
NDN Technical Report NDN-0027, 2014. http://named-data.net/techreports.html

Revision 1: October 27, 2014

NDNFS: An NDN-friendly File System

Wentao Shang
UCLA

wentao@cs.ucla.edu

Zhe Wen
UCLA

wenzhe@cs.ucla.edu

Qiuhan Ding
Tsinghua University

dingqiuhan@gmail.com
Alexander Afanasyev

UCLA
afanasev@cs.ucla.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
NDNFS is a file system designed for Named Data Network-
ing (NDN) and supports efficient data access by both local
and remote applications. It provides the standard file system
interface for local file operations, but stores files internally
as NDN Data packets, which can be directly sent out as re-
sponses to the incoming Interests, saving the overhead of
encoding the packets and generating signatures on the fly.
A metadata protocol is also designed to assist remote ac-
cess to NDNFS by communicating directory contents and
file metadata explicitly with data consumers. By providing
consistent data naming and organizing across different lay-
ers, NDNFS implements storage, transmission and security
protection functionalities with a single data unit: the NDN
Data packet.

1. INTRODUCTION
Named Data Networking (NDN) [11, 7] proposes a fu-

ture Internet architecture that shifts from“host-oriented”
into “data-oriented” communication paradigm. In NDN
network, every piece of data contains an NDN name as
the unique identifier and a signature of the data pro-
ducer, which secures the binding between the name
and content. Since the signature generation process
is expensive, NDN data storage services usually store
pre-packaged Data packets, ready to be transmitted
over the network without incurring additional overhead.
This essentially unifies storage, process and transmis-
sion in the same data unit, bringing the benefits of in-
tegrity checking and tamper resistance.

Lots of applications on the NDN testbed make use of
a permanent in-network storage provided by an NDN
architectural component called repo, currently imple-
mented by ccnr as part of the Project CCNx implemen-
tation [1]. However, this implementation has several
critical limitations. First, ccnr only provides network-
based read/write access to the data via Interest/Data
packet exchange, which prohibits non-NDN applications
(e.g., existing text editors or image viewers) from ac-
cessing the local repo data. Second, ccnr implements
a persistent permanent storage, without the ability to

remove any data after it is stored, which creates hurdles
for applications that want to store large volumes of data
temporarily in the repo.

In this paper, we designed and implemented an“NDN-
friendly” file system called NDNFS, as a new type of
data storage service for NDN, aiming to support ap-
plications that require both remote and local access
to the files stored in the repo. NDNFS creates a cus-
tomized file system that exposes POSIX file API, allow-
ing basic operations like creating, modifying and delet-
ing files and directories. Internally, it chops the file
data into NDN-formated segments and stores them in
a local database. A special NDNFS server daemon is
employed to handle Interests for the data stored in ND-
NFS by pulling out the “network-ready” Data packets
from the database and pushing them down to the wire.
This makes NDNFS “NDN-friendly” by optimizing file
data access through NDN protocol.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the design of NDNFS. Section 3 de-
scribes the implementation of our prototype. Section 4
analyzes the performance of the prototype by measur-
ing the file access speed. Section 5 discusses previous
works related to NDNFS. Finally, Section 6 concludes
the paper and addresses future work.

2. SYSTEM DESIGN
This section describes the design of NDNFS. We first

give an overview of the system architecture and then
discuss specific design issues in detail.

2.1 Overview
NDNFS consists of two inter-dependent parts: the

file system core and the server module, as is shown in
Figure 1. The file system core manages the internal or-
ganization, NDN name assignment, and the back-end
storage (using an embedded SQL database) of the file
data. It is also responsible for chopping large files into
small segments and encapsulating each segment into
NDN wire format. The file system core exposes UNIX
file operation interfaces to the operating system, so that
local applications can access and manage the stored files

1

Core

Server
Module

Local
Apps

DB
Storage

NDNFS

NDN

Remote
Apps

Figure 1: NDNFS basic architecture

via POSIX-style system calls (open, close, read, write,
unlink, etc.).

