
NDN, Technical Report NDN-0009 http://named-data.net/techreports.html
Revision 2: February, 2013

Deploying Key Management on NDN Testbed
Chaoyi Bian

Peking University
bcy@pku.edu.cn

Zhenkai Zhu
UCLA

zhenkai@cs.ucla.edu

Alexander Afanasyev
UCLA

afanasev@cs.ucla.edu

Ersin Uzun
PARC

ersin.uzun@parc.com

Lixia Zhang
UCLA

lixia@cs.ucla.edu

I. INTRODUCTION

This document describes an overall design and implemen-
tation of a key management system on NDN testbed.

II. OVERVIEW

To make the testbed key deployment happen in a timely
fashion, we start with a simple certification chain trust model,
with the root key of the NDN testbed as a common well known
trust anchor. There is a root key for the NDN testbed, which
signs the keys for each site, which in turn sign keys of the
users at each site. Users’ keys can be used to further sign their
devices and specific applications (Fig. 1). This simple design
allows one to follow the trust chain to verify the legitimacy of
a key, a capability much needed to meet the need for a number
of usages including NDN routing and auto configuration. This
document specifically focuses on getting keys published on
the testbed ASAP, as a preliminary step towards understanding
general trust models.

NDN testbed 
root key

Site's key

User's key

signs

signs

Device and application keys

Site's key

User's key

signs

Device and application keys

signssigns

signs

...

Fig. 1: Key trust model on NDN testbed

The keys of all the NDN sites and users should be made
available to everybody on the testbed, regardless of current
connectivity status of the particular site or user. At the initial
deployment, in order to achieve this, each signed key needs
to be published to a ccnx-repo and synchronized among all
testbed hubs (Figure 2). To be able to use ccnx-sync protocol
for key synchronization, all the key names need to follow the
naming convention of having “/ndn/keys” prefix, which is
routed to every testbed site (see Section III).

Note that presence of “/ndn/keys” prefix is only a shortcut
to facilitate key deployment and synchronization using
ccnx-sync protocol. We expect that this prefix will be
phased out at some point in the future.

Site0A0

Site0C0

Site0B0

Repo0

Repo0

Repo0

Sync0/ndn/keys0

Fig. 2: Sites syncs keys

NDN testbed root key manager (root-key-admin@
named-data.net) is responsible to sign and publish public
keys of each NDN participating site. Users keys are signed
and published by each individual site operator. At the
discretion of the site’s operator, device and applications keys
signed by individual users may be also published to the NDN
testbed repos.

Each individual user is responsible to maintain a local
repo,1 which store copies of key and signatures that form
certification chain from user’s key to the NDN testbed root
key. This requirement is necessary to allow key verification
without permanent connection to the testbed, e.g., site’s A
user should be able to verify site’s B user’s key relying only
on Interest/Data exchange between these two users.

Any application, when creating a Data packet, should put
full name of the key used to sign this packet in “KeyLo-
cator/KeyName” field (http://www.ccnx.org/releases/latest/doc/
technical/ContentObject.html). When a Data packet is re-
ceived, one can follow the “KeyLocator/KeyName” field to
fetch the public key object and verify the signature. The key
object itself is also a Data packet which contains another
“KeyLocator/KeyName”, and thus one can always trace the

1CCNx version 0.7.1 introduces an ability to automat-
ically launch repo using ccndstart command, provided
“CCNR DEFAULT PREFIX” variable is configured. For example, users may
set “CCNR DEFAULT PREFIX=/ndn/keys” in ccndrc file.

http://named-data.net/techreports.html
root-key-admin@named-data.net
root-key-admin@named-data.net
http://www.ccnx.org/releases/latest/doc/technical/ContentObject.html
http://www.ccnx.org/releases/latest/doc/technical/ContentObject.html


