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Abstract—Distributed dataset synchronization (Sync in short)
implemented by ChronoSync allows a group of nodes to operate
on a shared dataset with eventual consistency. However, when
multiple nodes in the same sync group publish new data simul-
taneously, ChronoSync needs to either use exclude mechanism to
fetch the simultaneously produced data, or fall back to a recovery
mechanism. This problem is caused by a semantic overloading
on Sync Interests: a Sync Interest is used both to detect state
inconsistency (by embedding the dataset state digest in the
Interest name) and to retrieve update (resulting in the update
being named under a specific digest). In this report, we first use
a simple case study to analyze the behavior of ChronoSync under
simultaneous data publications, and then introduce RoundSync,
a revision to ChronoSync to fix the overloading problem.
RoundSync splits data publications into “rounds” and uses two
separate Interest types for state inconsistency detection and
update retrieval. We have implemented the RoundSync protocol,
conducted preliminary evaluation through simulations, as well
as performed comparative study of the RoundSync design with
other NDN dataset synchronization solutions that have been
developed so far [1].

I. INTRODUCTION

Distributed dataset synchronization (or sync in short) is
a communication abstraction in Named-Data Networking
(NDN) [2] that enables a group of data producers to contribute
to a shared dataset. Due to the unique binding between NDN
names and immutable data objects, the synchronization of a
shared dataset can typically be achieved by synchronizing the
corresponding namespace that contains the names of all the
data objects in the dataset.

ChronoSync [3] is one of the earliest sync protocols de-
veloped for the NDN architecture. It implements a multi-
producer replication service with eventual consistency: each
ChronoSync node in a sync group independently produces new
data objects and add them to the shared dataset and notifies
the others; all the updates are replicated asynchronously to
all the other nodes in the group, eventually resulting in a
consistent knowledge about the dataset across the sync group.
However, when multiple nodes produce data around the same
time (e.g., when a sync group is large in size and/or new
data are produced at high rate), ChronoSync may suffer
from extended delays in reaching eventual synchronization
(Section II). As we explain in more detail in Sections III
and IV, the main cause of this problem is due to bundling
semantics of inconsistency detection and new data retrieval
on the Sync Interest.

In this paper we present the design of RoundSync (Sec-
tion V), a redesign of ChronoSync, that disentangles seman-
tics into separate processes to enable fast synchronization in

face of simultaneous data productions. RoundSync splits data
productions into “rounds” and uses two distinct Interest types:
Sync Interest to advertise the current round number and its
state, and Data Interests to retrieve updates published in each
round.

II. THE ORIGINAL CHRONOSYNC DESIGN

To simplify the design, ChronoSync adopts a simple naming
convention: it names each data object in the shared dataset
by appending a monotonically increasing sequence number to
the unique data prefix of each producer node. The sequence
number is incremented by one for each new data object
published by the same node. With this naming convention, the
complete knowledge of a sync node’s data publication can be
concisely represented by the node’s data prefix and the largest
sequence number it has produced. The application running on
top of ChronoSync may name the data in any way as needed,
and the actual application data name can be encapsulated in
the data packet generated by the ChronoSync layer.

ChronoSync decouples the synchronization of the names-
pace of a sync group, which contains the names of all
the produced data objects in the dataset, from fetching the
produced data objects. As we describe below, each node sends
a Sync Interest periodically to solicit new update. If a node N2
produces a new data object, N2 replies to the Sync Interest
with a sync reply packet. Upon receiving the sync reply, the
application on each node can make an independent decision
about whether, or when, to fetch the data that have been
produced. If the size of the new data is small, ChronoSync
may also encapsulate the whole data packet directly in the
sync reply.

Each node running ChronoSync maintains an internal sync
state about the replicated namespace in a data structure called
the sync tree, which is a two-level tree. Each leaf node
in the sync tree represents a sync node in the group, and
stores the data prefix and the latest sequence number of the
corresponding node. The knowledge of the entire dataset is
summarized by a root digest that covers the information stored
in all the leave nodes in the sync tree.