The built-in NDNFS server provides remote access to
the local file data over NDN. It parses the incoming In-
terests and searches the local storage for the matching
Data packets. It also supports a metadata protocol that
provides meta-information about the files and directo-
ries through RPC-style commands, allowing consumers
to explore the NDNFS naming hierarchy remotely.

The initial design of NDNFS described in this pa-
per provides full support for local read/write operations,
while defining only read interface for the remote access.
Enabling remote write access requires a careful design
of access control scheme to handle security and privacy
concerns.

2.2 Naming structure
File and NDN names are very similar to each other:

they both are hierarchical and uniquely identify objects,
either on the file system or in an NDN environment.
The hierarchical structure of file names can be directly
applied in NDN: a file with a path /a/b/c.txt can cor-
respond to exactly the same NDN name /a/b/c.txt.
However, due to file segmenting, the NDN name of each
data segment (collectively representing a file) needs to
contain at least a sequence number to indicate the order
of the file block. Also, in order to distinguish different
updates of a file, NDNFS adds a version number after
the file name (but before the segment number, follow-
ing ccnr naming conventions) to uniquely identify each
edition of the same file (see Figure 2). Note that the
version and segment information is invisible to local ap-
plications from the file system interface.

Although it is possible to simply map the root direc-
tory ./ of NDNFS into the NDN root prefix /, in the ac-
tual deployment it is often desirable (e.g., in order to fa-
cilitate Interests forwarding) to associate the root with
some predefined global prefix so that all the data seg-
ments in NDNFS will be named under this prefix. For
example, the NDNFS instance in the above figure is con-
figured to use /ndn/ucla.edu/irl/user/ndnfs/ as the

./
./a

./a/b
./a/b/c.txt

./a/b/c.txt/v2
./a/b/c.txt/v2/s0
./a/b/c.txt/v2/s1
./a/b/c.txt/v2/s2

File System View

NDN Name

/<Prefix>/a/b/c.txt/v2/s0
/<Prefix>/a/b/c.txt/v2/s1
/<Prefix>/a/b/c.txt/v2/s2

Prefix = /ndn/ucla.edu/irl/user/ndnfs

Figure 2: NDNFS naming structure

global root prefix, then the NDN name for the first seg-
ment of the file ./a/b/c.txt will become /ndn/ucla.

edu/irl/user/ndnfs/a/b/c.txt/v2/s0 (here v2 indi-
cates the second version). This essentially avoids names-
pace conflict if multiple NDNFS instances are running
on the network. It also makes NDNFS file block names
routable on the global Internet.

2.3 Storing file segments
Just like Unix file system stores file data as blocks

on disk, NDNFS stores files as a collection of segments
in wire-formated NDN Data packets. The key moti-
vation for segmenting file data is to fit file transmission
into the packet switching communication model of NDN
network. A properly selected segment size can adapt to
the MTU (Maximum Transmission Unit) of the under-
lying network so that every file block can be directly
transmitted on the network without fragmentation. It
also allows data consumer to fast recover one or two lost
blocks without retransmitting the entire file.

For each file segment, a segment number is appended
to the end of the NDN name of that segment to support
sequencing and assembly. The segment number simply
starts from zero and grows sequentially, and the size of
each segments in our prototype is fixed to 8192 bytes.
When a file is read by local applications, NDNFS com-
bines all the segments of that file in order, and re-
turns the aggregated data back to the applications.1

For local write operations, NDNFS splits the written
file into fixed-size segments, packs them into ‘network-
ready’ Data packets, signs and store them in the back-
end database for future use. Because of this packetiz-
ing process (especially the data signing process), the
local write operation becomes more expensive in ND-
NFS than in the normal file systems that store files as
plain byte chunks.

When the file is accessed remotely through the net-
work interface, NDNFS extracts the requested file path,
version, and segment information from the incoming In-
terest, and perform a lookup in the back-end database.
If the requested entry is found, the requested segment is

1The standard file system interface allows reading a partic-
ular part of a file (starting from some offset and ending at
certain length), in which case only the segments related to
that part are processed.

2

immediately forwarded to the network. Otherwise the
incoming Interest is simply ignored.

