
NDN, Technical Report NDN-0066, 2018. http://named-data.net/techreports.html
Revision 1: [10/2/18]

Publish-Subscribe Communication in Building
Management Systems over Named Data Networking

Wentao Shang∗, Ashlesh Gawande†, Minsheng Zhang†, Alexander Afanasyev‡,
Jeffrey Burke∗, Lan Wang† and Lixia Zhang∗

∗UCLA
{wentao,lixia}@cs.ucla.edu, jburke@remap.ucla.edu

†University of Memphis
{agawande,mzhang4,lanwang}@memphis.edu

‡Florida International University
aa@cs.fiu.edu

Abstract—Publish-subscribe (pub-sub) has been recognized as
a common communication pattern in IoT applications. In this
report we present NDN-PS, a distributed pub-sub communication
framework for modern building management systems (BMS), an
important area of IoT, over the Named Data Networking (NDN)
architecture. NDN-PS utilizes distributed NDN repositories to
store and republish large quantities of BMS data that can be
consumed by different applications. It employs a data synchro-
nization mechanism to aggregate multiple data streams published
by multiple sensing devices and achieve efficient notification
of new data for the consumers. NDN-PS also provides data
authentication by utilizing NDN’s security building blocks. We
have implemented a prototype of NDN-PS and are in the process
of evaluating its design through an experimental deployment.
This design exercise demonstrates that the information-centric
architecture enables a simple design for complex IoT systems
and provides superior system efficiency and security over the
TCP/IP-based alternatives.

I. INTRODUCTION

Enterprise Building Automation and Management System
(EBAMS, or BMS for short) is a key IoT application used by
enterprises to monitor building environment and lower costs.
A typical BMS deployment spreads across many buildings
on an enterprise campus, with tens of thousands of sensors
installed on the premises to monitor electricity, lighting, tem-
perature, humidity, and many other environmental parameters.
Recent years have witnessed an extensive amount of effort by
both industry and research communities to adapt or enhance
the current TCP/IP architecture to support BMS, yet many
challenges still remain. For example, sensing devices may
have intermittent connectivity and use duty cycles to save
energy, while IP communication assumes an ”always on”
model and the associated channel-based security require the
two communicating end points to be online at the same time.
Moreover, it is tedious and error-prone to manually set up and
manage IP-based BMS systems as IP addresses do not reflect
the relationship among the entities in the system, including
the sensing devices, sensor data, environment being sensed,
operators, and other users.

We believe that the above challenges intrinsically come from
the incongruity between TCP/IP’s basic communication and

security model and the functional requirements of IoT appli-
cations [1]. In contrast, several built-in architectural features
in Named Data Networks (NDN), such as expressive naming,
in-network caching, and data-centric security, make it much
easier to build scalable and secure IoT applications [2], [3]
over NDN.

For a proof of concept, we have designed a publish-
subscribe communication framework called NDN-PS for BMS
environments over the NDN architecture [4]–[6]. We have
prototyped NDN-PS on the NDN platform [7] and evaluated
it using our emulation tool Mini-NDN. We are also verifying
the design with a real-world deployment at the University of
Memphis campus using Raspberry Pi’s and wireless sensors.
The work serves as a case study to illustrate i) the use of NDN
architectural features to develop a specific IoT application,
and ii) the unique application design patterns that arise from
a data-centric communication model.

The core functionality of a building management system is
the production and consumption of sensing data. As such, a
major design challenge is how to enable individual applica-
tions to retrieve sensing data of their interest in real time over
the network. Note that (1) each data consuming application
may be interested in a different subset of the sensing data; (2)
sensors and consumers may not be online at the same time; and
(3) the number of sensors and consumers can potentially be
very large. To address these data communication challenges,
NDN-PS leverages distributed NDN data repositories (repos
in short) as intermediaries to decouple data production and
consumption, and incorporates an efficient pub-sub mech-
anism (built on top of NDN’s request-response primitives)
for consumers to subscribe to arbitrary data sets of interest
(Section III). Through this design exercise we also demonstrate
the utility of NDN Sync protocols (Section II) in facilitating
distributed data production and subscription in a data-centric
communication model.

Security is critical for building management systems. NDN-
PS ensures data authenticity using a hierarchical trust model
to verify the signature in each piece of received data (Sec-
tion III-E). The authentication policy is encoded in a trust
schema that leverages the expressive power of data naming [8].

1

This data-centric security model fundamentally differs from
TCP/IP’s channel-based security model in that it ensures the
security property of the data itself, and does not depend on
the existence of secure channels (e.g., a TLS/DTLS session)
between communicating entities.

In addition to presenting our system design, implementation
and evaluation, we also discuss how one can build a large
scale, complex BMS data acquisition system by chaining
together multiple pub-sub groups in a hierarchical way and
perform data aggregation at different levels of the hierarchy
(Section V). We further compare NDN-PS with the pub-sub
support in traditional BMS protocols and cloud-based IoT
systems, and articulate the advantages of building the pub-
sub framework on top of a data-centric network architecture.
We also review the literature of pub-sub systems proposed for
other ICN architectures (Section VI). Finally we conclude the
paper and address future work in Section VII.

II. BACKGROUND

A. Data Acquisition and Access in BMS

In a typical BMS deployment, sensors are often hardwired
to smart panels or controllers that are connected to a com-
mon high-speed backbone network, usually logically and/or
physically isolated from other internal and external networks.
Future BMS may also incorporate wireless sensors that are
associated with a wired aggregator, or even connect low-cost,
wireless sensors directly to the network.

In such systems, different types of sensors continuously
generate a large amount of measurements such as room tem-
perature, power consumption, and chilled water flow. Due to
limited storage and processing capability on typical panels and
controllers, those data points have historically been collected
into dedicated storage at the enterprise level and archived for
certain period of time (typically one or two years) in order to
serve different data analytics applications.

Enterprise level BMS requires advanced data access sup-
port to meet various application requirements including the
following:

• Different consumers may be interested in the data pro-
duced by different sensors. Requiring direct communica-
tion between each sensor/consumer pair would not scale
well.

• Consumer applications may run on diverse platforms
ranging from high-end servers, smartphones, to embedded
systems. These applications consume the sensor data
at different times and speeds and may not always be
available when new data is produced.