To synchronize the namespace of the dataset, each sync
node sends out Sync Interests periodically to other nodes in
the group via multicast. A Sync Interest’s name carries the root
digest computed by the sending node. When all the nodes in a
group are synchronized, i.e., they all have the same knowledge
about the shared dataset, they generate identical Sync Interests
which are aggregated at routers, resulting in a two-way many-
to-many shared tree across the network, with each node (more
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precisely, the sync application in the node) facing a waiting
Sync Interest.

When a node produces a new data object, it replies to the
waiting Sync Interest with a data packet that contains the
name of the new data. This data packet satisfies the waiting
Sync Interest and is forwarded to the other nodes in the same
sync group by following the “multicast tree” set up by their
Sync Interests. This event-driven data propagation behavior is
similar to that implemented by a “push-based” communication
protocol. The node also sends a new Sync Interest which
carries the new digest which is computed after incorporating
the newly produced data.

Since a Sync Interest carrying the name Nd solicits updates
from any other nodes in the same group, when multiple
nodes generate new data simultaneously, they will reply to the
same Sync Interest simultaneously, each sending a data packet
carrying its own updates to the shared dataset. The names of
all the responding data packets share the same prefix Nd which
is followed by the node specific name components. However
because one Interest packet can retrieve only one Data packet,
only one of the sync replies is returned to each node which
has an outstanding Sync Interest; different nodes may receive
different replies, resulting in diverged states of the sync group.

To retrieve other data packets that may have been produced
at the same time, the current ChronoSync operates in the
following way.

1) After retrieving a data object with name Nd, a node
reissues the Sync Interest again using the same name
Nd, the Interest will carry an exclude filter to exclude
the data packet(s) that have already been received.

2) This Sync Interest with the exclude filter will be for-
warded to all nodes in the sync group.

3) If there is no more Sync Data published under name Nd,
this Interest will expire without answer.

4) Otherwise one more data packet with prefix Nd is
retrieved, and the process goes back to step-1 again.

This solution of using exclude filters has two known draw-
backs. First, one does not know whether there is more data to
fetch, the last Sync Interest in the exhaustive search is a waste.
Second, the size of the exclude filter is limited, therefore this
solution is effective only if the number of simultaneous data
productions is below a threshold.1 Furthermore, since either
an Interest or a Data packet can be lost, the solution does not
guarantee the retrieval of all the data produced under name
Nd.

In addition to the above, ChronoSync provides several
mechanisms to recover from the sync state divergence. First,
each sync node maintains a (limited size) digest log to
facilitate quick (re)synchronization. The digest log contains
the historical digest values it has observed, together with the
updates generated on top of the sync states identified by those
digests. When a node receives a Sync Interest which carries a

1One could mitigate this problem by a more efficient encoding of the
exclude filter, e.g. using Bloom Filter. We decide not to investigate further
down that path. The current plan for the NDN protocol evolution is to remove
the dependency on all Interest selectors.

digest value different from the current local digest, the node
searches the digest log. If the digest is found in the log, the
node returns a sync reply Data packet that contains all the
updates from the log entry up to the latest state to help speed
up the synchronization process.

There can also be cases where a node receives a Sync
Interest carrying a digest value that it cannot locate in its digest
log. This could be caused by out-of-order packet delivery of
the network (i.e., when a new digest arrives before the update
that generated the new digest). ChronoSync thus introduces a
random delay before taking any repair actions. If the unrecog-
nized digest cannot be resolved after a short delay, the cause
could be due to packet loss or multiple simultaneous updates
(see Section IV for more detail). In this case, ChronoSync
falls back to a simple recovery procedure which works in the
following way:

• The node who receives an unknown digest D sends a
special Recovery Interest to the group.

• Whoever sent the Sync Interest with digest D (there could
be multiple of them) can reply with its entire sync tree,
which can then be merged by the recipient with its own
sync tree.