2.4 Version control
In the NDN architecture design, Data packets always

bind to a unique name and are immutable. This unique
feature requires NDNFS to update the version number
of all the file blocks when that file is modified (even
though some of these blocks are actually unaffected by
the change). NDNFS automatically performs this ver-
sion control without user intervention since normal ap-
plications have no concept about NDN versioning and
also lacks the capability to manage the NDNFS in-
ternal version information. NDNFS generates version
numbers consistently based on the system clock which
guarantees local chronological ordering.2 This avoids
the problem in ccnr where careless users may produce
version numbers that lead to incorrect order of the file
history, confusing applications and users.

Internally, NDNFS maintains two version numbers
for each file entry: the current version and a tempo-
rary version. When the file is opened with write access,
NDNFS will generate a temporary version and all the
subsequent write operations will simply edit this tempo-
rary version without creating a new one. After the file
descriptor is closed, the temporary version is commit-
ted and becomes the “current version”, while the previ-
ous version becomes historical. The automatic version
control in NDNFS offers a straightforward solution to
file system journaling: by default, NDNFS will remove
the old version when a new version is staged (which is
suitable for lightweight service deployment); but when
configured to run in journaling mode, NDNFS will keep
the entire file change history (subject to local disk ca-
pacity) so that previous versions can be recovered at
any time in the future.

However, the versioning algorithm described above
only supports “open-after-close” consistency, but not
“read-after-write” consistency. That is, until the writer
closes its file descriptor, any changes made to the tem-
porary version will be invisible to the readers who access
the file concurrently with the writer. We could have im-
plemented NDNFS to update the file version for every
write operations (such as write and truncate). But
that would incur significant performance penalty since
we would have to update the NDN name and signature
of every file block for each single write. Here we decided
to trade fine-grained consistency for performance boost.
This issue actually reflects a deeper problem in the gen-
eral file system design: the applications and storages use
different data units (file versus segment), which causes
conflicts in the semantics of various functionalities.

2Here we made the assumption that the system clock will
not rewind.

2.5 Deletion
Deleting files and directories is a common operation

on file systems. In NDNFS, however, there is a subtlety
in the semantics of data removal: due to the perva-
sive caching in the NDN network, the file blocks may
still reside in some routers’ Content Store after that
file is deleted from NDNFS local storage. ccnr imple-
ments data removal by publishing a special type of Data
packet (called GONE type [2]) under the same NDN name
to indicate that this piece of data is no longer avail-
able.3 This forces the size of the ccnr local storage
to grow monotonically, which becomes a major draw-
back of ccnr. NDNFS takes an simpler approach by
removing the data from local storage and relying on
the FreshnessSeconds setting to purge the router cache.
Future Interests asking for the removed data (possibly
carrying Exclude filters to bypass cached versions in the
network) will be ignored by NDNFS server, eventually
causing a timeout at the consumer side.

2.6 Metadata protocol
To assist remote file fetching via NDN network, ND-

NFS employs a metadata protocol to communicate in-
formation about the file system with remote consumers.
The functionalities of the metadata protocol resembles
the Network File System (NFS) [5] services, the most
basic ones including getting file attributes and listing
entries in a directory. The metadata protocol imple-
ments RPC-style request/reply communication through
Interest/Data exchange, where the RPC command is
encoded in the name of the Interest. The metadata
packets are signed by the same key that signs the nor-
mal file data and are verifiable at the consumer side.

Since NDNFS remote access is read-only, the cur-
rent metadata protocol design only supports reading
file/directory attributes and directory contents, which
is similar to the NFS operations GETATTR and READ-

DIR respectively.4 The name of the metadata is con-
structed by appending the RPC command (in the form
of an NDNFS-specific name component) at the end of
the corresponding file/directory name so that the re-
quests for the metadata can be routed to the NDNFS
producer. In the current implementation, the GETATTR

command is expressed by the special name component
NDNFS.GETATTR, while the READDIR command is expressed
by the special name component NDNFS.READDIR.