• Different applications may have different semantics in
consuming the data. For example, some applications may
be interested only in the latest data generated in real time,
while others would want to periodically receive a few
random samples from a batch of collected data.

B. NDN and BMS

NDN is a new Internet architecture that provides data-
centric communication at the network layer. NDN implements

an asynchronous request-response communication pattern that
naturally decouples data producers and consumers. It defines
two types of network layer packets: Interest and Data. Each
data producer assigns a unique and hierarchical name to every
Data packet it generates. Each consumer issues an Interest
packet with a data name or name prefix, which is forwarded
based on the name (prefix) and can be satisfied by a Data
packet with a matching name. For each received Interest, NDN
forwarders use forwarding strategies [9] to decide where to
forward the Interest by taking into account the usage policies,
the FIB, and the measurement from previous forwarding
decisions. Each Interest packet brings back at most one Data
packet; if the Interest carries a name prefix that can be satisfied
by multiple Data responses, one of them is forwarded and the
rest may be cached at the forwarders where these multiple
responding Data packets meet.

Each Data packet carries a cryptographic signature, securely
binding the content to the name, which ensures integrity and
provenance of the data. As such, NDN Data packets can be re-
trieved either from original data producers, managed data stor-
ages (repos), or opportunistic caches, enabling asynchronous
data production/consumption and significantly improving the
overall scalability and efficiency in data delivery. NDN data
is also immutable: any change to a piece of existing data
produces a new version of the data with a different name.

NDN brings several important benefits to the design and
implementation of BMS. First, NDN forwards Interest and
Data packets using the application-layer names, which elimi-
nates the need to configure BMS networks with IP addresses,
a significant simplification when there exist a large number of
connected sensors, actuators, and controllers. Second, NDN’s
data-centric security mechanism inherently secures every pro-
duced piece of data for its lifetime, instead of relying on
physical/logical isolation and communication channel security.
Finally, the in-network storage including forwarder caches and
repos reduces the query load on the sensors and improves the
scalability of the BMS data communication. As we will show
in this paper, NDN-PS takes advantage of those benefits from
NDN to achieve secure and scalable pub-sub communications.

Our previous work on NDN-BMS [10] designed a BMS data
acquisition system over NDN and demonstrated the design
of the data namespace, collection of the data from off-the-
shelf devices into NDN repositories (repos), and data security
via packet signatures and encryption-based access control.
However, NDN-BMS controls data access at the granularity
of individual sensor readings, and does not support publish-
subscribe communication model to enable efficient and timely
delivery of newly published data to consumers who subscribe
to multiple but different subset of sensing data simultaneously.
In comparison, NDN-PS develops a generic pub-sub com-
munication support as a data transport service on top of the
data acquisition system to facilitate heterogeneous consumer
applications in accessing sensing data.

2

C. Data Synchronization in NDN

Data synchronization (Sync) is an important building block
for distributed applications. While distributed applications may
differ in their specific goals and communication patterns,
they share a common need for synchronizing the application
datasets among multiple parties. Since distributed applications
are a generalization of 2-party communications, one may view
Sync as a generalization of end-to-end reliable data delivery
among multiple parties.

NDN is particularly suited in supporting multi-party com-
munication synchronizations. Since communication in NDN
is based on fetching named data, and there is a unique
and secured binding between a name and its content, an
NDN application can represent its state by the set of data
names. Therefore NDN sync protocols can simply focus on
the synchronization of the dataset names. Once all the entities
in the same application obtain an identical set of data names,
then they can individually decide on when to fetch which data
published by others.

NDN Sync protocols bridge the gap between NDN network
layer’s datagram Interest-Data exchange primitive and the
application layer’s need for data sharing among multiple
participants, in a way similar to the role of TCP which bridges
the gap between IP’s datagram service and applications’ need
for reliable delivery in today’s Internet. However, Sync differs
from the existing end-to-end reliable transport protocols, such
as TCP, in three fundamental ways. First, Sync synchronizes
application-named datasets among multiple parties, while a
TCP connection delivers byte streams identified by its two
endpoints. Second, nodes running Sync can fetch data by
name from anywhere it finds the matching data items since
the security is attached to the data instead of its container
or communication channel. Third, Sync does not require all
communicating parties to be interconnected at the same time,
while a TCP connection delivers byte streams between two
specific endpoints synchronously (i.e. both must be online at
the same time). The ability to reconcile dataset differences
asynchronously is especially useful in constrained environ-
ments with sleeping nodes and intermittent connectivity.

Several sync protocols have been proposed for the NDN
architecture [11], including ChronoSync [12], iSync [13] and
PSync [14]. In ChronoSync, the producers in the sync group
publish data that are identified by the producer’s name and a
monotonically increasing sequence number.1 The state of the
dataset is concisely represented as a list of key-value pairs
that maps each producer to its latest sequence number. The
ChronoSync protocol disseminates the sequence numbers of
new data via multicast so that everyone in the sync group
can update its local state accordingly. iSync uses Invertible
Bloom Filter (IBF) [15] to represent a set of arbitrary names
by storing the hash values of the data names in the IBF. Each
producer in iSync periodically advertises the digest of its IBF.

1This does not reduce the generality of the protocol since the applications
can encapsulate the data objects named under different naming conventions
in the sequentially named data packets.

1. Sync Interest: name = /<routable-prefix>/psync/<sub-list>/<old-IBF>

2. Data: name = /<routable-prefix>/psync/<sub-list>/<old-IBF>/<new-IBF>
content = <updated data name>

3. Interest to fetch update:
name = <updated data name>

4. Data: name = <updated data name>
content = <updated data>

…

Consumer Producer

Fig. 1: PSync message exchanges between consumer and pro-
ducer (<sub-list> is the consumer’s subscription list encoded
in Bloom filter, while <old-IBF> and <new-IBF> are the
producer’s previous and current dataset state encoded in IBF)

Whoever has a different digest can fetch the IBF from the
producer, extract new hash values using IBF subtraction, and
request the actual data names corresponding to those hashes
from the producer.

PSync has a unique feature of allowing consumers to
synchronize with producers on specific subset of the data
namespace, which is particularly suited for NDN-PS. Similar
to ChronoSync, PSync assumes data names from each data
stream contain a name prefix and a monotonically increasing
sequence number. PSync uses an IBF to encode the set of
the latest data name from all streams. The consumers can
subscribe to any subset of the data streams and receive
the latest data generated in those streams. Each consumer
maintains its own list of subscribed data stream prefixes (called
subscription list), which is efficiently encoded by a Bloom
filter.