This recovery procedure is considered expensive in a large
group, because it involves all the nodes in the group to
take actions (see more elaboration in the next section). It is
also possible to address the issue with other more efficient
reconciliation algorithms [4], [5], [6], but their uses have
not been defined or implemented in the existing experimental
prototypes.

III. CASE STUDY: STATE DIVERGENCE AND RECOVERY
IN CHRONOSYNC

State divergence in ChronoSync can happen because of
simultaneous data productions and/or packet losses. To resolve
the differences among diverged states, individual nodes need
to retrieve the missing updates from each other. One can use
the exclude filter to retrieve multiple sync replies generated on
top of a previously synchronized state. However, when nodes
get into diverged states, for example:

• one node N1 in the state with digest D1 produces a sync
reply OD1,

• another node N2 has the state with digest D2

Node N2 has no way to learn the digest value of D1.
Consequently, N2 has no way of retrieving the sync reply
OD1. As a result, the sync nodes are forced to use the recovery
mechanism to bring the group in sync again.

In the following we illustrate the above analysis using a
concrete example with 3 nodes A, B, and C in a sync group.
Fig. 1a shows the initial state where all the three nodes
send Sync Interests with the same digest d0. In Fig. 1b,
A and B simultaneously publish a new piece of data A1
and B1, respectively, and update their local state digests to
dA1 and dB1. Node C receives only the sync reply from
A, and updates its own digest to dA1. Note that A and B
will not receive the sync reply produced by each other at
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Fig. 1. Example of simultaneous updates.

this time, because their pending Sync Interests with digest d0
has already been satisfied by their own new data production
A1 and B1, respectively. Due to the “one-Interest-one-Data”
rule in NDN, the pending Sync Interest serves as “one-packet
subscription” to any data produced under the name of that
Interest.

After receiving a sync reply:

1) each of the three nodes sends a new Sync Interest with
its updated digest, as shown in Fig. 1c. As a result, A
and C receive an unknown digest dB1 and B receives
an unknown digest dA1. Upon receiving an unknown
digest, all three nodes start a random timer to wait for
potential sync data packet that may resolve the conflict.
Note that in this case no sync data packet will be
received.

2) the three nodes resend their previous Sync Interests with
additional exclude filter containing the implicit digest
of the sync reply packets they have received (Fig. 1d),
hoping to retrieve the missing replies that caused the
divergence.

However, before they are able to reconcile the states, node
A produces a new data packet, A2, and generates a sync reply
to the Sync Interest with digest dA1 (Fig. 1e). Note that the
Sync Interests sent by nodes A and C with the same digest dA1
are still pending in the network. Therefore, the new sync reply
will be returned to C, resulting in both A and C updating their
state digests to a new value dA2. Unfortunately, node B will
not be able to calculate the digest dA2 which was generated
on top of dA1: the data object leading to dA1 has not been
received by B. After B receives the missing data A1 from R1



cache using the Sync Interest with exclude filter, B will update
its state digest to dA1B1, which is unrecognizable by either
A or C. Similarly, after receiving the missing data B1 from
R2 cache, A and C will update their state digests to dA2B1
which is unrecognized by node B (Fig. 1f). At this point, three
nodes will execute the recovery process to sync up with each
other again.2

The recovery mechanism of ChronoSync can be considered
expensive for two reasons. First, every node that receives a
Recovery Interest needs to inspect its digest log to find the
digest carried in that Interest. If the digest is found in the
log, the node produces a sync reply containing all updates
since the digest was generated in the group. This searching and
responding process takes time and may affect the application
performance. For example, a node may need to lock the
digest log data structure during the recovery, which stops the
protocol from processing new sync replies; one may also stop
producing new data to avoid making other nodes further out-
of-sync. Second, the reply to a Recovery Interest contains the
data prefix and the latest sequence number of every node that
has published new data since the corresponding digest was
generated. Therefore the size of the reply packet can be rather
large in a large sync group with high data publishing rate per
node.

Given the cost of ChronoSync’s recovery mechanism, its
invocation must be minimized. To that end, we first identify the
causes that lead to the invocation of the recovery mechanism,
and then develop the RoundSync as a means to mitigate the
identified issues.

