
NDN, Technical Report NDN-0005, 2012. http://named-data.net/techreports.html
Revision 2: October 5, 2012

1

ndnSIM: NDN simulator for NS-3
Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang

F

Abstract—Named Data Networking (NDN) is a newly proposed In-
ternet architecture. NDN retains the Internet’s hourglass architecture
but evolves the thin waist. Instead of pushing data to specific loca-
tions, NDN retrieves data by name. On one hand, this simple change
allows NDN networks to use almost all of the Internet’s well tested
engineering properties to solve not only IP’s communication problems
but also digital distribution and control problems. On the other hand, a
distribution architecture differs in fundamental ways from a point-to-point
communication architecture of today’s Internet and raises many new
research challenges. Simulation can serve as a flexible tool to examine
and evaluate various aspects of this new architecture. To provide the
research community at large with a common simulation platform, we
have developed an open source NS-3 based simulator, ndnSIM, which
faithfully implemented the basic components of a NDN network in a
modular way. This paper provides an overview of ndnSIM.

1 INTRODUCTION

The fundamental changes introduced by the Named
Data Networking (NDN) [1] to the Internet communi-
cation paradigm call for extensive and multidimensional
evaluations of various aspects of the NDN design. While
the existing implementation of NDN (CCNx Project [2]),
along with the testbed deployment [3], give invaluable
opportunities to evaluate both the NDN infrastructure
design as well as its applications in a real-world envi-
ronment, it is both difficult to experiment with different
design options and impossible to evaluate the design
choices in large scale deployment. To meet such needs
and provide the community at large with a common
experiment platform, we have developed an open source
NDN simulator, ndnSIM, based on NS-3 network simu-
lator framework [4].

The design of ndnSIM has the following goals in mind:

• Being an open source package to enable the research
community to run experimentations on a common
simulation platform.

• Being able to faithfully simulate all the basic NDN
protocol operations.

• Maintaining packet-level interoperability with
CCNx implementation [2], to allow sharing of
traffic measurement and packet analysis tools
between CCNx and ndnSIM, as well as direct
use of real CCNx traffic traces to drive ndnSIM
simulation experiments.

• Being able to to support large-scale simulation ex-
periments.

• Facilitating network-layer experimentations with
routing, data caching, packet forwarding, and con-
gestion management.

Following the NDN architecture, ndnSIM is imple-
mented as a new network-layer protocol model, which
can run on top of any available link-layer protocol model
(point-to-point, CSMA, wireless, etc.), as well as on
top of network-layer (IPv4, IPv6) and transport-layer
(TCP, UDP) protocols. This flexibility allows ndnSIM to
simulate scenarios of various homogeneous and hetero-
geneous deployment scenarios (e.g., NDN-only, NDN-
over-IP, etc.).

The simulator is implemented in a modular fashion,
using separate C++ (set of) classes to model behavior
of each network-layer entity in NDN: pending Interest
table (PIT), forwarding information base (FIB), content
store, network and application interfaces, Interest for-
warding strategies, etc. This modular structure allows
any component to be easily modified or replaced with no
or minimal impact on other components. In addition, the
simulator provides an extensive collection of interfaces
and helpers to perform detailed tracing behavior of
every component and NDN traffic flow.

We started the ndnSIM implementation effort in the
fall of 2011. Since then the initial implementation has
been used both by ourselves for various NDN design
and evaluation tasks, as well as by a few external
alpha testers. While we continue active development
of ndnSIM, the first release of ndnSIM as an open-
source package has been made available since June 2012.
We hope that ndnSIM can provide a useful tool to the
broader community who are interested in NDN research,
and that the community can provide back to us both
invaluable bug reports and new feature development.1

More detailed information about the release, code down-
load, basic examples, and additional documentation is
available on ndnSIM website http://ndnsim.net/.