Figure 1 illustrates the PSync message exchanges between
a consumer and a producer. The producer encodes the latest
data names from all its data streams in an IBF, which is sent
to the consumers in PSync replies and again sent back by
consumers in PSync Interests in order to track the changes in
the producer’s dataset. In addition, each PSync Interest from
a consumer contains its subscription list so that the repo can
filter out the changes relevant to the consumer. Because PSync
includes consumers’ subscription information and producer’s
dataset state explicitly in the Interest/Data names, it minimizes
the round-trip required for synchronization and reduces the
soft-state information kept by the producer. Moreover, this
design allows the consumers to retrieve updates from any of
the repos that share the same set of sensor data, which is
essential for enabling the multi-repo pub-sub framework in
NDN-PS.

In addition to the pub-sub functionality, PSync can also
be used to support full synchronization among a group of
participants, and its use of IBF allows it to extract differences
between the data names at two participants more efficiently
than ChronoSync.

3

III. SYSTEM DESIGN

NDN-PS is a pub-sub communication framework designed
to support data access over NDN in a typical enterprise BMS.
In this section, we present our design assumptions, goals and
detailed design.

A. Design Assumptions and Goals

We make the following design assumptions based on the
BMS data access requirements stated in Section II-A.

First, we assume that the BMS sensors are hardwired to
some smart panel or controller that speaks the NDN protocol
on the enterprise network. The panels gather the readings from
the sensors and package them into NDN Data packets.

Second, since the panels usually have limited storage, they
need to transfer data to a long-term storage device, i.e., NDN
repo [16], for data archiving and access. The repos are the core
components in NDN-PS that coordinate the communication
between sensors and applications. We expect the repos to run
on servers with enough storage to host the data generated by
the sensors they are serving. The repos are connected to the
enterprise network via NDN and stay online to process pub-
sub requests. They typically do not have any constraint on
computation capability or energy budget.

Third, the consumers in the BMS include data acquisition
applications running on servers, laptops, and smartphones, as
well as controller logics on the smart panels that monitor the
data created by other panels. Mobile consumers on laptops
and smartphones may have intermittent network connectivity
(e.g., when the user closes the laptop or put the smartphone
app into background) and thus do not always stay online. They
may also experience other types of constraints such as low-
power CPU and limited storage.

The NDN-PS design aims to achieve the following goals:
• Scalability: The framework should support a large num-

ber of data streams and consumers participating simul-
taneously in a single pub-sub group with arbitrary sub-
scription relations.

• Availability: The framework should provide redundancy
and automatic failover to make sure the producers can
publish new data and the consumers can fetch updates as
long as a subset of the pub-sub repos are running.

• Security: The framework should enable authentication for
the communication between producers, consumers, and
pub-sub repos.

B. Design Overview

NDN-PS provides a pub-sub communication framework
on top of our earlier work NDN-BMS [10] to address the
challenges in BMS data consumption. Each sensor’s data
points form a data stream, which is published under an NDN
name prefix by the smart panel that the sensor attaches to. To
overcome intermittent connectivity and resource (e.g., CPU,
storage, and energy) limitations, the published sensor data is
stored in a nearby NDN repo for archiving and access. In order
to provide redundancy and efficiency of data retrieval, sensor
data is typically replicated in multiple repos using PSync.The

repos serving a particular replicated dataset and consumer
applications interested in that dataset form a pub-sub group.
For example, five buildings may publish their data to three
nearby repos; the repos synchronize their data with each other,
so that consumers can obtain the data for any of the buildings
from any repo.

Consumer applications in a pub-sub group may subscribe
to any subset of the BMS data streams that are identified
by the stream name prefixes, and pull updates from one of
the pub-sub repos about the newly published data in their
subscribed data streams. NDN-PU uses PSync protocol to
support the communication between the consumers and the
pub-sub repos. For example, a pub-sub group may gen-
erate data under the prefix /Company/Building1/Electricity,
where each pub-sub repo stores data streams with prefixes
of the form /Company/Building1/Electricity/〈panel〉/〈device〉
/〈metric〉/. Suppose a consumer is interested only in Panel 2’s
data, it can subscribe to that panel’s name prefixes using PSync
so that its pull requests will be answered whenever there are
new data points generated under those name prefixes. Based
on the notification information, the applications can then make
local decisions of whether to retrieve the data, which can be
done through regular NDN Interest-Data exchanges.2

All data packets in NDN-PS are authenticated using a
hierarchical trust model expressed in the NDN names, which
is aligned with real-world physical or logical structures such as
campus buildings and enterprise management (Section III-E).
The sensor data may be encrypted for access control [10], in
which case the data decryption keys (which may be refreshed
periodically) are also distributed to the consumers as data
streams over NDN-PS.

NDN-PS supports the complex pub-sub relationship be-
tween many producers and consumers by aggregating the
sensor data and the consumer requests at the pub-sub repos.
As such, the repo is a core component in the NDN-PS frame-
work. The number of repos in a pub-sub group is typically
determined by the deployment scenario. For example, a small
pub-sub group running inside a single building and generating
10s of data streams may need only two or three repos to
replicate the data, while a large pub-sub group spanning across
the whole campus may need five or more repos to collect
BMS data from different locations and serve many consumer
applications.

Figure 2 shows the modules inside a repo. The BMS
panels and aggregators continuously publish streams of sensor
readings which are pulled into remote repos using the data
interface for archiving in the data store. The Replication
interface monitors the addition of new data in the data store
and synchronizes the group dataset with other repos using the
full sync API of PSync. The Pub-sub interface enables the
consumer applications to subscribe to different data streams
using the partial sync API of PSync. Each consumer requests
for data updates based on its own schedule and decides

2If the data size is small, the notification message may optionally include
the new data point(s) to avoid extra messages and delay.

