100 much parameter OutInterests tweaking Producer ٠ 40 0 20 60 80 100 Simulation time, seconds 1000 Packets per second Works with all 800 topologies tested 600 Туре 400 --- InData 200 - OutInterests 0 40 0 20 60 80 100 Simulation time, seconds

Large scale experimental setup

- Rocketfuel Sprint topology
- 7337 routers and 10 000 links
- Only adjacency = no link characteristics info
- Extract
 - 535 backbone routers
 - 3339 gateway routers
 - 3463 customer routers
- Backbone <-> Backbone links are 100Mb with 70ms delay
- Backbone <-> Gateways links are 10Mb with 20ms delay
- Gateway <-> Customer links are 1Mb with 20ms delay

Large scale results

5% of malicious clients

Thanks!

• Questions?