2 DESIGN

The desire to create an open source NDN simulation
package largely dictated our selection of the NS-3 net-
work simulator [4] as the base framework for ndnSIM.
Although NS-3 is relatively new and still does not have

1. Bug reports and feature requests can be filed through GitHub
social coding website interfaces https://github.com/NDN-Routing/
ndnSIM.

http://named-data.net/techreports.html
http://ndnsim.net/
https://github.com/NDN-Routing/ndnSIM
https://github.com/NDN-Routing/ndnSIM


2

everything that commercial Qualnet or legacy ns-2 sim-
ulator has (e.g., NS-3 does not have native support for
simulating conventional dynamic IP routing protocols2),
it offers a clean and consistent design, extensive docu-
mentation, and implementation flexibility.

In this section we provide insights about main com-
ponents of ndnSIM design, including description of pro-
tocol implementation components.

2.1 Design overview

The design of ndnSIM follows the philosophy of net-
work simulations in NS-3, which devises maximum
abstraction for all modeled components. Similarly to
the existing IPv4 and IPv6 stacks, we designed ndnSIM
as an independent protocol stack that can be installed
on a simulated network node. In addition to the core
protocol stack, ndnSIM includes a number of basic traffic
generator applications and helper classes to simplify
creation of simulation scenarios (e.g., helper to installing
the NDN stack and applications on nodes) and tools to
gather simulation statistics for measurement purposes.

The following list summarizes the component-level
abstractions that have been implemented in ndnSIM;
Figure 1 visualizes the basic interactions between them:

• ndn::L3Protocol: implementation of the core NDN
protocol interactions: receiving Interest and Data
packets from upper and lower layers through Faces;

• ndn::Face: abstraction to enable uniform communi-
cations with applications (ndn::AppFace) and other
simulated nodes (ndn::NetDeviceFace) with plug-
gable (and optional) support of link-level congestion
mitigation modules;

• ndn::ContentStore: abstraction for in-network stor-
age (e.g., short-term transient, long-term transient,
long-term permanent) for Data packets;

• ndn::Pit: abstraction for the pending Interest table
(PIT) that keeps track (per-prefix) of Faces on which
Interests were received, Faces to which Interests
were forwarded, as well as previously seen Interest
nonces;

• ndn::Fib: abstraction for the forwarding information
base (FIB), which can be used to guide Interest
forwarding by the forwarding strategy;

• ndn::ForwardingStrategy: abstraction and
core implementation for Interest and Data
forwarding. Each step of the forwarding process
in ndn::ForwardingStrategy—including lookups
to ContentStore, PIT, FIB, and forwarding Data
packets according to PIT entries—is represented
as virtual function calls, which can be overridden
in particular forwarding strategy implementation
classes (see Section 2.7);

• reference NDN applications, including simple traffic
generators and sinks.

2. http://www.nsnam.org/docs/release/3.14/models/html/
routing-overview.html

Core NDN Protocol 
(ndn::L3Protocol)

Pluggable 
Content 

Store

FIB
(ndn::Fib)

PIT
(ndn::Pit)

Applications

Face
(ndn::AppFace)

Face
(ndn::NetDevice

Face)

NetDevice 
(connection to 
other nodes)

Pluggable 
Forwarding 

Strategy

Fig. 1. Block diagram of ndnSIM components

Each component with the exception of the core
ndn::L3Protocol has a number of alternative imple-
mentation that can be arbitrarily chosen by the sim-
ulation scenario using helper classes (see ndnSIM
online documentation http://ndnsim.net/helpers.html).
For example, ndnSIM currently provides implementa-
tions for ContentStore abstraction with Least-Recently-
Used (LRU), First-In-First-Out (FIFO), and random re-
placement policies for cached Data.

The current wire format of Interest and Data packets
follows the format of the existing CCNx Project’s NDN
implementation (CCNx Binary XML Encoding3). While
this design choice imposes additional overhead (i.e.,
binary XML decoding and encoding processes have their
costs), it allows reuse of the existing traffic analysis tools
(ndndump,4 wireshark ccn plugin5), as well as drive
simulations using real CCNx traffic traces. Later, we will
provide an option to disable packet format compatibility,
which will allow conserving resources while running
large-scale simulations.

Design of ndnSIM contains a number of optional mod-
ules, including (1) a place-holder for data security (the
current code allows attaching of a user-specified “signa-
ture” to Data packets), (2) an experimental support of
negative acknowledgments (Interest NACK) to provide
fast feedback about data plane problem, (3) a pluggable
Interest rate limit and interface availability component,
and (4) extensible statistics module. Interested readers
may see [5] for more details on Interest NACKs and
Interest rate limit.