For GETATTR command, the returned information con-
tains not only the general file meta-info such as size and
access time, but also the NDN-specific information like

3This special type of GONE packet is only used in ccnr Sync
protocol, which helps maintain the monotonic growth prop-
erty of the set of NDN names synced between the repos. The
old versions are still cached inside the network until timeout.
4Reading file data is already supported implicitly by fetching
the data block through basic NDN protocol.

3

Virtual
File

System
(VFS)

FUSE

EXT4

HFS+

....

Userspace

Kernel

glibc glibc

libfuse

SQLite

libsqliteLocal Apps

NDNFS Core NDNFS Server

ccnd

libndn-cpp

Network
Stack

Figure 3: NDNFS system implementation

current version number and total segments count. For
READDIR command, the returned data packet contains
a list of file/sub-directory names under the directory
described by this metadata. These information is criti-
cal for the consumers to be able to issue Interests with
exact file data names (including accurate version and
segment numbers), reducing the usage of Interest selec-
tors which will likely cause Interest forwarding overhead
at NDN routers.

Since files are versioned by NDNFS, the correspond-
ing metadata also needs to be versioned to keep track
of the file changes. The version number of file meta-
data is identical to that of the corresponding file and
is appended after the command component. A sim-
ple mechanism for bootstrapping version information is
to explicitly ask for the metadata (with the command
component attached but no version component) and use
Exclude filter to bypass unwanted versions.5 Another
possible solution is to rely on FreshnessSeconds field in
the NDN Data packet to purge the outdated copies in
the network.

Directories are special in NDNFS in the sense that
they represent prefixes in the NDN namespace with-
out any Data packet associated with their names. In
ccnr convention, the Interest with a name pointing to
a general prefix is satisfied by any data under the sub-
namespace of that prefix (that could match the Inter-
est selectors). However, since prefixes in NDNFS have
concrete semantics (directory paths in the file system),
NDNFS takes a different approach by always returning
the directory meta-info for Interests that exactly match
a directory name. That is, all such Interests are treated
as an implicit GETATTR RPC call. This is both mean-
ingful under the file system semantics and also removes
the NDNFS server’s burden of searching data under the
directory and matching selectors.

3. IMPLEMENTATION
In this section we introduce our proof-of-concept im-

5Therefore the usage of Interest selectors is not completely
avoided by the metadata protocol.

plementation of NDNFS [8]. The prototype system is
written in C++ and tested on Mac OS X platform.
Figure 3 shows the general architecture of the current
prototype.

3.1 File System Core
We built the NDNFS as a user-space file system on

top of the FUSE [3] kernel module, which is a virtual
file system service that links the file system interface
with user-defined callbacks. The following list shows the
file and directory operations implemented in NDNFS,
which are necessary to support basic UNIX commands
such as ls, rm, cp, and mkdir:

• File operations: create, open, read, write,

truncate, release, unlink

• Directory operations: mkdir, rmdir, readdir

• Meta-info operations: chmod, getattr

The file system core runs as a single-threaded daemon
service and mounts the file storage to a user-specified
directory (usually referred to as the “mount point”).
When local applications access files or sub-directories
inside the mount point folder through file system APIs,
the FUSE kernel service redirects the requests to the
NDNFS core daemon, which will serve the request by
looking up the data in the back-end storage.

The file data blocks and associated meta-info are stored
in an SQLite [4]-based local database. The database
maintains three tables: a file entries table (indexed by
the file paths) that contains the meta-info about files
and directories, similar to the inode table in Unix file
systems; a file versions table (indexed by the file paths
and version numbers) that keeps track of the version
numbers for the files; and a file segments table (in-
dexed by the file paths, version and segment numbers)
that stores actual file data blobs. The queries from the
FUSE callbacks are usually performed as SQL JOINs

among multiple tables.

3.2 Server Module
The NDNFS server is implemented as an NDN data

producer that runs alongside the NDNFS core daemon.
Once started, it registers the NDNFS global prefix to
local ccnd and waits for incoming Interests. Unlike
other local applications that access NDNFS through the
standard file interface, the server module directly inter-
acts with and retrieve data from the back-end database.
A more complex approach could map the entire NDN
name hierarchy into file path tree, allowing each indi-
vidual Data chunk to be accessed as Unix files. In that
case the NDNFS server may also access the internal
data through standard file system calls.