IV. IDENTIFYING THE ROOT CAUSE IN CHRONOSYNC
STATE DIVERGENCE

We identify the root cause to the inevitable invocation to
ChronoSync’s recovery process, as described in the previous
section, to be the fact that ChronoSync uses a Sync Interest to
serve two different purposes: (1) it lets each node to retrieve
updates as soon as they are produced by any other nodes, and
(2) it lets each node detect whether its knowledge about the
shared dataset conflicts with anyone else in the sync group.
Overloading these two functions on the same Sync Interest
affects both data retrieval and publishing.

First, a sync reply packet (data production) is named under
the digest D of the state on top of which the update is applied.
However, a node does not know how many sync replies get
generated under D. After receiving a sync reply under D, the
node can use exclude filter persistently to look for next reply,
but this can be either unnecessary (when data production rate
is low, only a single reply under each D) or ineffective—when
either a Sync Interest from node N or a reply to be delivered
to N is lost, causing N to be out of sync, therefore N has to
fall back to the recovery mechanism.

2In this specific case, it seems the recovery process might be avoidable,
if A holds back new data production A2 until the unknown digest dB1 gets
resolved. However, the Sync Interest carrying dB1 could be lost, hence A
and C may not be aware of the state divergence.

Second, if a sync node publishes new data before it is
synchronized with all the other nodes in the group, i.e.,
reaching an agreement on the latest digest of the shared
dataset, then the digest in the name of the sync reply may
not be known by other nodes, making it impossible for other
nodes to retrieve the reply, eventually resulting in a sync
recovery. Therefore, a node should hold back from publishing
new data when inconsistency is detected, but this will halt the
applications running over ChronoSync until the conflicts are
resolved.

V. ROUNDSYNC DESIGN

In this section we describe RoundSync, a revision to the
original ChronoSync protocol to address the issues identified
in the previous section. Like ChronoSync, RoundSync pro-
vides the synchronization support with eventual consistency
among a group of distributed nodes sharing a common dataset.
Different from ChronoSync, RoundSync uses the following
two means to mitigate the identified issues in the previous
section.

First, RoundSync divides the data publishing and synchro-
nization process into rounds (hence the name of the protocol).
Each round is identified by a monotonically increasing round
number. Each node may publish at most one piece of data in
each round. Data synchronization in each round is independent
and does not affect data publishing in other rounds. For
example, a node can publish new data in round k while trying
to sync up with other nodes in round (k − 1) or even earlier
rounds.

Second, RoundSync decouples the two functions overloaded
in the ChronoSync’s Sync Interest: detecting inconsistency
in the sync group, and retrieving updates on the sync state.
RoundSync defines separate types of Interests. The Data
Interest is used for fetching updates generated by any node in a
sync group. The Sync Interest is now used solely for detecting
inconsistent states within a round. Note that the semantics
of the Sync Interest in RoundSync is different from that in
ChronoSync.

RoundSync enables each node to synchronize with others
on a per round basis. However, the state of each round can
change, say when a disconnected node gets reconnected again.
To ensure the overall dataset consistency without having to
repeatedly checking every round, RoundSync introduces a new
term cumulative digest, which is semantically equivalent to the
state digest in the original ChronoSync design, and develops
a new recovery mechanism to allow the node to reconcile the
different states quickly and efficiently (see Section V-F).

A. Naming

1) Data Interest: Each node sends a Data Interest to fetch
updates published by others in each round. The reply to a
Data Interest contains the name of the data produced by the
application running on top of RoundSync. RoundSync follows
the same naming convention as used in ChronoSync, i.e., a
piece of application data is named by the concatenation of the



(b) An example of Data Interest name 

(c) An example of Sync Interest name 

(a) An example of application Data name 

/ucla/alice/appPrefix/108 
(3) (2) (1) 
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(1) (2) (3) (4) 

/multicast/appPrefix/SYNC/2005/d0509a… 
(5) (4) (1) (2) (3) 
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(d) An example of Recovery Interest name 

Fig. 2. Naming conventions in RoundSync.

application prefix with the sequence number of that data, as
shown in Fig. 2a.