4

BMS Data Store

Replication
Interface

Data
Interface

Pub-sub
Interface

Repo

Repo

Replication Pub-subData
Insertion

Data
Fetching

Fig. 2: System modules inside the repo

Enterprise
Campus

R R R

R R R

R R R

Building1

Building3

Building2

PubSub Group Prefix:
/BigCompany/Electricity

PubSub Group Prefix:
/BigCompany/Building2/Temperature

PubSub Group Prefix:
/BigCompany/Building3/WaterFlow

Fig. 3: Deployment of three pub-sub groups on an enterprise
campus network that serve different types of BMS data:
electricity, temperature, and water flow

independently whether to fetch the new data according to the
application semantics. Finally, the data interface handles data
fetching Interests from the applications.

Multiple pub-sub groups can be deployed independently
on the campus network to support different applications and
services either around the same location or across different
buildings, as illustrated in Figure 3. Different pub-sub groups
can also be concatenated together, with the BMS applications
subscribing to and processing the input data in one group and
publishing the output data in another group. In this section
we describe only the protocol operations within a single pub-
sub group. In Section V we discuss how to connect multiple
pub-sub groups to build a more complex data aggregation
framework for BMS.

C. Data Publication and Acquisition

The BMS panels in a pub-sub group usually publish data
points that are relevant to a class of data acquisition applica-
tions with similar functionality. The data points are grouped
into streams by their name prefixes (which also serve as stream
identifiers). Figure 4 shows an example of data names in a pub-
sub group with two electrical panels. The group is identified
by the prefix /BigCompany/Building1/Electricity

/BigCompany/Building1/Electricity

/BigCompany/Building1/Electricity/Panel1/Heater/Voltage/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Heater/Current/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Vent/Voltage/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Vent/Current/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Switches/Voltage/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Switches/Current/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Plugs/Voltage/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Plugs/Current/{1,2,3,…}

/BigCompany/Building1/Electricity/Panel2/Projector/Voltage/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel2/Projector/Current/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel2/Speaker/Voltage/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel2/Speaker/Current/{1,2,3,…}
 …

Data Streams:

Pub-Sub Group Prefix:

Fig. 4: Example of data names in a pub-sub group

which indicates this pub-sub group provides power usage
data for Building1 on the campus of BigCompany. Each
panel manages different appliances in the room (e.g., heater,
vent, switches, plugs, projector, speaker, etc.) and continuously
generates voltage and current readings for those appliances.

NDN-PS requires the last component of the data name
to be a unique sequence number that gets incremented by
one for each new data point within a stream. This can be
easily achieved if all the data from a stream is generated
from the same panel: that panel can maintain a local counter
that is monotonically increasing and assign the sequence
numbers using the value of the counter. If multiple panels are
contributing to the same stream, which is an uncommon case,
some coordination mechanism (outside the scope of NDN-PS)
must be employed to ensure the uniqueness and continuity of
data names generated by different panels.

There can be a number of means to collecting BMS data
points into the repos. In NDN-PS, the data producers use the
Repo Insertion Protocol [17] to notify the repos to retrieve the
data when they are generated (shown as step À in Figure 5).
Each panel interacts with only one of the repos in the pub-sub
group during data insertion. To allow automatic failover in the
face of repo failure, the repos in the same group announce the
same name prefix in order to receive notifications from the
panels. The NDN forwarders in the network will use the Best
Route forwarding strategy [18] to direct each data insertion
request toward the closest repo. The repo receiving the data
insertion request will send an interest to the data producer to
retrieve the data.

Once the repo retrieves the data point, it will replicate the
data in the background to other repos in the same group
using PSync’s full sync API (shown as step Á in Figure 5).
Rather than synchronizing the sensor data streams directly in
the PSync group, the repo publishes a Data packet under its
own name prefix which “wraps” the sensor data names in
the content, and synchronizes this “repo data” instead. This
additional level of indirection ensures that the size of the
PSync state maintained by every repo is proportional to the

5

Subscription

Filtered Updates

App1

Su
bs

cr
ip

tio
n

Fi
lte

re
d

U
pd

at
es

App2

R2

R1

R0

R
ep

o
 In

sert C
m

d

D
ata Tran

sfer

Panel1
Data

Data

Data

Data

Repo Insert C
md

Data Transfer

Panel2

rep
lica

tion

replication

replication

Data
Publish:
/…/Panel1/Heater/Voltage

Subscribe:
/…/Panel1/Heater/Voltage

Fig. 5: Data flow in a pub-sub group

Name: /BigCompany/Building1/Electricity/Repo/Repo1/<seq#>

Content: {/<Group-Prefix>/Panel1/Heater/Voltage/<seq#>,
 /<Group-Prefix>/Panel1/Heater/Current/<seq#>,
 /<Group-Prefix>/Panel1/Plugs/Voltage/<seq#>,
 /<Group-Prefix>/Panel1/Plugs/Current/<seq#>,
 …
 }

Group Prefix

Fig. 6: Example of repo data published in PSync

number of repos in the group rather than the number of data
streams. Another important benefit is that when many sensors
generate data points at the same time, the repo can batch
multiple new sensor data names in one repo data packet in
order to improve the efficiency of the sync process. Figure 6
shows an example of the repo data including its name and
content which contains a snapshot of the latest data names for
all the data streams in the repo.

When other repos receive the notification of the new sensor
data names published by some repo via PSync, they will send
Interests that carry a forwarding hint [19] pointing to the repo’s
unicast name prefix in order to retrieve the sensor data packets
from that repo. Here we do not want the interest to reach
the data producer directly because it may not be available
(e.g., in sleep mode). Alternatively, the repo may include
the wire-encoded sensor data packet inside the repo data it
publishes and synchronizes via PSync. This saves the round-
trip for others to retrieve the sensor data packet. After receiving
the new sensor data, all repos insert the data to their local
data store. The PSync partial sync producer running at the
Pub-sub interface listens to the repo insert event and informs
any subscribed consumers with the updated IBF and missing
names.

D. Data Subscription

Data subscription in NDN-PS allows the consumer applica-
tions to receive updates efficiently from a subset of the data
streams published in the pub-sub group. Behind the scene, the
consumers use PSync Interest messages to retrieve the latest
data name of each subscribed stream from the repos. Once they
obtain the new data name with the latest sequence number, the
consumers can decide whether to fetch the new data according
to the application requirements (which corresponds to step Â
in Figure 5). The separation of the notification of names from
the retrieval of actual data allows NDN-PS to accommodate
different data consuming semantics (e.g., sequential fetching,
latest-data first, random sampling, etc.) without forcing every
consumer to receive all the data.