2.2 Core NDN protocol implementation
ndn::L3Protocol in ndnSIM is a central architectural en-
tity and stands in the same line of class hierarchy as

3. http://www.ccnx.org/releases/latest/doc/technical/
BinaryEncoding.html

4. https://github.com/cawka/ndndump/
5. https://github.com/ProjectCCNx/ccnx/tree/master/apps/

wireshark

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_l3_protocol.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_app_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_net_device_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_content_store.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_pit.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_fib.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_forwarding_strategy.html
http://www.nsnam.org/docs/release/3.14/models/html/routing-overview.html
http://www.nsnam.org/docs/release/3.14/models/html/routing-overview.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_l3_protocol.html
http://ndnsim.net/helpers.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_l3_protocol.html
http://www.ccnx.org/releases/latest/doc/technical/BinaryEncoding.html
http://www.ccnx.org/releases/latest/doc/technical/BinaryEncoding.html
https://github.com/cawka/ndndump/
https://github.com/ProjectCCNx/ccnx/tree/master/apps/wireshark
https://github.com/ProjectCCNx/ccnx/tree/master/apps/wireshark


3

Link layer (PPP, 802.11, etc.)

Network layer (IPv4, IPv6)

UDP TCP

ndn::AppFace

ndn::Net
Device
Face

ndn::Ipv4
Face

ndn::Udp
Face

ndn::Tcp
Face

ndn::L3Protocol

ndn::App ...

Fig. 2. Communication-layer abstraction for ndnSIM sce-
narios

the corresponding Ipv4L3Protocol and Ipv6L3Protocol
classes of the NS-3 framework that implement IPv4
and IPv6 network-layer protocols. ndn::L3Protocol is a
logical component aggregator for all available commu-
nication channels with both applications and other nodes
(Face abstraction, see Section 2.3) and performs basic
handling of incoming packets from Faces to a forwarding
strategy.

ndn::L3Protocol class defines the API to manipulate
the following aspects of the NDN stack implementation:

• AddFace/RemoveFace: to register a new Face real-
ization to NDN protocol or remove an existing Face;

2.3 Face abstraction

To achieve our goal of providing maximum flexibility
and extensibility, we make the ndnSIM design inde-
pendent from the underlying transports through ab-
stracting the inter-layer interactions. That is, all com-
munication between the core protocol implementation
(ndn::L3Protocol), network, and applications is accom-
plished through a Face abstraction (ndn::Face), which
can be realized in various forms (see Figure 2): link-
layer face (ndn::NetDeviceFace) for inter-node com-
munication directly over link layer, network-layer
face (ndn::Ipv4Face and ndn::Ipv6Face) and transport-
layer face (ndn::TcpFace and ndn::UdpFace) for inter-
node overlay communication, and application-layer face
(ndn::AppFace) for intra-node communications.

At the first release, the current ndnSIM package
provides only a link-layer ndn::NetDeviceFace and an
application-layer ndn::AppFace. With these two faces
one can simulate a fully NDN-enabled network. It is
straightforward to add other types of faces and we
expect them to be added as soon as the needs for
simulating more complex scenarios (i.e., where NDN
nodes are intermixed with nodes that do not run NDN
protocol) arise, either by ourselves or by others from the
community.

The Face abstraction defines the following API:

• SendImpl (realization-specific): to pass packets
from NDN stacks to the underlying layer (network
or application).

• RegisterProtocolHandler (realization-specific): to
enable forwarding packets from the underlying
layer (network or app) to the NDN stack.

• SetMetric/GetMetric: to assign and get Face metrics
that can be used, for example, in routing calcula-
tions.

• IsUp/SetUp: to check if Face is enabled and to
enable/disable Face.

In addition to the base API, the Face abstraction
provides methods to store arbitrary information, which
can be used by the forwarding strategy module. For
example, an ndn::fw::SimpleLimits Interest forwarding
strategy implements limits on number of outstanding
Interest packets based on physical link limits [5].