Fig. 2b shows the structure of a Data Interest name: the
name starts with a multicast prefix that is announced by every
node in the sync group,3 followed by the component that
identifies the application for demultiplexing purpose, and a
special marker component, “DATA”, that indicates the type of
the Interest; the last component in the Data Interest name
carries the round number, e.g. Fig. 2b shows a Data Interest
requesting data produced in round 2006. Note that the Data
Interest name contains no digest, because the detection of state
inconsistency is now done separately by the Sync Interest. This
separation enables a node to construct a Data Interest name by
following the well-defined naming convention to retrieve any
missing updates in a given round. To avoid retrieving the same
data back from router caches, a Data Interest may also include
an exclude filter. The data publishing and fetching process is
described in Section V-C.

2) Sync Interest: All the nodes in a sync group exchange
Sync Interests to detect inconsistent sync state in each round.
Different from the original ChronoSync design, a Sync Interest
in RoundSync only informs others of the sender’s state digest,
but does not trigger any reply packet. Fig. 2c shows the
components in a Sync Interest name. Similar to a Data Interest,
the name starts with a multicast prefix, followed by the
application identifier and a special marker component, “SYNC”,
which distinguishes Sync Interests from Data Interests. The
last two components in the Sync Interest name carry the round
number and the round digest which covers the names of all
the application data received by the sender in that round.

The round digest is calculated as follows: for each applica-
tion data name received in round N , with node prefix pj and

3Such per group multicast may raise concerns about routing scalability. We
are currently exploring effective solutions to address this concern.

Application Dataset
pj (node prefix) sj (latest seq#)

“/ucla/cs/alice” 20
“/ucla/cs/bob” 1
“/ucla/remap/daniel” 1
“/ucla/remap/karen” 1

TABLE I
AN EXAMPLE OF APPLICATION DATASET.

sequence number sj , a digest djN is calculated:

djN = H(pj |sj) (1)

where H is a pre-configured hash function used by all sync
nodes. The round digest rd for round N is then calculated by
applying a hash function to the concatenation of the digests
djN computed from each data name (ordered lexicographically
based on the actual names pj |sj):

rdN = H(d1N |d2N |...|dKN ) (2)

where K is the total number of data published so far in round
N .

A node sends out a Sync Interest for a round whenever
its corresponding round digest changes due to new update(s),
independent from whether the update(s) generated by the
node itself or others. Upon receiving a Sync Interest, a node
compares the round digest with its local digest for the same
round. If the digests are different, the node will issue Data
Interests for that round to retrieve the missing updates. The
detection and reconciliation of inconsistency in a single round
is described in more detail in Section V-D.

3) Recovery Interest: When a sync node detects inconsis-
tency in the cumulative digest which is carried in all data
packets (see Section V-C), it may send a unicast Recovery In-
terest to a specific node to retrieve all updates generated since
the incocnsistent round. The name of the Recovery Interest
contains the unicast prefix of the target node, the application
identifier, and the special marker component, “RECO”, as shown
in Fig. 2d. The detail of the recovery mechanism is described
in section V-F.

B. Protocol State

Similar to ChronoSync, each node in RoundSync maintains
three data structures as part of its internal state:

• The Application Dataset contains the namespace of the
shared dataset that RoundSync replicates. It is equivalent
to the sync tree data structure in ChronoSync but without
the root digests (see Figure-4 in [3]). Table I shows an
example.

• The Round Log, indexed by round numbers, stores the
digest of each round together with the names of the
application data produced in that round. It is similar to
the digest log in ChronoSync, except that each digest
value covers only the data published in the corresponding
round, rather than the entire application dataset. Table II
shows an example.



