
NDN Technical Report NDN-0056. http://named-data.net/techreports.html
Revision 1: March 18, 2018

VectorSync: Distributed Dataset Synchronization
over Named Data Networking

Wentao Shang∗, Alexander Afanasyev† and Lixia Zhang∗
∗UCLA

{wentao,lixia}@cs.ucla.edu
†Florida International University

aa@cs.fiu.edu

Abstract—Distributed dataset synchronization (sync for short)
provides an important abstraction for multi-party data-centric
communication in the Named Data Networking (NDN) architec-
ture. Several NDN Sync protocols have been developed so far,
each made its own design choices to work well under specific
network conditions. This paper presents VectorSync, a new real-
ization of the sync protocol that is built upon the lessons learned
so far. In VectorSync, the shared dataset state is represented by a
version vector, allowing for efficient inconsistency detection and
difference reconciliation. Each communicating party maintains a
complete view of the active participants through a leader-based
group management mechanism, effectively bounding the size of
the sync state. Our simulation-based evaluation shows that the
VectorSync design improves the efficiency of dataset synchro-
nization compared toChronoSync protocol under a wide range
of network conditions and provides efficient group membership
management without affecting the synchronization speed.

Note that this report describes VectorSync protocol developed
in early 2017. Since then, we have been working on a revised
design to make the protocol resilient in face of intermittent
connectivity, such as the case in ad hoc mobile scenarios.

I. INTRODUCTION

Named Data Networking (NDN) [1], [2] is an information-
centric network architecture designed to replace the host-
oriented communication model in TCP/IP. At its network layer,
NDN employs a basic Interest-Data exchange primitive to
provide best-effort retrieval of individual data objects over the
network. While this simple yet powerful primitive significantly
narrows the semantic gap between the application layer and
the network layer, it is still cumbersome to use directly to build
large-scale distributed applications, such as Web services,
content sharing, big data processing, etc.

Early on in the NDN research effort, the concept of sync was
identified as an important abstraction to simply application de-
sign for multi-party data-centric communication. Distributed
applications running on top of sync publish and consume
messages in a shared dataset. The sync protocol disseminates
the knowledge of the application data and maintains a consis-
tent state of the shared dataset across all participants in the
system. Similar to the earlier works on reliable multicast in IP
networks [3]–[5], NDN sync plays a role of transport protocol
in the NDN architecture that provides eventual delivery of all
the data (knowledge about all data) to all the parties in the
communication group.

…
/ucla/alice/14
/ucla/alice/15

…
/ucla/bob/78
/ucla/bob/79
/ucla/bob/80

…
/att/ted/112
/att/ted/113
/att/ted/114

Shared
Dataset

/ucla/alice: 15 /ucla/bob: 80 /att/ted: 114

[15, 80, 114]
0: /ucla/alice
1: /ucla/bob
2: /att/ted

Membership info

State
Vector

Fig. 1. Representing the dataset namespace using a state vector

In this paper we present VectorSync, a new sync protocol
for the NDN architecture. The design of VectorSync benefited
from the past experience in developing existing sync protocols
such as ChronoSync [6], RoundSync [7], and PSync [8],
which provides valuable insights into the tradeoffs between
various design approaches. Similar to ChronoSync and several
other protocols, VectorSync adopts the convention of each
producer naming its data under a unique name prefix with
continuous sequence numbers However, the key difference
between VectorSync and its predecessors is the use of version
vector [9] or state vector (hence the name of the protocol) to
exchange the complete dataset state among the communicating
parties (Figure 1). This enables a simple state encoding (by
enumerating the latest data sequence number from each pro-
ducer) and an efficient state reconciliation mechanism (through
version vector comparison and join). Another important con-
tribution of VectorSync protocol design is the integration of a
leader-based group membership management (inspired by the
previous works [10], [11]) that maintains a consistent view
of the active participants in the application group. Managed
group further enables VectorSync to support a dataset snapshot
service that captures the dataset state changes over the history
of the application session.