The subscription state of the consumer consists of two parts:
(a) the list of name prefixes of the subscribed data streams and
(b) the latest state of the whole dataset known by the consumer
(which may not be up to date). In PSync, the subscription
list is typically encoded as a Bloom Filter (BF) due to its
space efficiency.3 The state of the repo is represented using an
Invertible Bloom Filter (IBF) computed over the latest names
in the data streams stored at the repo, which is sent back
to the consumers in PSync reply messages (see Figure 1).
When a repo receives new data (either from the BMS panels or
from other pub-sub repos via the PSync replication channel),
it replaces the data name of the updated stream in the IBF
with the latest one.

When requesting for updates in the subscribed data streams,
the consumer sends its current state (including the BF-encoded
subscription list and the previously received IBF) along with
the request. To generate a PSync reply, the repo subtracts the
received IBF from its own IBF to detect the streams that have
been updated, filters the updated streams with the subscription
list, and returns the latest data names of the subscribed streams
to the consumer. Since the sequence number in the data name
continuously increases, the name of the latest data can serve
as an implicit notification of all the previous data published
in the same stream. The reply also carries the repo’s latest
IBF, which is used by the consumer to replace its IBF and
“advance” its data consumption state.

An important design benefit of using PSync in NDN-PS
is that the consumer’s subscription state is maintained by
the consumer itself rather than stored in the pub-sub repos.
This allows the repos to remain stateless about the consumer
subscription information, which reduces the amount of state
that the repos have to maintain. It also enables the consumers
to retrieve updates over the PSync protocol from any of the
repos that are synchronizing the same set of data streams
(using PSync’s full sync API) without worrying about loss
of subscription state or having to wait for the consumer state
synchronization among the repos. Multiple repos in the same
pub-sub group use the same name prefix to receive PSync

3There can be other ways to encode the name prefixes, for example, a range
[NP1, NP2] can efficiently represent all the name prefixes between two name
prefixes NP1 and NP2 based on some ordering criteria.

6

/BigCompany/BMS/key

/BigCompany/Building1/key

/BigCompany/Building1/Electricity/Panel1/key

/BigCompany/Building1/Electricity/Panel1/Heater/Voltage/<seq#>

Signs

Signs

Signs

BMS Root Key:

Building Key:

Device Key:

Device Data:

(a) Sensor certification chain

/BigCompany/BMS/key

/BigCompany/DepartmentA/key

/BigCompany/DepartmentA/Alice/key

/BigCompany/DepartmentA/Alice/Phone/key

Signs

Signs

Signs

BMS Root Key:

Department Key:

Employee Key:

User Device Key:

(b) User device certification chain

/BigCompany/BMS/key

/BigCompany/Building1/key

/BigCompany/Building1/Electricity/key

/BigCompany/Building1/Electricity/Repo/Repo1/key

Signs

Signs

Signs

/BigCompany/Building1/Electricity/Repo/Repo1/<seq#>

BMS Root Key:

Building Key:

Pub-Sub Group Key:

Repo Key:

Repo Data:

Signs

(c) Pub-sub repo certification chain

Fig. 7: BMS certification chain examples

Interests, and the network will always forward the consumers’
PSync Interest to the nearest available repo.

E. Data Authentication

In NDN-PS, the public keys of all the entities (panels,
user devices, and repos) are certified using a hierarchical
trust model expressed with the names of the signing keys.
Signatures generated by the trusted entities are verified by
following the certification chain up to a common trust anchor
or, eventually, the BMS root key. The key signing chain for
the panels is aligned with the hierarchical structure of their
physical locations in the enterprise buildings, as is shown
in Figure 7a. The key signing chain for the user devices
is instead aligned with the logical management hierarchy in
the enterprise, which is shown in Figure 7b. The repo uses
a different key for each pub-sub group it participates in,
following the principle of least privilege. The repo key is
signed by the pub-sub group key, which is further signed by the
building key or the BMS root key (see Figure 7c), depending
on whether the pub-sub group is located in a single building
or spans across the campus.

The data publishing process requires the mutual authenti-
cation between the producers and the pub-sub repos: on one
hand, the repos need to authenticate the sensor data before
adding them to the local storage; on the other hand, the produc-
ers need to verify that the confirmation in the Repo Insertion
process [17] comes from a legitimate repo in order to make
sure the data is successfully archived in the pub-sub group. The

(a) ESP Sensor (b) Raspberry Pi

Fig. 8: Hardware in BMS implementation

consumers also need to authenticate the PSync replies from
the repos and the sensor data fetched from the network. In
addition, the repos need to authenticate each other during the
PSync message exchanges. In a traditional TCP/IP-based pub-
sub system, implementing such complicated authentication
steps would require TLS channels between all communicating
parties. In contrast, the data-centric security paradigm and the
expressive naming in NDN enable a more powerful and elegant
solution with a simple, hierarchical trust model that allows
NDN nodes to authenticate any data produced on the network.

IV. IMPLEMENTATION AND DEPLOYMENT

We developed a real BMS implementation to demonstrate
the feasibility of our design. Our prototype consists of Rasp-
berry Pi’s and sensor devices placed in classrooms and offices.

Figure 8 shows our hardware. We assembled each sensor
module using Wemos D1 mini, an ESP-8266 Wi-Fi chip
board [20], a temperature and humidity sensor [21], a light
sensor [22], and a custom interface shield, costing $24 in total.
We use the ndn-cpp-lite library [23] for the ESP chip [24] on
each sensor module to serve data for three different kinds of
sensors: temperature, humidity, and light. The main motivation
behind using a custom assembled sensor module is to keep the
cost down as well as having greater control.

We use Raspberry Pi 3 Model B [25] with 1.2GHz 64-bit
quad-core ARMv8 CPU and 1GB RAM to run the following
software components: (a) a data collector that pulls data from
the sensors, (b) a repo that uses a PSync Full Sync Producer to
synchronize the collected data with each other, and (c) a PSync
Partial Sync Producer that publishes data for subscribers (see
Figure 9). The data collector program on each Pi collects
data by sending interests to multiple sensor modules and
inserts it into the repo. The repo validates the data based
on the BMS trust hierarchy (Figure 10) before accepting it.
We modified the NDN repo-ng [16] implementation to have a
notification stream which the Full Sync Producer and Partial
Sync Producer can subscribe to. Upon receiving a notification
from the local repo, the Full Sync Producer propagates the
changes to other repos. When the Full Sync Producer receives
an update from another repo, it sends an insert command to the
local repo. The local repo then fetches the data from the other
repo. When the Partial Sync Producer receives a notification

7

In
te

re
st

Repo-ng

Partial Sync
Producer

Full Sync
Producer

PSync
(Partial Sync

Mode)

PSync
(Full Sync

Mode)

Notify Notify
Insert

command
Interest

Data

PublishPublish Notify

Sync
Interest

Sync
Data

Data Consumer
(phone, computer, ...)