NDN testbed 
root key

Site's key

User's key

signs

signs

Device and application keys

signs

/ndn/keys/<SHA256(key)>/<version>/%00

/ndn/keys/<site>/<SHA256(key)>/<version>/%00

/ndn/keys/<site>/<user>/<SHA256(key)>/<version>/%00

/ndn/keys/<site>/<user>/<device>/<SHA256(key)>/<version>/%00
/ndn/keys/<site>/<user>/<app>/<SHA256(key)>/<version>/%00

signs

signs

signs

Fig. 3: Key naming

“KeyLocator/KeyName” chain until a trusted anchor is reached.
NDN testbed root key is “public knowledge” and is stored in
a self-signed Data packet, in which the root key is stored in
“Content” section, as well as duplicated in “KeyLocator/Key”
field. Due to limitation in the current key verification mech-
anism in ccnx libraries, an external key verification process
(see Section V) is needed to ensure that certification chain is
terminated at the trust anchor.

III. NAMING

This section shows what the names of public keys will look
like (Figure 3).

The first part of the name is a common prefix “/ndn/keys”,
which indicates that it is a name for a public key, and only
this prefix needs to be routed to all NDN testbed sites. Using
a common prefix also has the advantage of making repo
synchronization easier (see Section VI).

The middle part of the name reflects the hierarchy in the
testbed. The key will be verified in a chain in accordance with
the name hierarchy, which is also explicitly indicated in the
key content (described in Section IV).

Next part of the name is the hash value (SHA256) of the
corresponding public key, which provides uniqueness guaran-
tee for the key name on NDN testbed.

Note that SHA256 component of the key name provides
only a guaranteed uniqueness of the key name. Similar
guarantees can be provided by other means and future revi-
sions of the current document may specify other acceptable
forms of this component.

As the key name not only identifies key itself, but also
key certification, the current design mandates creating a new
public-private key pair (and as a result, new unique name of
the key content object) whenever there is any change with key
or key certification.

Note that the last part of the key name (“<version>/%00”)
is currently necessary due to naming restrictions imposed
by ccnx-repo protocol. These two components are not an
integral part of the name and will be eventually phased out.

Also note that since “<version>/%00” is not an integral
part of the name, it should not be included in “KeyLoca-
tor/KeyName” fields of Data packets.

IV. NDN KEY OBJECT

This section describes how the public key object on NDN
testbed looks. We compare the key object to the traditional
X.509 certificate [1] in Figure 4.

Fig. 4: The comparison of X.509 certificate and key object

• The “Serial number” in the X.509 certificate used for
unique identification is replaced by the “Name” of the key
content object.

• The “Signature algorithm” and “Signature” in the
certificate are the same as the “DigestAlgorithm” and
“SignatureBits” fields contained in the signature part of
content object.

• The “Thumbprint” is the same as the “PublisherPub-
licKeyDigest” field in the “SignedInfo” part of the
content object. The current CCNx implementation uses
SHA-256 and it is expected that more choices will be
provided in future distributions.

• The “Issuer” in the certificate is the entity that verified
the information and issued this certificate. In the content
object, “KeyLocator/KeyName” serves the same purpose
of telling how to find the public key to verify this content
object.

• The “Valid-From” information can be expressed with
the time-stamp field in the “SignedInfo” part of content



object.
• Current format of content object in ccnx does not have

equivalents for the “Subject” (the entity identified by this
certificate, which is the real-world identity of the public
key’s owner), “Valid-To” (expressed in seconds since
the start of Unix time), and “Key-Usage” information
(restriction on how the key can be used, e.g., to only
create digital signatures, only to sign certificates, etc.).
These fields can be emulated using additional meta-info
content object, including “/info” suffix to the public
key’s name:

/ndn/keys/<site>../info/SHA256(key)

Initially, we will be using an XML form of meta-info
content, which specifies the real-world identity, affilia-
tion, and validity of the key (“Name”, “Affiliation”, and
“Valid to” fields). More information can be added to the
meta-info if needed.