The rest of this paper is organized as follows. Section II
gives an overview of NDN sync. Section III states the mo-
tivation of developing the VectorSync protocol. Section IV
introduces the system model and assumptions we make in
the VectorSync design. Section V describes the VectorSync
protocol components in detail. Section VI presents the simu-
lation study on the performance of VectorSync. Section VII



addresses the open issues related to the operation of the
VectorSync protocol. Section VIII discusses the connection
between VectorSync and the reliable multicast protocols in IP.
Finally, Section IX concludes the paper and addresses future
work.

II. BACKGROUND

Several sync protocols have been developed for the NDN
architecture to facilitate distributed applications. In this section
we briefly review several sync protocols that became an inspi-
ration for the current work (ChronoSync [6], RoundSync [7],
and PSync [8]), referring to detailed description of these and
other existing sync protocols to a comprehensive overview
published recently [12].

In ChronoSync [6], each producer in a sync group names its
data under its unique data publishing prefix using continuous
sequence numbers. This allows ChronoSync to effectively
reduce the hierarchical namespace to a list of (producer prefix,
latest sequence number) pairs, which is referred to as the
sync state.1 The producers maintain multicast “long-lived”
Sync Interests that carry the digest of their local sync state
to notify others about the sender’s current state and to request
future updates made on top of that state. In steady state, every
producer issues Sync Interest with the same digest; updates are
returned as a Data packet to all members in the group via the
“multicast tree” created by the pending Sync Interests. How-
ever, if multiple producers generate updates simultaneously,
ChronoSync needs to either retransmit the Sync Interests with
exclude filters to retrieve additional updates or fall back to a
recovery mechanism.

RoundSync [7] addresses the simultaneous data publishing
issue in ChronoSync by dividing the synchronization process
into rounds: each producer may publish at most one data item
in a round and must move to a new round if some other
producer has already published data in that round. RoundSync
also decouples the overloaded functionality of Sync Interest in
the ChronoSync design by introducing a new type of message
called Data Interest for fetching the data published in each
round; the Sync Interest serves solely as a notification message
triggered by state changes. However, note that if multiple
producers happen to publish data in the same round, they still
need to issue Data Interest with exclude filters to retrieve the
simultaneous data.

PSync [8] is initially developed for the consumers to syn-
chronize a subset of data from a single producer. The whole
dataset is organized into streams where the packets under the
same stream prefix are ordered by sequence numbers. The
producer’s data publishing state is represented by the set of
latest names from different streams, and further compressed
by an Invertible Bloom Filter (IBF) [13]. The consumer’s
subscription list is encoded by a Bloom Filter that stores the
prefixes of the subscribed streams. To request new data, a
consumer sends “long-lived” Interest to the producer carrying

1If the application requires a different naming convention, it can encapsulate
the application-layer data name or the whole data object inside the sequentially
named data.

the producer’s previous IBF and the consumer’s subscription
list. When new data (not included in the old IBF) is published,
the producer responds to the consumer with its latest IBF, and
the latest data names from the streams that are subscribed the
consumer.

III. MOTIVATION

Inspired by the previous works, the design of VectorSync
represents the latest evolution in the NDN sync research. As
we have described in Section II, the existing sync protocols
made a few important design decisions that may affect the
efficiency of the sync process under various conditions. First,
both ChronoSync and PSync utilize long-lived Interest to pre-
establish the return path for the sync state updates, which
causes the overhead of maintaining soft-state pending Interests
in the network through periodic (re)transmission of the Sync
Interests. Second, both ChronoSync and RoundSync require
the use of exclude filters to retrieve simultaneous updates
in multiple round-trips, which leads to bloated Sync Interest
size and, more importantly, increased data synchronization
time. Those issues motivate VectorSync to adopt an alternative
state synchronization mechanism that does not require long-
lived Interest or exclude filter with the goal of improving the
efficiency of the protocol.