2.4 Content Store abstraction

Content Store at each NDN router enables in-network
storage, providing efficient error recovery and asyn-
chronous multicast data delivery. ndnSIM provides an
interface to plug in different implementation of Content
Store that can implement different indexing and item
look up designs, different size limiting features, as well
as different cache replacement policies.

The current version of ndnSIM contains three
realizations of the Content Store abstraction with
Least-Recently-Used (ndn::cs::Lru), First-In-First-Out
(ndn::cs::Fifo), and Random replacement policies
(ndn::cs::Random). Each of these realization is based
on a dynamic trie-based container with an (optional)
upper bound on its size, and hash-based indexing on
Data names (per-component lookup on a trie). Other
Content Store modules are expected to be implemented
either by ourselves or with the help of the community
as the need arises.

The Content Store abstraction provides the following
operations:

• Add (realization specific): caching a new or promot-
ing existing Data packet in cache.

• Lookup (realization specific): performing lookup for
a previously cached Data.

The Content Store abstraction does not provide an
explicit data removal operation. Lifetime of the Content
Store entries depends on traffic pattern, as well as on
Data packet freshness parameter supplied by data pro-
ducers.

2.5 Pending Interest table (PIT) abstraction

PIT (ndn::Pit) maintains state for each forwarded Interest
packet in order to provide directions for Data packet
forwarding. Each PIT entry contains the following in-
formation:

• the name associated with the entry;

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_l3_protocol.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_l3_protocol.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_l3_protocol.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_net_device_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_app_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_net_device_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_app_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_simple_limits.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_content_store.html
http://ndnsim.net/doxygen/content-store-impl_8cc_source.html
http://ndnsim.net/doxygen/content-store-impl_8cc_source.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1ndn_s_i_m_1_1trie__with__policy.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_content_store.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_pit.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1pit_1_1_entry.html


4

• a list of incoming Faces, from which the Interest
packets for that name have been received, with asso-
ciated information (e.g., arrival time of the Interests
on this Face);

• a list of outgoing Faces to which the Interest packets
have been forwarded with associated information
(e.g., time when the Interest was sent on this Face,
number of retransmission of the Interests on this
face, etc.);

• time when the entry should expire (the maximum
lifetime among all the received Interests for the same
name), and

• any other forwarding-strategy-specific information
in form of forwarding strategy tags (any class de-
rived from ndn::fw::Tag).

The current version of ndnSIM provides a templated
realizations of PIT abstraction, allowing optional bound-
ing the number of PIT entries and different replacement
policies, including

• persistent (ndn::pit::Persistent)—new entries will be
rejected if PIT size reached its limit;

• random (ndn::pit::Random)—when PIT reaches its
limit, random entry (could be the newly created one)
will be removed from PIT;

• least-recently-used (ndn::pit::Lru)—the least re-
cently used entry (the oldest entry with minimum
number of incoming faces) will be removed when
PIT size reached its limit.

All current PIT realizations are organized in a trie-
based data structure with hash-based indexing on Data
names (per-component lookup on a trie) and additional
time index (by expiration time) that optimizes removal
of timed out Interests from the PIT.

A new PIT entry is created for every Interest with a
unique name. When an Interest with a name that has
been seen previously is received, the “incoming Faces”
list of the existing PIT entry is updated accordingly,
effectively aggregating (suppressing) similar Interests.

The PIT abstraction provides the following realization-
specific operations:

• Lookup: find a corresponding PIT entry for the
given content name of an Interest or Data packet;

• Create: create a new PIT entry for the given interest;
• MarkErased: Remove or mark PIT entry for re-

moval;
• GetSize, Begin, End, Next: get number of entries in

PIT and iterate through entries.

2.6 Forwarding information base (FIB)
An NDN router’s FIB is roughly similar to the FIB
in an IP router except that it contains name prefixes
instead of IP address prefixes, and it (generally) shows
multiple interfaces for each name prefix. It is used by
the forwarding strategies to make Interest forwarding
decisions.