Rounds Log
Round# rdN Application data names

1 1a...a [“/ucla/cs/alice”, 1]
2 b2...b [“/ucla/cs/bob”, 1]
3 4c...c [“/ucla/remap/daniel”, 1],

[“/ucla/remap/karen”, 1]
... ... ...
32 12...f [“/ucla/cs/alice”, 20]

TABLE II
AN EXAMPLE OF ROUNDS LOG.

• The Recovery Data Names Collection is used for pro-
cessing recoveries from long-term inconsistencies, as
described in section V-F.

Whenever a sync node publishes a piece of new data, or
receives new data from other nodes in round N , it makes the
following updates to the protocol state:

• it updates the latest sequence number of the producer
node in the Application Dataset to the new value;

• it adds the data name into the lexicographically ordered
set of application data names in the corresponding entry
for round N in the Rounds Log, and

• it recalculates the round digest rdN .

C. Data Publishing

When the application running on top of RoundSync pub-
lishes new data, it passes the data name to the RoundSync
service module. RoundSync then updates the local sync state
(described in the previous subsection) and generates a data
packet to reply to the pending Data Interest in the current
round n, with the name of the application data encapsulated
in the content. The producer node then immediately moves to
the next round by increasing the round number to n+ 1, and
sends out a Data Interest for the new round.

When other nodes in the same sync group receive the
reply in round n, they update their sync states based on the
encapsulated name and then move to the next round by sending
out a Data Interest with round number n+ 1.

When a node updates the digest in round n, either because it
publishes new data itself or because it receives a new update
from others in the group in that round, it sends out a Sync
Interest for round n immediately carrying the updated round
digest, to inform others about the new change. Different from
ChronoSync, after receiving a reply to a Data Interest in round
n, a node does not need to retransmit the Data Interests in
round n with an updated exclude filter containing the implicit
digest of the replies the node has received in round n so far.
Instead, it only does so after state inconsistency is detected
from received Sync Interests, as we describe in the next
subsection.

Fig. 3 illustrates the data publishing process with a simple
example where node A produces a data packet in round 1
which is propagated to node B and prompts both A and B to
enter round 2.

NDN 
network 
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Fig. 3. Publishing and synchronizing data in round 1.

D. Per Round Inconsistency Detection

RoundSync detects inconsistent states in each round sep-
arately. When a sync node N , who enters round n + 1 and
sends Sync Interest for round n, receives a Sync Interest for
round m, it compares m with n:

• If n = m, the node compares the received round digest
with its local digest for round n. If the digest values are
different, the receiving node will issue a Data Interest for
round n to retrieve potentially missing updates, carrying
an exclude filter to exclude any data pieces it has received
in round n.

• If n < m, the node knows that it may be missing updates
in rounds n + 1 up to m. Therefore the node sends out
Data Interests immediately for each of those rounds, and
moves itself to round m + 1. While the node is still
synchronizing for the earlier rounds, it may publish new
data in round m+1. That is, the synchronization process
in earlier round does not block data publishing in later
round.

• If n ≥ m, N has already moved past round m. Therefore
it compares the received round digest in the Sync Interest
with the local digest for round m. If they are different,
N determines that there is inconsistency in round m,
and then send a Data Interest for that round with an
exclude filter containing the implicit digest of all the data
pieces produced in that round which the node has already
received, to resolve the inconsistency by retrieving any
missing updates in round m.4 We would like to highlight
the fact that node N can send a Data Interest to retrieve
any potential missing data as soon as inconsistency is
detected, without knowing the state digest of the node
who produced the missing update. This is because the
Data Interest name is solely determined by the round
number, a benefit from decoupling update retrieval from
inconsistency detection.

• If n� m, the node is lagging many rounds behind other
nodes, thus the round-by-round synchronization will be

4Note that the difference in the digest could also be due to the sender of
digest(m) lagging behind, therefore another design option is for node N to
reply to the Sync Interest with digest(m) with a data packet containing N ’s
known data names for round m.
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Fig. 4. Simultaneous data publishing in round 1.

slow. In this case, N may decide to jump to the latest
round it is aware of (i.e., round m + 1), and use the
recovery mechanism (described in Section V-F) to catch
up with the missing data in the earlier rounds.