When an Interest packet arrives, NDNFS server first
extracts NDNFS local file path (and possibly version

4

and segment numbers) from the Interest name, and then
uses this path as the search key to find possible match-
ing data in the SQLite database. An Interest with no
version or segment number in the name is satisfied by
the metadata (regardless of whether the metadata pro-
tocol command component is present), which is gen-
erated on the fly by the NDNFS server.6 An Inter-
est whose name contains at least a version number but
no metadata protocol command is either satisfied by
a matching segment or discarded if the requested ver-
sion is not the latest one.7 Table 1 summaries the rules
for interpreting NDNFS names under any combination
of command, version and segment components. Since
there is no ambiguity for names under the NDNFS se-
mantics, the server ignores any selectors in the Interest
packet.

4. EVALUATION
In this section we present the performance evaluation

results of the prototype implementation. We focus on
the speed of the read and write access, which are the
most critical file operations. All the tests are conducted
on an iMac with 3.2 GHz Intel Core i3 processor, 4 GB
DDR3 memory and 7200 rpm SATA hard drive. The
hosting operating system is Mac OS X version 10.7.

4.1 Local Access
To measure the local write speed, we use the built-in

cp command to copy a 5.7 MB image from HFS+ (the
native file system on Mac OS X) into NDNFS. Then we
use the time command to measure the running time of
the copy process and compute the throughput. We did
not measure the local read speed in this test due to the
interference of file caching mechanism in Mac OS X.

Since the RSA signature computation operation is
the main bottleneck in the NDNFS file writing, using
larger file block size will effectively reduce this overhead
by producing less segments to be signed per file. In this
test, we repeated the same measurement under two dif-
ferent NDNFS configurations: one with 8 kB file block
size and the other 64 kB. The result is shown in Table 2.

As is expected, using 64 kB block size almost in-
creased the file writing speed by 4 times compared to
the 8 kB case. However, such a large segment size is im-
practical for transmission on the NDN network. A more
sophisticated implementation would employ a two-level
segmenting scheme: at file system level, the file blocks

6Currently we keep the file system core and the server as
two separate modules. A more sophisticated design would
integrate the two modules and perform both local and re-
mote queries through the file system interface. In that case,
the metadata packet will also be pre-generated and stored
in NDNFS alongside normal data blocks.
7In journaling mode, NDNFS may optionally return the his-
torical version tracked by the journal, which is not imple-
mented in the current prototype.

Table 2: Local file writing speed (Mbps)
Block-size Mean Dev

8 kB 1.34 0.23

64 kB 5.28 0.37

Table 3: NDN file fetching throughput
Unit: kbps NDNFS ccnr

Sequential
mean 121.725 204.316
dev 0.237 1.192

Pipeline
mean 284.079 430.329
dev 1.107 1.924

are managed in large data size; at NDN level, the large
file blocks are further chopped into smaller segments,
which can be grouped together using Merkle hash tree
to reduce signing overhead.8

4.2 Network Access
We evaluate the network read access speed by fetch-

ing a pre-installed 100 MB file from NDNFS server and
ccnr (using the same segment size of 8 kB) and com-
paring the downloading throughput. We implement two
versions of file fetching client: the first version fetches
all the file segments sequentially, while the second ver-
sion employs a fixed-size pipeline mechanism that al-
ways keeps eight outstanding Interests.

To capture the performance of the network interface
without introducing additional overhead, the test client
simply discards the fetched data rather than saving it
to local disk. Since ccnr does not support the trust
model used by NDNFS, we also skipped data verifica-
tion in the test client and only measure the data transfer
speed. A special flag in the Interest packet (called An-

swerOriginKind) is set to bypass the local ccnd cache
(so that the result really reflects the through at the
server). Moreover, the test client runs on the same ma-
chine with the server and communicates through local
socket interface in order to remove interference on the
network.