Sync
Interest

Sync
Data

In
te

re
st

D
at

a

Data
Collector

In
se

rt
C

om
m

an
d

Other RPI

Sensor
Device

In
te

re
st

D
at

a
D

at
a

RPI

Fig. 9: Module interactions in implementation

Fig. 10: Trust hierarchy in BMS implementation

from the repo, it notifies those consumers that have subscribed
to the data. The consumers then fetch the data directly from
the repo and validate it.

We have deployed the system in 30 classrooms and offices
in Dunn Hall at the University of Memphis with a total of
6 Pi’s and 30 sensor modules on the three floors (each Pi
collects data from 5 sensor modules). We plan to extend the
deployment to a larger scale as we gain more experience.

V. DISCUSSION

A powerful design pattern in many BMS applications is
to connect multiple data aggregators and filters to perform
pipelined data analytics and event processing. This can be nat-
urally implemented over NDN-PS by concatenating multiple
pub-sub groups where some consumers in a pub-sub group
also serve as the producers in other groups. While this paper
only describes the communication mechanism within a single
group, we envision that most real-world applications in BMS
environments will require some form of interconnection of
multiple pub-sub groups. For example, in a large enterprise
campus the fine-grained raw data collected from the sensors
in each building are usually consumed and processed by the
data aggregation services deployed close to the panels and
controllers. Then the digested data is fed into a different pub-
sub group and consumed by the next-stage processing jobs
that further aggregate the data across multiple streams (e.g.,
computing the total power consumption of the whole building

by adding up the power measurements from each room).
Multiple data aggregation layers can be chained together via
NDN-PS to build a hierarchical data storage, with each layer
presenting a view of the BMS system at a different granularity.

Note that, as an optimization, the data aggregation service
can be integrated into the repo, which eliminates the need for
deploying standalone data aggregation services that communi-
cate with the repos over PSync as in the original design. It also
allows the repos to drop the raw data points after processing
them and store only the aggregated data.

A BMS data acquisition and analysis system can even go
beyond simple aggregation and filtering by bridging multiple
pub-sub groups to form arbitrary data flow graphs that can
support complex data processing frameworks such as MapRe-
duce [26]. Each node in the data flow graph runs a data
processor that either filters and repackages the sensor data
(“map”) or aggregates data from multiple inputs (“reduce”).
The processing results are transferred to other nodes efficiently
over NDN-PS. This enables the system to apply more ad-
vanced data querying and transformation techniques such as
the Structured Query Language (SQL) by compiling high-level
operators into a series of primitive MapReduce tasks. Such a
system can be deployed across the enterprise BMS network to
ingest data from multiple buildings and generate reports for
the whole campus.

VI. RELATED WORKS

A. Pub-sub Support in traditional BMS

Many existing building management and IoT systems in
the industry have provided basic pub-sub communication
support. BACnet [27], a popular BMS protocol, allows the
clients to subscribe to periodic or change-of-value notifications
from the devices. ZigBee Cluster Library [28], the foundation
for ZigBee Smart Energy and Home Automation profiles,
also supports similar pub-sub operations through the attribute
reporting mechanism. OPC Unified Architecture [29], another
industrial machine-to-machine communication protocol, also
provides subscription services for the clients to subscribe to
value changes, events, and computed aggregates.

Most of those systems aim at providing direct push notifi-
cations from the producers to the consumers, which is suitable
for closed-loop control and low-latency communication. How-
ever, there are a number of well-known issues with the push-
style pub-sub mechanism in existing industrial BMS protocols.
Take the popular BACnet protocol as an example. BACnet
allows the devices to send change-of-value (COV) notifications
to the clients that have subscribed to the COV events of certain
device properties. This may potentially flood the network with
notification messages when multiple related properties change
at the same time due to some cascading effect (e.g., the HVAC
system stops working, causing the temperatures of multiple
rooms in the building to rise). Another common problem is that
the clients may miss the push notification if they go offline,
since they have no control of when the notification will be

8

generated.4 Moreover, the client subscription information is
kept as soft state by the devices and may be lost when the
device restarts.

In contrast, NDN-PS is designed to support scalable pub-
sub communication for enterprise BMS data acquisition ap-
plications that consume both realtime and historical data
points. The subscription communication is consumer-driven
so that the applications can fetch the data via PSync based on
their own schedule. Storing and replicating the sensor data
in the pub-sub repos lifts the burden of keeping historical
data and handling consumer requests from the BMS panels.
Since the consumers maintain their subscription information
by themselves, they do not need to worry about losing
their subscription state when the pub-sub repos restart or
get replaced. Finally, NDN-PS utilizes NDN’s built-in data-
centric security mechanism to authenticate the sensor data,
which provides better flexibility and efficiency compared to
the traditional security solutions in BMS with physical/logical
isolation (which prevents the applications from accessing the
BMS data from different networks) and secured channels using
shared keys (which requires establishing pair-wise secure
channels).

B. Pub-sub Support in Cloud-based IoT

Modern IoT systems (including but not restricted to building
management systems) are increasingly relying on cloud-based
frameworks such as AWS IoT5 and Google Cloud IoT6 to
perform device management and data processing. Those cloud-
based IoT systems enable the sensors to publish their data
to the remote cloud, where the data is stored and fed into
other services also running in the cloud via a generic pub-sub
pipeline designed and optimized for the data center environ-
ment. The decoupling of data acquisition and consumption is
similar to what is proposed in NDN-PS and allows the IoT
systems to support different types of data consumers (e.g.,
actuators, monitoring services, data analytical frameworks) at
large scale.