Another key motivation of VectorSync is based on the
observation that existing sync protocols do not provide the
support for group membership management, which causes dif-
ficulty in removing departed producers from the protocol state
maintained by each communicating party. For example, due
to the lack of group membership management, the NLSR [14]
routing protocol deployed on the NDN testbed experienced an
operational issue that the sync protocol state was bloated with
stale information as the routers were replaced and restarted
after software update or system failure. Different from its
predecessors, VectorSync provides a leader-based group mem-
bership management mechanism that maintains a consistent
view of the group among the active participants. Managing
group membership at the sync layer is necessary not only
for pruning the protocol state, but also for enabling efficient
data loss detection within a “closed” space of the protocol
state. The group membership information can also facilitate
data authentication and access control which is important for
securing the sync communication (see detailed description in
Section V-E).

IV. SYSTEM MODEL

In this section we describe the system model and assump-
tions about the communicating parties and the networks in the
design of the VectorSync protocol. We consider an application
group with a finite number of active participants (also called
sync nodes), each of which may join and leave the group at
any time.2 Each participant is assigned a data publishing prefix
that is aligned with the topological prefix of the underlying

2Although the synchronization algorithm in VectorSync can support a group
of arbitrary size, in practise we limit the size of the group so that the protocol
state can be transmitted on the wire in a single Data packet.



Application Logic

Shared Dataset

Dataset State

Group 
Membership Info

Publish
data

Notify of
remote data

NDN Network
Dataset state

synchronization

Group membership
synchronization

Data retrieval

VectorSync node

Fig. 2. VectorSync Protocol Components

network and unique within the group. The underlying network
is unreliable and may drop or delay packets arbitrarily during
the transmission. However, we assume the participants in the
same group have reachability to each other most of the time.
The network may be partitioned temporarily, dividing the
group into multiple subgroups, but will eventually reconnect.

The participants in an application group communicate with
each other by publishing data to, and consuming data from,
a shared dataset. The updates in the dataset made by one
party are propagated to others over the network by the Vector-
Sync protocol, which notifies the application about the new
data using a pre-configured callback function. When multiple
applications are running on the same physical node, each
application creates its own group and operates independently.

Figure 2 illustrates the system components of the Vector-
Sync protocol. Each VectorSync node maintains three impor-
tant data structures:
• Shared dataset: the local storage of the data items pub-

lished in the application group. Data published locally or
received from the remote peers via VectorSync is stored in
this data structure for easy access by the local application
instance.

• Dataset state: a version vector representation of the
shared dataset namespace containing all published data
that the node is aware of. This data structure summaries
the node’s latest knowledge about the dataset state and
supports efficient set difference reconciliation between
two copies of the dataset.

• Group membership list: a list of active participants in
the application group, which is referred to as the view,
a terminology initially devised for Viewstamped Repli-
cation [10], [11] and adopted by many other distributed
protocols. Each view is uniquely identified by a view ID,
which is used for detecting inconsistent knowledge of the
group membership among the participants.

V. PROTOCOL DESIGN

The VectorSync protocol consists of two interdependent
components: the dataset state synchronization mechanism for
maintaining a consistent state of the shared dataset, and the
group membership synchronization mechanism for maintain-
ing consistent knowledge about the current group membership.

(a) Application data name:

(b) Notification Interest name:

(c) ViewInfo data name:

/[producer-name]/[app-name]/[seq#]

/[group-prefix]/vid/[view#]/[leader-name]/%DA/[producer-name]/[seq#]

/[group-prefix]/vinfo/[view#]/[leader-name](/[segment#])

(d) Snapshot data name:
/[group-prefix]/snapshot/[view#]/[leader-name]

Fig. 3. VectorSync naming conventions

Both protocol components are non-blocking: a producer can
publish new data at any time even if it has been disconnected
to the group and/or has outdated knowledge about the group
membership; the changes in the dataset and the group member-
ship information are propagated asynchronously in the group
to achieve eventual consistency.