The current realization of FIB (ndn::fib:FibImpl) is
organized in a trie-based data structure with hash-based

indexing on Data names (per-component lookup on a
trie), where each entry contains a prefix and an ordered
list of (outgoing) Faces, through which the prefix is
reachable. The order of Faces is defined as a composite
index, combining the routing metric for the Face and
data plane feedback. Lookup for a match is performed
on variable-length prefixes in a longest-prefix match
fashion.6

2.6.1 FIB population
Currently, ndnSIM provides several methods to populate
entries in FIB. First, one can use a simulation script to
manually configure FIBs for every node in a simulation
setting. This method gives the user full control on what
entries are present in which FIB, and can work well
for small-scale simulations. However, it may become
infeasible for simulations with large topologies.

The second method is to use a central global NDN
routing controller to automatically populate all routers’
FIBs. When requested (either before a simulation run
starts, or at any time during the simulation), the global
routing controller obtains information about all the ex-
isting nodes with NDN stack installed and all exported
prefixes, and uses this information to calculate shortest
paths between every node pair and updates all the
FIBs. Boost.Graph library (http://www.boost.org/doc/
libs/release/libs/graph/) is used in this calculation.

In the current version, the global routing controller
uses the Dijkstra’s shortest path algorithm (using Face
metric) and installs only a single outgoing interface for
each name prefix. To experiment with multipath Interest
forwarding scenarios, the global routing controller needs
to be extended to populate each prefix with multiple
entries. However, it is up to the particular simulation to
define the exact basis for multiple entries, e.g., whether
entries should represent paths without common links.
We welcome suggestions and/or global routing con-
troller extensions, which can be submitted on GitHub
website (https://github.com/NDN-Routing/ndnSIM).

Finally, a simple method to populate FIB is to install
default route (route to /), which includes all available
Faces of NDN stack. For example, this method can be
useful for simulations that explore how well Interest
forwarding strategy can find and maintain paths to
prefixes without any guidance from the routing plane.

2.7 Forwarding strategy abstraction
Our design enables experimentation with various
types of forwarding strategies, without any need to
modify the core components. This goal is achieved
by introducing the forwarding strategy abstraction
(ndn::ForwardingStrategy) that implements core han-
dling of Interest and Data packets in an event-like

6. In addition to the longest-prefix match, next release of ndnSIM
will implement several Interest selectors, including two types of ex-
clude filters (ordered exclude and Bloom filters) and min/max name
components filter [2].

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_tag.html
http://ndnsim.net/doxygen/ndn-pit-impl_8cc_source.html
http://ndnsim.net/doxygen/ndn-pit-impl_8cc_source.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1ndn_s_i_m_1_1trie__with__policy.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1ndn_s_i_m_1_1trie__with__policy.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1pit_1_1_entry.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_pit.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_fib.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fib_1_1_fib_impl.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1ndn_s_i_m_1_1trie__with__policy.html
http://www.boost.org/doc/libs/release/libs/graph/
http://www.boost.org/doc/libs/release/libs/graph/
https://github.com/NDN-Routing/ndnSIM
/
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_forwarding_strategy.html


5

fashion. In other words, every step of an Interest and
Data packet handling, including Content Store, PIT, FIB
lookups, is represented as a virtual function, which can
be overridden in particular forwarding strategy imple-
mentation classes.

More specifically, the forwarding strategy abstraction
provides the following set of overrideable actions:

• OnInterest: called by CcnxL3Protocol for every in-
coming Interest packet;

• OnData: called by CcnxL3Protocol for every incom-
ing Data packet;

• WillErasePendingInterest: fired just before PIT en-
try is removed;

• RemoveFace: call to remove references to Face (if
any used by forwarding strategy realization);

• DidReceiveDuplicateInterest: fired after reception
of a duplicate Interest is detected;

• DidExhaustForwardingOptions: fired when for-
warding strategy exhaust all forwarding options to
forward an Interest;

• FailedToCreatePitEntry: fired when an attempt to
create a PIT entry failed;

• DidCreatePitEntry: fired after an successful attempt
to create a PIT entry;

• DetectRetransmittedInterest: fired after detection of
a retransmitted Interest. This even is optional and
will be fired only when “DetectRetransmissions”
option is enabled in scenario. Detection of a retrans-
mitted Interest is based on observation that a new
Interest matching existing PIT entry arrives on a
Face that is recorded in incoming list of the entry.
Refer to the source code for more details.