Table 3 summarizes the measurement results, where
each test case is repeated 100 times. In sequential fetch-
ing, NDNFS server is roughly 40% slower than ccnr.
Pipelining improves both performances but NDNFS is
still about 34% slower than ccnr. The difference in the
data throughput is easy to understand: for every re-
quest, NDNFS has the extra overhead of parsing and
executing SQL commands in the database while ccnr

uses a customized indexing scheme for its data; also,
NDNFS server is implemented with a C++ NDN li-
brary, which is less efficient than the “pure C” imple-

8We cannot use Merkle hash tree across file segments be-
cause the file system semantics requires each file block to be
independent and complete.

5

Table 1: Interpreting Interest names in the NDNFS server
Special Components

Action
command version segment

× × × Return the latest attribute meta-info for the requested file or directory.√
× × Execute the command and return the latest metadata.

×
√

× Return the first segment of the requested data or discard if version is stale.√ √
× Return the requested metadata or discard if version is stale.

×
√ √

Return the requested data or discard if version or segment does not exist.

– – – Discard in any other cases.

mentation of ccnr.

5. RELATED WORKS
There is a rich collection of literatures on file system

design and implementation, especially for networked and
distributed file systems. The traditional NFS [5] design
focuses on providing consistent interface with the same
control granularity across local and remote file systems.
It relies on IP-style security mechanism to protect data
authenticity and integrity. Most distributed file sys-
tems deployed in the data centers (such as Google File
System [6] and Hadoop Distributed File System [9]) as-
sume well-managed clusters where distributed storages
are inter-connected. Therefore security is not a ma-
jor concern in such systems and researches in this area
usually focus on data partition, system reliability and
performance optimization.

A closely related research work is Iris [10], an au-
thenticated file system with inherent security support.
It assumes an enterprise-scale file system hosted in un-
trusted public cloud (and therefore requires strong se-
curity guarantee). It is similar to NDNFS in many as-
pects: it relies on heavy caching at the so-called “Iris
portal” (deployed near the enterprise customers to re-
duce file fetching latency); it provides data integrity
protection using Merkle hash tree and ensures freshness
through versioning. However, Iris solely relies on the
portal as the trust anchor to provide the correct data
checksum and version numbers without using any cryp-
tographic signature. Another difference is that Iris per-
forms per-block versioning rather than using the same
version across the whole file. This allows the decou-
pling of updates among different file blocks but loses
the semantic consistency between data version and file
modification time.

The NDNFS design is unique in that it directly uses
NDN Data packet as the file system data unit. There-
fore it inherits all the security properties from the NDN
architecture and allows applications and the network to
share the same security model. It also saves the over-
head of converting data units between different layers,
making the file system “network-friendly”. The current
simple design addresses the middleground between lo-
cal and network file systems (i.e., a local file system

designed with network accessibility in mind) and can
be extended into RPC-style network file system or dis-
tributed file system with data-oriented security support.

6. CONCLUSION AND FUTURE WORK
In this paper, we described the design and implemen-

tation of NDNFS, an NDN-friendly file system that pro-
vides both local and network access to the file data. We
discussed the performance of NDNFS through compar-
ison with native file system and ccnr.

The current prototype implements only a limited set
of functionalities in support of basic NDN operations,
which leaves room for future research effort. Regarding
the NDNFS core service, we plan to implement more file
interfaces, such as file locking and renaming, to turn
NDNFS into a full-featured file system. We will also
explore new types of back-end data storage, such as
storing all Data packets as individual plain files on the
local disk. On the other hand, the evaluation result
drives us to seek potential improvements in file writing
speed, such as optimizing the NDN C++ library cur-
rently used in NDNFS or devising more complex file
segmenting scheme.

For NDNFS server, we will consider how to integrate
access control in order to implement remote write func-
tionality, which is missing in the current prototype. It
is also possible to turn NDNFS into a distributed file-
sharing service like ChronoShare [12] by adding syn-
chronization protocols on top of it. We encourage wider
adoption of NDNFS in other applications to explore the
potential usage of this new type of NDN data storage
and also welcome contributions to this newly-started
research project.