A. Data Naming and Dataset State Representation

Fig. 3(a) shows the naming convention for the application
data in the shared dataset. Each producer in the group pub-
lishes application messages under a unique data publishing
prefix that also serves as the name of that producer. The
“app-name” component indicates the name of the application,
which is known to every party a priori. The last component
in the data name is a monotonically increasing sequence
number that uniquely identifies the data packets from the
same producer. Applications that demand more complex data
naming conventions may be supported through one level of
indirection by encapsulating the application-named data object
in the sequentially named data.

Since each producer’s sequence number increments contin-
uously, the state of the shared dataset is concisely summarized
by a version vector [9] (called state vector) that contains
the latest data sequence number from every producer in the
group. The order of the producers in the version vector follows
the group membership list, where the producers are ordered
canonically based on their unique prefixes. Therefore, the
producers’ data prefixes can be omitted from the state vector,
minimizing the cost of transmitting the full vector over the
network. Figure 1 illustrates an example of the state vector
representing the namespace of a dataset with three producers.

B. Dataset State Synchronization

When a producer publishes a new data packet, it sends out
a notification Interest to announce the name of the new data
so that others in the group can fetch the data immediately
upon receiving the notification. Figure 3(b) shows the naming
convention for the notification Interest name, which starts
with a multicast prefix that uniquely identifies the group
(and the application), and carries the producer name and the
sequence number of the new data at the end. This provides
enough information for the receiver to construct the new
data name following the naming convention in Figure 3(a).



Ted

Bob

1. Notification Interest:
/group1/…/ucla/alice/15

2. Reply

2. Reply

3. In
terest:

/ucla/alice/app1/15

3. Interest:/ucla/alice/app1/15

4. Application Data:
/ucla/alice/app1/15,

state vector = [15, 80, 114]

Alice

Seq# = 15

Seq# = 80

Seq# = 114

Fig. 4. VectorSync protocol message exchange in a group of three parties

Besides the application message, the data also carries the
producer’s state vector at the time the data is published and the
view ID representing the producer’s knowledge of the group
membership (which provides context for interpreting the state
vector). If the receiver is in the same view as producer, it will
perform a Join operation that takes the entry-wise maximum
of the received and local vectors:

Given v1 = (a1, a2, ..., an) and v2 = (b1, b2, ..., bn),
Join(v1, v2) = (Max(a1, b1),Max(a2, b2), ...,Max(an, bn))

The receiver replaces its local state vector with the output of
Join, which represents the union of the local and the remote
dataset. If any entry in the new state vector contains a higher
sequence number than before, the receiver will issue Interests
to fetch the new data identified by the sequence numbers in
between. Note that the data prefix of the producer represented
by each entry is readily available in the membership list.

Upon receiving a notification Interest, the receiver also
sends a reply packet to satisfy the pending notification Interests
in the network and provide an acknowledgement to the data
producer. The reply carries the receiver’s state vector and view
ID, which provides an opportunistic channel for propagating
sync states to the producer.3 Figure 4 shows an example of a
new data production and dissemination process in a group of
three parties. When there is no packet loss and no cached data
in the network, the minimum delay for propagating the data
from the producer to another party in the group is 1.5 × RTT
(plus processing delay).

C. Group Membership Synchronization

VectorSync utilizes a leader-based protocol to maintain a
consistent view of the application group among the commu-
nicating parties. To synchronize the view, the sync node who
has the highest-ordered prefix among the active participants
declares itself as the leader and publishes its knowledge about
the current view in an NDN Data packet (called ViewInfo
packet) which is followed by others in the group. Each
view is identified by a tuple called View ID that contains a
monotonically increasing view number and the leader’s data

3Note that the producer will receive at most one of the replies generated
by the group members, which may not reflect the latest dataset state in the
group.