The drawbacks of relying on cloud services for achieving
IoT functionality have been articulated in our earlier pa-
per [30], including the strong dependency on the availability
and security of the cloud platforms and additional latency
imposed by the indirection through the cloud. While the
earlier paper describes a cloud-independent IoT system as an
alternative solution for the “smart home” applications, this
paper proposes a scalable pub-sub framework for building
management system (which usually covers a larger scope than
a typical smart home) that builds on top of the same spirit of
leveraging local communication to achieve more efficient and
secure data transportation among different components of the
system.

4The BACnet standard does not require the devices to buffer the notifica-
tions if no acknowledgement is received from the client.

5https://aws.amazon.com/iot/
6https://cloud.google.com/solutions/iot/

C. Pub-sub over ICN

Several frameworks have been proposed so far for
ICN architectures to support end-to-end pub-sub semantics.
COPSS [31] achieves pub-sub communication using push-
based multicast mechanism similar to PIM-SM. When pub-
lishing data, the publisher sends a publication message to-
wards some Rendezvous Point (RP). The publication message
contains the Content Descriptor (CD) of the published infor-
mation. The CD is a hierarchical name that allows subscription
at different granularities. COPSS adds the Subscription Table
(ST) to the NDN forwarders to keep track of downstream data
subscribers. The subscriber sends a subscription message to-
wards the RP to establish a forwarding path. Forwarders along
the path will record the subscribed CD and the downstream
interface in the ST using bloom filters. The data from the
publisher is then pushed to all subscribers following ST entries
instead of PIT entries as in normal NDN forwarding.

iHEMS [32] modifies the NDN routers to implement per-
sistent subscription using long-lived forwarding information.
The subscribers send subscription requests that persist in the
router’s PIT for some time t. Any data published during that
time t will be forwarded to the subscribers without consuming
the PIT entry. The authors of iHEMS acknowledge that persis-
tent PIT entry may affect the traffic control and flow balancing,
but argue that the problem can be mitigated by choosing the
persistence interval t very carefully. To support secure group
communication, iHEMS proposes to encrypt confidential data
with a group key shared among the publishers and subscribers.
In addition, iHEMS relies on dedicated directory service to
maintain the list of data names published in the network,
through which the publishers and subscribers discover each
other.

Both COPSS and iHEMS allow more than one data packet
returned for each pending Interest over a single link, es-
sentially breaking the flow balance principle of NDN [33].
Although this approach reduces the number of interests, it is
susceptible to congestion and denial-of-service attacks.

PSIRP/PURSUIT [34] is an ICN architecture that pro-
vides native pub-sub support at the network layer. In
PSIRP/PURSUIT, the data (or information) is identified by
a pair of flat labels: the rendezvous identifier (RID) and the
scope identifier (SID). To publish information, the publisher
needs to choose the scope for the publication and create
the RID for the publication. Then the publication message
containing the RID and the SID is forwarded to the rendezvous
node within the scope of SID, which will store and manage
the RID. A subscriber first learns about the RID and SID,
then issues the subscription request to the rendezvous point
of that RID. A forwarding path is then created between the
publisher and the subscriber (through the rendezvous point)
and future information will be sent over this channel. The
packet forwarding in PSIRP/PURSUIT can be implemented
efficiently using MPLS-style label matching.

NDN-PS differs fundamentally from the above proposals in
the following aspects: (1) it is built on top of NDN’s Interest-

9

Data semantics and achieves efficient subscription without
breaking the flow balance principle by aggregating multiple
subscriptions into a single PSync Interest; (2) it is designed
specifically for the BMS environments and takes into account
the practical requirements such as hierarchical naming and
trust management, data archiving and replication, efficient
subscription to multiple data streams, and accommodation for
different data consuming semantics, all of which are essential
to the BMS applications.

HoPP [35] was recently proposed for pub-sub in ICN-
based IoT networks. It uses Content Proxies (CP) to decouple
producers and consumers similar to how Repos are used
in NDN-PS. However, it introduces a Prefix Advertisement
Message to set up FIB entries for the CPs, and a Name
Advertisement Message to propagate data from producers to
the CPs. In contrast, NDN-PS does not rely on intermediate
nodes to process any special messages; the Sync and Repo
protocols run on application nodes (consumers, producers and
repos) using basic interest/data exchanges.

VII. CONCLUSION

In this paper we present NDN-PS, a distributed pub-sub
communication framework for building management systems
over NDN. NDN-PS extends our previous work on secure
data acquisition in NDN-BMS to support data subscriptions
from consumer applications running on different platforms
and with interests in different data as well as different data
consumption semantics. PSync, a new addition to NDN’s data
sync arsenal, enables NDN-PS to replicate collected sensor
data across multiple repos to provide adequate redundancy and
scalable data retrieval, and it allows data consumers to receive
notifications of new sensor readings generated by multiple
BMS panels. Last but not least, all sensor data readings, as
well as all packets generated by the repos, are authenticated
through cryptographic signatures and can be verified through
a hierarchical trust model.7

NDN-PS is a comprehensive pub-sub design based on
NDN’s Interest-Data primitive. It retains the fundamental
design principles of the NDN architecture such as flow bal-
ancing and hierarchical naming. This design exercise further
confirms (a) the expressive power of naming in NDN, such
as embedding the building hierarchy and sensor types in
the prefixes of the pub-sub groups; (b) the usefulness of
naming conventions, such as the use of sequence numbers to
improve the efficiency of data synchronization; (c) the utility
of NDN Sync protocols, which simplifies application design
and supports asynchronous multi-party data sharing; and (d)
the simplicity of data authentication using a hierarchical trust
model based on hierarchical data naming and organizational
and system relationships.

We will continue to analyze, evaluate and expand the
prototype deployment at University of Memphis. One area
we will explore is the management of the deployed testbed

7Data confidentiality and access control can also be supported using data
encryption, as is described in our previous work [10], or the more recent
Name-based Access Control [36].

such as auto-configuration of the IoT devices and monitoring
of their failures using NDN-based tools. Another area is edge
computation and concatenation of pub-sub repos.

ACKNOWLEDGMENT

This work has been supported by the National Sci-
ence Foundation, under awards CNS-1344495, CNS-1629769,
CNS-1345318, and CNS-1629922.

REFERENCES

[1] W. Shang, Y. Yu, R. Droms, and L. Zhang, “Challenges in IoT
Networking via TCP/IP Architecture,” NDN Project, Tech. Rep. NDN-
0038, February 2016.