• WillSatisfyPendingInterest: fired just before pend-
ing Interest is satisfied with Data;

• SatisfyPendingInterest: actual procedure to satisfy
pending Interest;

• DidSendOutData: fired every time Data was suc-
cessfully send out on a Face (can fail during con-
gestion or if rate limiting module is enabled);

• DidReceiveUnsolicitedData: fired every time Data
arrives, while there is no corresponding pending
Interest for the Data’s name. If “CacheUnsolicited-
Data” option is enabled, then such Data packets will
be cached by the default processing implementation.

• ShouldSuppressIncomingInterest: hook to Interest
suppression logic;

• TrySendOutInterest: fired before actually sending
out Interest on a Face;

• DidSendOutInterest: fired after successfully send-
ing out Interest on a Face;

• PropagateInterest: basic Interest propagation logic;
• DoPropagateInterest (realization-specific):

realization-specific Interest propagation logic.

We anticipate that in the future releases more events
will be added to the forwarding strategy abstraction. At
the same time, additional events can be created in an
objective-oriented fashion through class inheritance. For

example, an Interest NACK extension (see [5] for more
detail) is implemented as a partial specialization of the
forwarding strategy abstraction.

Figure 3 shows partial hierarchy of the currently avail-
able forwarding strategy extensions (Nacks, GreenYel-
lowRed) and full forwarding strategy implementations
(Flooding, SmartFlooding, and BestRoute) that can be
used in simulation scenarios. While all current realiza-
tions inherited from Nack extension that implements
additional processing and events to detect and handle
Interest NACKs [5], NACK processing is disabled by de-
fault and can be enabled using “EnableNACKs” option.

CcnxForwardingStrategy

Nacks

Flooding GreenYellowRed

BestRoute SmartFlooding

Fig. 3. Available forwarding strategies (Flooding, Smart-
Flooding, and BestRoute are full realizations)

SmartFlooding and BestRoute realizations rely on
color-coding for the status of each Face, based on ob-
served data plane feedback [5].

• GREEN: the Face works correctly (e.g., if an Interest
is sent to this face, Data is returned);

• YELLOW: the status of Face is unknown (e.g. it may
be added recently, or has not been used for a while);

• RED: the Face is not working and should not be
used for Interest forwarding.

The status information is attached to each Face in FIB
entry and initially initialized to YELLOW status. Every
time a Data packet is returned as the response to a
previous Interest, the corresponding Face in FIB entry
is set to GREEN color. Every time an error occurs (PIT
entry timeout or, if enabled, NACK-Interest is received),
the Face is turned back to YELLOW status. If a Face
has not been used for long enough, it is turned back to
YELLOW status. RED state is assigned to the Face when
the lower layer notifies NDN stack of a problem (link
failure, connection error, etc.).

The following list summarized the processing logic in
the currently available full forwarding strategy imple-
mentations:

• Flooding strategy (ndn::fw::Flooding): an Interest
packet is forwarded to all Faces that available in FIB
entry for the Interest’s prefix, except the incoming
face of that Interest.

• Smart flooding strategy (ndn::fw:SmartFlooding): if
FIB entry contains at least one GREEN Face, Inter-
est is forwarded only to the highest-rank GREEN
Face. Otherwise, all YELLOW Faces will be used to

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_nacks.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_nacks.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_green_yellow_red.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_green_yellow_red.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_flooding.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_smart_flooding.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_best_route.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_nacks.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_smart_flooding.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_best_route.html
http://ndnsim.net/doxygen/flooding_8cc_source.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_smart_flooding.html


6

forward the Interest. RED Faces are not used for
Interest forwarding.
This strategy mode can be used in simulations
without routing input, and the data plane can use
Interest packets to discover and maintain working
paths.

• Best-Route strategy (ndn::fw::BestRoute) forwards
Interest packets to the highest-ranked GREEN (if
available) or YELLOW face. RED Faces are not used
for Interest forwarding.

There is also an experimental SimpleLimits
forwarding strategy (inheriting most actions from
ndn::fw::BestRoute) that attempts to avoid congestion in
the network and maximize network utilization by taking
into account the Interest rate limits in Face selection
process. For example, if the highest-ranked Face has
reached its capacity—more specifically, number of
pending Interests for this Face reached a set maximum
limit—the strategy will select next Face in the rank
order that is under the limit.