E. Simultaneous data publishing

The inconsistency detection mechanisms described in the
previous subsection automatically handle simultaneous data
production scenarios. When two sync nodes happen to produce
data simultaneously in the same round n, both of them
will generate replies to the same Data Interest for round n.
Depending on the underlying network topology, other nodes
in the group will receive one of those replies but not both,
causing the group to diverge into two inconsistent states.

According to the described rule for n = m case: each
node will issue a new Sync Interest carrying one of the two
possible round digests. Upon receiving the Sync Interest with
a different digest, a node will detect the inconsistency and
send Data Interests with exclude filter to retrieve the missing
reply. After each node receives the reply, they will converge
on the same state for round n and send out Sync Interest with
the same round digest. This description can be generalized to
the cases where k out of N nodes (1 < k ≤ N ) publish new
data simultaneously in the same round, as long as k is within
the limitation of the exclude filter size.

Fig. 4 shows an example with two nodes simultaneously
publishing data in the same round and eventually resolving
the conflict.

F. Recovery from Cumulative Inconsistency

In addition to round-by-round synchronization, RoundSync
provides a simple way to detect the overall dataset incon-
sistency using cumulative digests, and designs a recovery
mechanism to reconcile the inconsistency discovered by the
cumulative digests.

1) Cumulative digests: Different from a round digest which
covers only the data published in a specific round, the cumu-
lative digest for round n covers the whole dataset observed
by each sync node in that round. Whenever a node produces

Rounds Log 
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1 1a…a 1a…a [Alices’s prefix,1] 
2 b2…b cd…6 [Alices’s prefix,2], [Bob’s prefix,1] 
3 4c…c 7a…4 [Daniel’s prefix,1], [Karen’s prefix,1] 
4 12…9 32…5 [Karen’s, prefix,2] 
5 23...d ac…4 [Alices’s prefix,3], [Daniel’s prefix,2]  
6 cd…3 89…1 [Daniel’s prefix,3]  
7 65…2 bb…3 [Karen’s prefix,3] 
8 ab…9 [Bob’s prefix,2] 
9 32…9 [Alice’s prefix,4] 
10 23…4 [Karen’s prefix,4] 

Greatest 
Stable Round = 7 
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Fig. 5. Stable round and calculation of cumulative digests.

new data, it piggybacks the cumulative digest for the latest
stable round n in the reply packet to the Data Interest in the
current round m. The piggybacked information in the data
reply includes the following three pieces:

• the node prefix of the producer who generates this data
reply,

• the value of the cumulative digest for round n, and
• the round number (n) that the cumulative digest is gen-

erated for; note that n < m, as the current round m is
yet to stabilize.

Upon receiving a Data Interest reply with the cumulative
digest for round n,

• if the node has not calculated a cumulative digest for that
round yet (e.g., because it is still actively synchronizing
in the rounds up to n), it may delay the processing of
the received cumulative digest until it has calculated one
itself.

• if the node has calculated its own cumulative digest(n),
it verifies the consistency of the entire application dataset
up to the round n. If the values differ, the node starts the
recovery process as described next.

Note that sending cumulative digests for recent rounds that
are yet to achieve complete synchronization may unnecessarily
trigger multiple nodes to take recovery actions. To reduce the
chance of premature recovery actions, a sync node should
only include the cumulative digest for the latest round n up
to which no change has been made for a sufficicently long
time. That is, all the rounds up to n have already stabilized.
For example, in Fig. 5 the Rounds Log includes rounds 1
through 10, and the previous highest stable round number is
4 whose cumulative digest has been piggybacked in the Data
Interest replies generated for rounds 7 through 10. After the
node detects that no more data has been produced for rounds
5 through 7 for a long enough time, it will mark those rounds
as stable, calculate the cumulative digest up to round 7, and
piggyback that information in future Data Interest replies (for
the rounds after 10).