7. REFERENCES
[1] Ccnr(1) manual page. Available at

http://www.ccnx.org/releases/latest/doc/

manpages/ccnr.1.html.
[2] Ccnx content object. Available at

http://www.ccnx.org/releases/latest/doc/

technical/ContentObject.html.
[3] FUSE: Filesystem in userspace. Available at

http://www.named-data.net/.

6

[4] Sqlite home page. Available at
http://www.sqlite.org/.

[5] B. Callaghan, B. Pawlowski, and P. Staubach.
NFS Version 3 Protocol Specification. RFC 1813
(Informational), June 1995.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In ACM SIGOPS Operating
Systems Review, volume 37, pages 29–43. ACM,
2003.

[7] V. Jacobson et al. Networking named content. In
Proc. of CoNEXT, 2009.

[8] W. Shang et al. NDNFS source code repository.
http://github.com/named-data/NDNFS, 2013.

[9] K. Shvachko, H. Kuang, S. Radia, and
R. Chansler. The hadoop distributed file system.
In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages
1–10. IEEE, 2010.

[10] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea.
Iris: A scalable cloud file system with efficient
integrity checks. In Proceedings of the 28th
Annual Computer Security Applications
Conference, pages 229–238. ACM, 2012.

[11] L. Zhang et al. Named data networking (NDN)
project. TR 0001, NDN, 2010.

[12] Z. Zhu, A. Afanasyev, and L. Zhang.
ChronoShare: a new perspective on effective
collaborations in the future Internet. Poster,
UCLA Tech Forum 2013, May 2013.

AFTERWORD
The NDNFS project was originally inspired by a closely
related application called ChronoShare [12], which pro-
vides Dropbox-like, but de-centralized file sharing ser-
vice over NDN. ChronoShare has the specific require-
ment of providing both local and network access to the
files in the sharing folder, which becomes the motivation
of building an “NDN-friendly” file system. However, af-
ter NDNFS was implemented, we realized that it did
not meet ChronoShare’s functional requirements and
was too complex to be integrated into the ChronoShare
codebase. Here is a list of major limitations:

• First, NDNFS does not implement all the neces-
sary file system interfaces (such as file renaming
and locking), which leads to usability problems.

• Second, the FUSE-based file system requires ex-
tra handling during application startup, such as
mounting the file system to the correct path, which
adds more complexity to the applications on top of
it.

• Third, the implementation suffers from a perfor-
mance problem as explained below, which signif-

icantly affects the I/O speed and hurts the user
experience.

The first version of NDNFS used a NoSQL database
called MongoDB as its backend data store. Preliminary
performance measurement showed significant slowdown
in read/write speed as compared to the ccnr reposi-
tory. We then switched to use the embedded database
SQLite, with the hope that it would mitigate the bot-
tleneck in the backend storage. However, as shown in
the evaluation results in this paper, the performance is
still worse than that of ccnr. Another related project,
repo-ng (which aims to create a replacement for ccnr
with additional desired features), also ran into simi-
lar performance issues when it tried to use SQLite as
the backend. Through further discussion and analysis,
we concluded that the performance bottleneck is due
to the delay of the database I/O operations. Conse-
quently repo-ng implemented an in-memory name in-
dex to avoid multiple DB lookup when executing Inter-
est/Data matching.

It has been over a year since this paper was drafted
in late 2013. During this time period, the NDN proto-
col specification has undergone significant change, with
the packet format being moved from the old binary
XML format to the new Type-Length-Value (TLV) for-
mat. The NDN team also developed a new forwarder,
NDN Forwarding Daemon (NFD), to fully support the
new packet format. Since the original NDNFS imple-
mentation was based on the old XML format, it is no
longer usable. Considering that NDNFS did not fit into
ChronoShare and we did not find other use cases where
NDNFS would apply, we decided not to port NDNFS
to the new NDN packet format. However we feel it is
worthwhile to publish this work as a technical report
for future reference, and for sharing with others what
we learned from the NDNFS exercise.

7