<Meta>
<Name>Al ice </Name>
<A f f i l i a t i o n >Wonderland </ A f f i l i a t i o n >
<V a l i d t o >1370981430</ V a l i d t o>
</Meta>

V. VERIFICATION

This section describes the verification process in detail. As
indicated previously, whenever a data packet comes, in addi-
tion to basic verification done by ccnx library, an additional
verification needs to be invoked in order to ensure validity of
the packet.

We believe that trust evaluation and final determination
of the data packet validity is ultimate responsibility of the
application that requested this data packet. This process should
follow the following steps:

1) Check the “KeyLocator” field of the content object
contained in the packet. If the field does not contain
a “KeyName” indicating a signing key, or the key itself,
the packet cannot be verified. Otherwise, there is a “Key-
Name”, a key itself or a certificate in the “KeyLocator”
field.
The only exceptions from this rule is when the con-
tent object corresponds to a self-certified trust an-
chor. Each application on the NDN testbed will have
NDN testbed’s root key as a preconfigured self-certified
trust anchor. In addition to that, each individual site
may elect to a provide local trust anchor for local
users. For example, UCLA can self-sign “/ndn/keys/u-
cla.edu/SHA256(key)” and distribute this key out-of-
band to all local users and applications.

2) Check if “KeyName” is a name of the trust anchor (root

key) or one of the known and previously verified keys.2

If a match is found, the application can verify packet’s
signature and make the final determination of the packet
validity.

3) Otherwise, the application needs to express an Interest
for “KeyName”. If the fetching is unsuccessful, the packet
cannot be verified. Otherwise, we get the Data packet
of the key object, which needs to be verified recursively
applying steps 1, 2, and 3.

Figure 5 illustrates the verification process for the signature
of a content. Note that when an application maintains a cache
of verified keys and the corresponding entries are still valid,
there is no need to trace the “KeyLocator” field until we reach
the root key.

Name:

KeyLocator/KeyName:

<Signature>

/app/data/1

/ndn/keys/site/user/SHA256(key)/<version>/%00

Application data

Name:

KeyLocator/KeyName:

<Signature>

/ndn/keys/site/user/SHA256(key)/<version>/%00

/ndn/keys/site/SHA256(key)/<version>/%00

Name:

KeyLocator/KeyName:

<Signature>

/ndn/keys/site/SHA256(key)/<version>/%00

/ndn/keys/SHA256(key)/<version>/%00

User's key

Site's key

Name:

KeyLocator/Key:

<Self-signature>

/ndn/keys/SHA256(key)/<version>/%00

<Root key>

NDN testbed root key

fetch & verify

fetch & verify

fetch & verify

"public knowledge" verification

signs

signs

signs

Fig. 5: Verification of the signature

A. Key and Namespace Association

The current document describes only basic key management
and key verification on NDN testbed and does not impose
any limits on how keys are used. In other words, verification

2 While not strictly necessary, an application can maintain a trusted key
database, storing previously fetched and verified keys. This would avoid
necessity to express Interests to fetch keys and eliminate redundant key
verification. At the same time, in most cases such Interests will be immediately
satisfied from caches of the local ccnd, as the basic key verification mechanism
in ccnx library will fetch the keys before passing the data packet to the
application.



process described above will succeed if certification chain is
rooted at the NDN testbed root’s key, no matter how long is
the chain or what are the chain links.

As the application is ultimately responsible for final
decision, it is also application’s responsibility to define
trust model for keys (i.e., which key is authorized to
sign which content). For example, the application may
define and enforce trust model in which key “/nd-
n/keys/<site>/<user>/SHA256(key)” is authorized to sign
only application data in “/ndn/<site>/<user>/” namespace
and keys in “/ndn/keys/<site>/<user>/” namespace. A sep-
arate document(s) will describe alternative trust models that
can be used for different applications.