In addition to the strategies that have been imple-
mented, we are also working on implementing addi-
tional Interest forwarding strategies, including the strat-
egy that precisely model the behavior of the Project
CCNx implementation.

2.8 Reference applications
Applications interact with the core of the system using
ndn::AppFace realization of Face abstraction. To simplify
implementation of specific NDN application, ndnSIM
provides a base ndn::App class that takes care of cre-
ating ndn::AppFace and registering it inside the NDN
protocol stack, as well as provides default processing for
incoming Interest and Data packets.

Listed below is the set of reference applications that is
currently available in ndnSIM:

• ndn::ConsumerCbr an application that generates
Interest traffic with predefined frequency (constant
rate, constant average rate with inter-Interest gap
distributed uniformly at random, exponentially at
random, etc.). Names of generated Interests contain
a configurable prefix and a sequence number. When
a particular Interset is not satisfied within an RTT-
based timeout period (same as TCP RTO), this In-
terest is re-expressed.

• ndn::ConsumerBatches: an on-off-style application
generating a specified number of Interests at speci-
fied points of simulation. Names and retransmission
logic is similar to ndn::ConsumerCbr application.

• ndn::Producer a simple Interest-sink application,
which replying every incoming Interest with Data
packet with a specified size and name same as in
Interest.

3 RELATED WORK
Over the last few years several efforts have been devoted
to the development of evaluation infrastructures for
NDN architecture research.

One existing effort by the NDN project team is the
support of NDN on the Open Network Lab (ONL) [6].
ONL currently contains 14 programmable routers, over
100 client nodes, connected by links and switches of
various capability. Every node and router runs Project
CCNx NDN implementation. Users have full access to
the hardware and software state of any node of ONL.
It is also possible to run and evaluate Project CCNx
NDN implementation on nodes of DeterLab testbed [7].
Having a programmable non-virtualized testbed is a
very valuable option, though its capability is limited
to evaluate relatively small size networks. For larger-
scale experiments, researchers may need to resort to
simulations.

Rossi and Rossini [8] developed ccnSim to evalu-
ate caching performance of NDN. ccnSim is a scalable
chunk-level simulator of NDN that is written in C++
under the Omnet++ framework, which allows assess-
ing NDN performance in large-scale scenarios (up to
106 chunks) on a standard consumer-grade computer
hardware. ccnSim was designed and implemented with
the main goal of running experimentations of different
cache replacement policies for NDN routers content
store. Therefore, it is not a fully featured implementation
of the existing NDN protocol. In the current version of
ccnSim, PIT and FIB components are implemented in
the simplest possible way, thus it is unable to evaluate
different data forwarding strategies, different routing
policies, or different congestion control schems.

Another NDN simulator was written at Orange Labs
by Muscariello and Gallo [9]. Their Content Centric
Networking Packet Level Simulator (CCNPL-Sim) is
based on SSim that is a utility library which implements
a simple discrete-event simulator. Combined Broadcast
and Content-Based routing scheme (CBCB) [10] must run
as an interlayer between SSim and CCNPL-Sim to enable
name-based routing and forwarding over generic point-
to-point networks. Though a canonical NDN model was
completely reimplemented in CCNPL-Sim in C++, this
solution has a drawback of using a custom discrete-event
simulator that is unfamiliar to most of the researchers.
Additionally, an obligatory usage of CBCB narrows the
possible experimentation area, making it impossible to
evaluate other routing protocols, such as OSPF-N (OSPF
extension for NDN) or routing on Hyperbolic Metric
Space [11].