2) Recovery process: To recover from a cumulative digest
inconsistency with node R and R’s cumulative digest DR(n),
a node A first determines whether the value of n is very close
to A’s current round m; if so, it means that A is following the
group’s data production closely and the inconsistency may be



recovered by using round-by-round synchronization for a few
round right before round n.

If m � n, or if A fails to re-synchronize after trying a
few round-by-round synchronization, A will invoke a recovery
process by sending a Recovery Interest using R’s unicast prefix
learned from the data reply, concatenated with the cumulative
digest value DR(n). In addition, node A also produces a Data
Interest reply to the current round with no update but its own
prefix and its cumulative digest for round n. This reply is
sent after a small random-wait time; the node suppresses its
own reply if another node sends out a similar reply before
it does. Doing so is to inform the remote node R about the
inconsistency, triggering R to send a Recovery Interest to A
as well.

Note that, except special cases where every node publishes
at each round, in general nodes do not keep a complete list
of every node’s sequence number, i.e. the entire application
dataset state, for every round. Therefore when a node receives
a Recovery Interest for round n, it cannot reply with the
application dataset state for that round. Instead, the reply to a
Recovery Interest contains the current application dataset state
and the current round number m of the sender.

Node A who receives the recovery reply data packet updates
its own application dataset with the received one and stores the
updated dataset temporarily in a data structure called recovery
data names collection. Node A also moves to round m if
m is greater than A’s current round number. The new round
is designated as the recovery round. Since its previous sync
state is unsynchronized, the node will delete all the cumulative
digests it has calculated before, and purge the Rounds Log to
reclaim storage. Once the recovery round becomes stable (i.e.,
no data is published in that round for sufficiently long time),
the node calculates the cumulative digest for the recovery
round using the dataset stored in the recovery data names
collection, and starts calculating cumulative digests for the
future rounds.

Fig. 6 shows an example of the recovery process. When
a recovery reply containing the application dataset and round
number 103 is received, the node who is currently in round 71
updates its own application dataset and jumps to round 103
immediately, marking it as the recovery round. It also truncates
its original Rounds Log and removes all entries before round
71. After round 103 through 106 is stabilized, the node uses
the recovery data names collection and the additional updates
received in each round to calculate the cumulative digests for
rounds 103 to 106.

VI. CONCLUSION

RoundSync is motivated by the observed semantics over-
loading on the Sync Interest in the original ChronoSync
design. Because a Sync Interest with name M is used both for
dataset state inconsistency detection (hence M carries the state
digest D), and for update retrieval (hence all the new updates
produced in the same state generated in the state represented
by D will share the same prefix M ), this semantic overloading
on the name prohibits retrieval of new updates if nodes are
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Fig. 6. Updating Rounds Log after receiving recovery reply

out of dataset synchronization, and the recovery process can
be expensive. This once again shows the importance and
challenge in designing a proper naming scheme for network
protocols running over NDN.

RoundSync modifies the ChronoSync design in several
aspects. First, it divides the data productions into rounds and
restricts each node to publish at most one data packet in
a single round, reducing the chance of too many updates
produced in the same round. Second, each round can be
synchronized independently from any other round, and does
not affect data publication in any round. Third, RoundSync
uses separate Interest packets to perform state inconsistency
detection (Sync Interest based on the round digest) and update
retrieval (Data Interest based on the round number), enabling a
node to retrieve updates without knowing other nodes dataset
state. Finally, RoundSync redesigned the recovery mechanism
from cumulative digest inconsistency, which is performed
between node pairs without involving the whole group.

The above modifications improve RoundSync’s scalability
of data synchronization for the scenarios with high data
production concurrency among the distributed data producers.
We would also like to express a concern about the usage
of RoundSync’s Sync Interests: they solicit no return data
packets, which is inconsistent with NDN’s Interest-Data flow
balance. Please see [1] for further discussions on the impact
of such Interest usage.

We have implemented the RoundSync protocol and con-
ducted preliminary comparison studies between ChronoSync
and RoundSync through simulations; the results will be re-
ported in a future revision of this report.
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