Ted

Bob

2. Notification Interest:
/group1/vid/5/ucla/alice/…

3. Interest:

/group1/vinfo/5/ucla/alice

3. Interest:/group1/vinfo/5/ucla/alice

4. ViewInfo Data:
/group/vinfo/5/ucla/alice

Alice

Carl

1. Remove Carl;
create view #5

5: Move to
view #5

5: Move to
view #5

0. Carl leaves the group

Fig. 5. View change process after removing a member

prefix (to disambiguate multiple views with the same number
during group partition).

To maintain its membership, a sync node publishes periodic
heartbeat packets in the shared dataset in addition to the
application data in order to assert its existence. If its heartbeat
is missed for more than M times (where M is an application-
specified parameter), the node is considered to have left the
group.4 Like application data, the heartbeat contains the node’s
state vector and view ID, which enables periodic synchroniza-
tion of the dataset state inside the group.

When a sync node joins or leaves the group, the leader ini-
tiates a view change process by incrementing the view number
and publishing its latest knowledge of the group membership
in a ViewInfo packet following the naming convention in
Fig. 3(c). Note that the ViewInfo is named under the multicast
group prefix rather than the leader’s own prefix, which allows
any sync node in the group to store and serve the ViewInfo
packet. The ViewInfo contains the list of active participants
with their data publishing prefixes and public key certificates,
which essentially provides a certificate bundle signed by the
leader for all the members in the view.5 If the current leader
leaves the group, the node with the second highest-ordered
name immediately becomes the new leader and initiates the
view change to remove the previous leader from the view.

All notification Interests carry the sync node’s current view
ID in the Interest name, as is shown in Figure 3(b). This allows
the group participants to discover new views created in the
group. Upon receiving a notification Interest with a higher
view number (than its own), a sync node tries to fetch the
ViewInfo corresponding to the view ID carried in the Interest
name. Figure 5 illustrates the process of removing a departed
member and moving the group to a new view. VectorSync
essentially turns the membership management problem into a
data synchronization problem by publishing the membership
information as data and synchronizing the latest membership
data in the group.

Before receiving the new ViewInfo, the sync node keeps
publishing data in its current view. After moving to the new
view, the node creates a state vector for the new view and

4Note that the heartbeat mechanism assumes the group participants’ clocks
advance at roughly the same speed, but does not require the clocks to be
synchronized.

5The ViewInfo may be segmented if it is too large to fit into a single Data
packet.



Ted

Bob
2. ViewInfo Interest:

/group1/vinfo/4/ucla/bob

3. ViewInfo Data:
/group/vinfo/4/ucla/bob

Alice

Carl

0. Originally in view
(6, /ucla/alice)

0. Originally in view
(4, /ucla/bob)

1. Notification Interest:
/group1/vid/4/ucla/bob/…

5. Notification Interest:
/group1/vid/7/ucla/alice/…

4. Create view
(7, /ucla/alice)

Fig. 6. Merging two sub-groups after network partition heals

fills the entries with the latest sequence numbers for the
members the node already knew.6 After that the node can start
synchronizing the dataset state in the new view.

When network partition happens, each partition may select
its own leader that creates a new view including a subset
of group members. VectorSync allows multiple leaders, each
leading a different sub-group, to co-exist in the same dis-
tributed system, and provides a simple reconciliation mech-
anism whereby the leader with the highest-ordered prefix
among all active members takes the responsibility of merging
the sub-groups into a new view after the network partition
heals. Figure 6 shows an example of the view change process
that merges two sub-groups. Note that VectorSync does not
provide a separate group-joining mechanism. To join an exist-
ing group, a sync node first creates a single-node view with
itself being the leader. Then the leader of an existing view will
follow the view-merging process to add this new member into
the group.