[2] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev, J. Thomp-
son, J. Burke, B. Zhang, and L. Zhang, “Named Data Networking
of Things,” in Proceedings of 1st IEEE International Conference on
Internet-of-Things Design and Implementation (IoTDI), 2016.

[3] Y. Zhang, D. Raychadhuri, L. A. Grieco, E. Baccelli, J. Burke,
R. Ravindran, G. Wang, B. Ahlgren, and O. Schelen, “Requirements
and Challenges for IoT over ICN,” Internet Engineering Task
Force, Internet-Draft draft-zhang-icnrg-icniot-requirements-01, Apr.
2016, work in Progress. [Online]. Available: https://tools.ietf.org/html/
draft-zhang-icnrg-icniot-requirements-01

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in Proceedings of
the 5th International Conference on Emerging Networking Experiments
and Technologies, 2009.

[5] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73,
Jul. 2014.

[6] A. Afanasyev, T. Refaei, L. Wang, and L. Zhang, “A Brief Introduction
to Named Data Networking,” in IEEE MILCOM 2018.

[7] NDN Project Team, “NDN Codebase Platform,” http://named-data.net/
codebase/platform/, 2016.

[8] Y. Yu, A. Afanasyev, D. Clark, kc claffy, V. Jacobson, and L. Zhang,
“Schematizing Trust in Named Data Networking,” in Proceedings of
the 2nd International Conference on Information-Centric Networking,
September 2015.

[9] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang,
“A Case for Stateful Forwarding Plane,” Computer Communications,
vol. 36, no. 7, pp. 779–791, Apr. 2013.

[10] W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang, “Securing
Building Management Systems using Named Data Networking,” IEEE
Network, vol. 28, no. 3, pp. 50–56, May 2014.

[11] W. Shang, Y. Yu, L. Wang, A. Afanasyev, and L. Zhang, “A Survey of
Distributed Dataset Synchronization in Named-Data Networking,” NDN
Project, Technical Report NDN-0053, May 2017.

[12] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking,” in Network Protocols
(ICNP), 2013 21st IEEE International Conference on, Oct 2013.

[13] W. Fu, H. Ben Abraham, and P. Crowley, “Synchronizing Namespaces
with Invertible Bloom Filters,” in ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS), May 2015.

[14] M. Zhang, V. Lehman, and L. Wang, “Scalable Name-based Data
Synchronization for Named Data Networking,” in Proceedings of the
IEEE Conference on Computer Communications (INFOCOM), May
2017.

[15] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s
the Difference?: Efficient Set Reconciliation Without Prior Context,” in
Proceedings of the ACM SIGCOMM 2011 Conference, 2011.

[16] NDN Project Team, “repo-ng: Next generation of NDN repository,”
https://github.com/named-data/repo-ng, 2017.

[17] ——, “Basic Repo Insertion Protocol,” http://redmine.named-data.net/
projects/repo-ng/wiki/Basic Repo Insertion Protocol, 2014.

[18] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moi-seenko, Y. Yu,
W. Shang, Y. Huang, J. P. Abraham, S. DiBenedetto, C. Fan, C. Pa-
padopoulos, D. Pesavento, G. Grassi, G. Pau, H. Zhang, T. Song,
H. Yuan, H. B. Abraham, P. Crowley, S. O. Amin, V. Lehman, and
L. Wang, “NFD Developers Guide,” NDN Project, Tech. Rep. NDN-
0021, Revision 7, oct 2016.

10

[19] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “SNAMP:
Secure namespace mapping to scale NDN forwarding,” in Proceedings
of 18th IEEE Global Internet Symposium (GI 2015), April 2015.

[20] “Wemos D1 mini,” https://wiki.wemos.cc/products:d1:d1 mini.
[21] “Temperature and humidity sensor,” https://www.adafruit.com/product/

1899.
[22] “Light sensor,” https://www.adafruit.com/product/439.
[23] NDN Project Team, “ndn-cpp-lite GitHub,” https://github.com/

named-data/mini-ndn.
[24] ——, “esp8266ndn GitHub,” https://github.com/yoursunny/

esp8266ndn/.
[25] raspberrypi.org, “Raspberry Pi 3 Model B,” https://www.raspberrypi.org/

products/raspberry-pi-3-model-b/.
[26] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251254.1251264

[27] BACnet Advocacy Group, “BACnet Homepage,” http://www.bacnet.
org/, 2016.

[28] ZigBee Alliance, “ZigBee Cluster Library Specification,” http://www.
zigbee.org/download/standards-zigbee-cluster-library/, May 2012.

[29] OPC Foundation, “OPC Unified Architecture,” https://opcfoundation.
org/about/opc-technologies/opc-ua/, 2016.

[30] W. Shang, Z. Wang, A. Afanasyev, J. Burke, and L. Zhang, “Breaking
Out of the Cloud: Local Trust Management and Rendezvous in Named
Data Networking of Things,” in Proceedings of IEEE/ACM Second Inter-
national Conference on Internet-of-Things Design and Implementation
(IoTDI), April 2017.

[31] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. K. Ramakrishnan,
“COPSS: An Efficient Content Oriented Publish/Subscribe System,” in
Seventh ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), Oct 2011.

[32] J. Zhang, Q. Li, and E. M. Schooler, “iHEMS: An information-centric
approach to secure home energy management,” in Smart Grid Commu-
nications (SmartGridComm), 2012 IEEE Third International Conference
on, Nov 2012.

[33] NDN Project Team, “NDN Protocol Design Principles,” http://
named-data.net/project/ndn-design-principles/, 2016.

[34] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing in-
formation networking further: From PSIRP to PURSUIT,” in Broadband
Communications, Networks, and Systems. Springer, 2010, pp. 1–13.

[35] C. Gündoğan, P. Kietzmann, T. C. Schmidt, and M. Wählisch, “HoPP:
Robust and Resilient Publish-Subscribe for an Information-Centric In-
ternet of Things,” in Proceedings of the IEEE Conference on Local
Computer Networks (LCN), 2018.

[36] Y. Yu, A. Afanasyev, and L. Zhang, “Name-Based Access Control,”
NDN Project, Tech. Rep. NDN-0034, Revision 2, Jan. 2016.

11