A completely different approach was taken by Ur-
bani et al. [12]. They provided support of Direct Code
Execution (DCE) for Project CCNx NDN implemen-
tation inside the NS-3 simulator. The general goal of
DCE NS-3 module is to provide facilities to execute
existing implementations of user-space and kernel-space
network protocols within NS-3 simulated environment.
The main advantage of this approach is that simulations
can use the existing unmodified CCNx code directly,
thus providing maximum realism and requiring no code
maintenance (as new versions are supposed to run in
DCE NS-3 without much effort). However, this approach

http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_best_route.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_simple_limits.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1fw_1_1_best_route.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_app_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_app.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_app_face.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_consumer_cbr.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_consumer_batches.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_consumer_cbr.html
http://ndnsim.net/doxygen/classns3_1_1ndn_1_1_producer.html


7

also raises a few concerns. First, the real implementation,
including Project CCNx code, is rather complex, difficult
to modify to explore different design approaches, and
contains a lot of code that is irrelevant for simulation
evaluations. Second, there is a known scaling problem,
because each simulated node has to run a heavy DCE
layer and a full-sized real CCNx implementation.

4 SUMMARY

ndnSIM is designed as a set of loosely bound compo-
nents that give a researcher an opportunity to modify
or replace any component, with no or little impact on
the other parts of ndnSIM. Our simulator provides a
set of reference application and helper classes, allowing
evaluation of various aspects of NDN protocol under
many different scenarios. The first version of ndnSIM
was publicly released in June 2012 and more detailed
information about the release and additional documen-
tation is available on ndnSIM website http://irl.cs.ucla.
edu/ndnSIM/.

We hope that the community find ndnSIM useful, and
we look forward to the community’s feedback to help
further improve it.

REFERENCES
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.

Briggs, and R. L. Braynard, “Networking named content,” in
Proceedings of ACM CoNEXT, 2009.

[2] (2012, May) Project CCNx. [Online]. Available: http://www.ccnx.
org

[3] (2012, February) The NDN project testbed. [Online]. Available:
http://www.named-data.net/testbed.html

[4] (2012, May) ns-3. [Online]. Available: http://www.nsnam.org/
[5] Y. Cheng, A. Afanasyev, I. Moiseenko, B. Zhang, L. Wang, and

L. Zhang, “Smart forwarding: A case for stateful data plane,”
Tech. Rep. NDN-0002, May 2012.

[6] L. Zhang et al., “Named data networking (NDN) project
2010 - 2011 progress summary,” PARC, http://www.named-
data.net/ndn-ar2011.html, Tech. Rep., November 2011.

[7] “DETER network security testbed,” https://www.isi.deterlab.net.
[8] D. Rossi, G. Rossini, “Caching performance of content centric net-

worksunder multi-path routing (and more),” Telecom ParisTech,
Tech. Rep., 2011.

[9] L. Muscariello. (2011) Content centric networking packet level
simulator. Orange Labs. [Online]. Available: http://perso.rd.
francetelecom.fr/muscariello/sim.html

[10] A. Carzaniga, M.J. Rutherford, and A.L. Wolf, Ed., A Routing
Scheme for Content-Based Networking. IEEE INFOCOM, March
2004.

[11] CAIDA. Caida’s role in the ndn. [Online]. Available: http:
//www.caida.org/projects/ndn-fia/

[12] F. Urbani, W. Dabbous, and A. Legout. (2011, Novem-
ber) NS3 DCE CCNx quick start. INRIA. [Online].
Available: http://www-sop.inria.fr/members/Frederic.Urbani/
ns3dceccnx/index.html

http://irl.cs.ucla.edu/ndnSIM/
http://irl.cs.ucla.edu/ndnSIM/
http://www.ccnx.org
http://www.ccnx.org
http://www.named-data.net/testbed.html
http://www.nsnam.org/
https://www.isi.deterlab.net
http://perso.rd.francetelecom.fr/muscariello/sim.html
http://perso.rd.francetelecom.fr/muscariello/sim.html
http://www.caida.org/projects/ndn-fia/
http://www.caida.org/projects/ndn-fia/
http://www-sop.inria.fr/members/Frederic.Urbani/ns3dceccnx/index.html
http://www-sop.inria.fr/members/Frederic.Urbani/ns3dceccnx/index.html

	Introduction
	Design
	Design overview
	Core NDN protocol implementation
	Face abstraction
	Content Store abstraction
	Pending Interest table (PIT) abstraction
	Forwarding information base (FIB)
	FIB population

	Forwarding strategy abstraction
	Reference applications

	Related Work
	Summary
	References