D. Handling Packet Loss

Packet loss and link failure in the network may cause
the group participants to miss one or more data packets
published by each other. VectorSync provides several measures
for protecting the state synchronization process against packet
loss. First, VectorSync requires all parties to generate reply
packets when they receive notification Interests. If the data
producer does not receive any reply before the notification
Interest expires, it will retransmit the notification up to a pre-
configured number of times. However note that the receipt of
a single reply does not imply that all the other parties in the
group have received the notification. This is inherently due
to the multicast nature of the notification mechanism and the
“one-Interest-one-Data” requirement in NDN.

Second, VectorSync requires each group participant to pe-
riodically publish heartbeat packets in the shared dataset. As
long as there is no permanent failure in the network, the nodes
will eventually receive some new data from each other and
detect any missing data using the latest sequence number. The
state vector carried in the data and the notification reply also
enables periodic state reconciliation.

6New members are assumed to start with sequence number zero.

In addition to the built-in state synchronization mechanism,
VectorSync can also benefit from link-layer loss detection and
fast retransmission (if available) to achieve faster recovery
from packet loss in the network, rather than waiting for new
data to be published in the group.

E. Securing VectorSync Communication

VectorSync requires that the participants in the same appli-
cation group share a common trust anchor and have obtained
public key certificates from that trust anchor before partici-
pating in the application. After authenticating the ViewInfo
published by the leader, a node can directly use the public keys
in the ViewInfo packet to authenticate the data published by
other parties, including application data, heartbeat, notification
reply, etc. This prevents malicious nodes from publishing
invalid ViewInfo (which may contain unauthorized nodes as
members) or application data with invalid state vector under
a legitimate group member’s name. Note that an attacker can
still send notification Interests containing arbitrary sequence
numbers, in which case the legitimate nodes will ignore
those sequence numbers since no corresponding data can
be retrieved. If necessary, such attack can be prevented by
requiring the producer to sign the notification Interest so that
others can authenticate the notification before fetching the new
data.

Access control can also be achieved by leveraging the group
membership information, similar to the solution in NDN-
ACT [15]. The leader may periodically generate a symmetric
data encryption key and distribute the key to every party on
the current membership list [16]. The producers encrypt the
application messages using the latest encryption key, which
can be decrypted only by the members in the same view.

F. Dataset Snapshot

An important feature in the VectorSync design is that the
departed members are removed from the state vector after the
view change, preventing the size of the vector from growing
unbounded as the sync nodes come and leave in a long-running
application session. As a result, the new members that join
the group late will not learn about the previous data published
by the departed members (unless they rejoin the group later).
However, in some application scenario it may be useful to
preserve the historical data, including that published by the
departed nodes, so that new members joining the application
can still discover and retrieve the old data they need. This
can be supported by providing a distributed dataset snapshot
service on top of VectorSync to capture the dataset state
changes over the history of the group.

The snapshot process starts after each view change in the
group. After joining a new view, each group member publishes
its local state vector of the previous view (together with the
view ID) in a data packet called local snapshot. The local
snapshot packets are published in the shared dataset and propa-
gated to the leader by VectorSync. The leader is responsible for
collecting local snapshots from all members and aggregating
the reported state vectors via the Join operation to summarize



Alice Bob Carl TedView ID =
(4, /ucla/alice)

Carl leaves the group

Alice Bob TedView ID =
(5, /ucla/alice)

Local snapshot:
(4, /ucla/alice) ->
[15, 80, 51, 113]

Local snapshot:
(4, /ucla/alice) ->
[15, 80, 52, 112]

Local snapshot:
(4, /ucla/alice) ->
[14, 79, 52, 114]

Seq# = 15 Seq# = 80 Seq# = 52 Seq# = 114

Group snapshot:
(4, /ucla/alice) ->
[15, 80, 52, 114]

Fig. 7. Example of generating a group snapshot after a view change

the group-wide knowledge of the dataset state at the end of the
previous view. Finally, the leader publishes the “joined” state
vector and the corresponding view ID in a data packet called
group snapshot and notifies the members in the current view,
who may use that information to detect missing data in the
previous view. Figure 7 illustrates the snapshot process with
a simple example. To permanently store the data, the dataset
snapshot service requires a stable storage node (e.g., a repo)
to collect and store the group snapshots and the corresponding
data packets.