VI. IMPLEMENTATION AND OPERATIONS

The implementation utilizes the sync facility of CCNx
repositories. It consists of two parts. First, a simple (command-
line) application, utilizing CCNx sync an repo functions, to
sign and publish keys. This is mainly used by site operators.
Second, a key verification library (C/C++ APIs provided)
for applications to verify the signatures of Data packets and
manage the local key copies. Application developers can
use this library to verify the signatures with ease. Detailed
instructions for users and site operators can be found at
http://irl.cs.ucla.edu/key-publishing.html.

The root key will be published under name
“/ndn/keys/SHA256(RootKey)” (self-signed) and can be
obtained using other out-of-band methods (currently it is
bundled with key verification library). The corresponding
private key will be maintained by one or more NDN testbed
root operators (root-key-admin@named-data.net).

Root operators are responsible to sign and publish site keys
as per request of the site operator (using out-of-band method
to ensure the request indeed comes from the claimed site
operator).

The site operators download the key signing and publication
app, configure it with their respective site signing key and
institute name. When requested by a user of their site, the
operator signs and publishes the user’s key (also needs to
verify the identify of the user by out-of-band method).

The published keys will be automatically synced to the
repositories on all the sites. By default, a sync slice for
name prefix “/ndn/keys” would be automatically created to
synchronize all keys in the NDN test bed when a site operator
runs the app for the first time.

Furthermore, there will be a simple tool named “pem” to let
users extract the public key in openssl “PEM” format [2] from
the keystore for CCNx. Users can send the extracted public
key file to the site operators.

The key signing and publication code is available at:

http://github.com/zhenkai/mkey.

The key verification library code is available at:

http://github.com/zhenkai/vkey.
VII. USE CASE

The simple use case of this system, the verification of the
signature of a packet, is straightforward. In this section we
describe a slightly complex use case of the key management
system, which also utilizes the meta-info of the keys, to se-
curely collect encryption public keys from eligible participants
of a private conference.

In ACT [3], a private conference organizer needs to know
participants’ (public) encryption keys so that he/she can se-
curely distribute conference decryption key to the legitimate
participants only. However, the conference organizer is re-
quired to obtain all keys of the participants beforehand through
offline method, which is inconvenient and inefficient.

With the help of the key management system in the test bed,
we could enable a conference organizer to learn participants’
encryption keys incrementally when the participants join. In
this way, an organizer no longer needs to do the cumbersome
work of collecting keys manually, and participants can be
added on the fly with ease.

A participant P sends out an Interest /conference-
prefix/name-of-P’s-encryption-key to join the conference. The
organizer fetches P’s encryption key content object at /name-
of-P’s-encryption-key. The content object is signed by P’s
signing key, and contains a keylocator that points to P’s signing
public key. Hence, the organizer can fetch P’s public key,
verify it by following the trust chain from root and then verify
the signature of the encryption key content object. Besides,
organizer can also learn P’s real world identity by fetching
the meta-info for P’s public key, which is signed by the site
key. By now, the organizer is assured that the signature for P’s
public encryption key is trustworthy and that the real-world
identity of P is confirmed by some site operator.

A dialog can then pop up to display the meta-info for partic-
ipant P, and the organizer (the person) can decide whether to
let P in based on the meta-info. If the organizer decides to let
P in, it will reply P’s Interest with the conference decryption
key encrypted by P’s public encryption key. P can then learn
about symmetric sessions and join the conversation in the
conference.

REFERENCES

[1] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet X.509 public key
infrastructure certificate and CRL profile,” RFC2459, 1999, http://www.
ietf.org/rfc/rfc2459.txt.

[2] “OpenSSL project,” http://www.openssl.org/.
[3] Z. Zhu, P. Gasti, Y. Lu, J. Burke, V. Jacobson, and L. Zhang, “A new

approach to securing audio conference tools,” AWFIT, 2011.

http://irl.cs.ucla.edu/key-publishing.html
root-key-admin@named-data.net
http://github.com/zhenkai/mkey
http://github.com/zhenkai/vkey
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2459.txt

	Introduction
	Overview
	Naming
	NDN Key Object
	Verification
	Key and Namespace Association

	Implementation and Operations
	Use Case
	References