There are several important details worth discussing in the
design of the snapshot mechanism. First, the group snapshot
data is named under the current view ID following the naming
convention in Fig. 3(d), and the content carries the previous
view ID. Therefore the group snapshot packets published
over time essentially form a chain of successive view IDs,
which can be used to trace the history of view changes.
Second, when group partition happens, each sub-group will
generate a (partial) snapshot for the previous view. To fully
recover the dataset state for that view, one would need to
trace the branches in the view change history to obtain all
group snapshots. Third, after the group partition heals, the
members that belonged to different subgroups will publish
local snapshots for different views. In that case, the group
snapshot will contain multiple state vectors, one for each
unique view reported by the current members. Finally, cal-
culating the group snapshot requires collecting state vectors
from all members in the current view. If one member in the
group crashes before it publishes any local snapshot, the leader
will not be able to generate a group snapshot until it removes
the departed member and creates a new view. As a result,
the group members need to retain the state vectors from all
previous views not covered by any group snapshot and report
all of them in their local snapshots.

VI. EVALUATION

We implemented a prototype VectorSync module and con-
ducted simulation-based performance evaluation using the
latest version of the ndnSIM [17] simulator. The network
topology we use for the simulation is generated from the
measurement result [18] of a real-world ISP network (shown
in Fig. 8) with 176 nodes and 289 links, among which 10

Fig. 8. The simulation network topology

nodes are randomly selected to participate in a VectorSync
group. Each selected node runs an application that publishes
a total of 100 data packets in a shared dataset following the
Poisson process with average inter-arrival time of 10 seconds.
To simulate packet loss, we configure all nodes in the network
to randomly drop the received packets at a pre-configured error
rate.

We focus on two important performance metrics in the
evaluation:
• Data synchronization delay: the time needed for published

data to be received by all parties in the group;
• Network traffic volume: the amount of Interest and Data

packets transmitted in the network during the experiment.

A. Comparison with ChronoSync

In this subsection we compare the performance of Vector-
Sync and ChronoSync under different packet loss rates using
a stable group (i.e., with no membership change throughout
the experiment). The main reason of choosing ChronoSync
for comparison is that it is currently the only sync protocol
with mature published implementation7 used by many NDN
applications. As we have described in Section II, ChronoSync
propagates new data name in reply to the pending Sync
Interests and notifies the other nodes to fetch the new data,
achieving a minimum propagation time of 1.5×RTT . However,
if multiple nodes publish data simultaneously, ChronoSync
may experience longer synchronization delay because the
nodes have to spend extra round trips to retrieve additional
Sync Replies using exclude filter. In addition, when the state
of the group has already diverged, ChronoSync relies on the
recovery mechanism to retrieve the full sync state that corre-
sponds to some “unrecognized” state digest. This will cause
additional delay and higher traffic in the network (because the
recovery Interest is forwarded to all nodes in the group via
multicast).

7https://github.com/named-data/ChronoSync



0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0% packet loss

Data synchronization delay (ms)

C
D

F

●●●

●●●●●
●●●●

●●

●●
●●●●●●●
●●●●●●●●
●

●●●

●●●●●

●●●●●
●●
●●●●●●●

●●
●
●●●●

●●●●
●●●

●●●●

●●●●●
●●●●●●●●
●●●●●●

●●●●●
●
●●●●
●●●●●●●
●●●●
●●●●●●●
●●
●
●●●●●●
●●
●●●●
●●●●●●
●●●
●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●● ● ● ● ●● ●

VectorSync
ChronoSync

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1% packet loss

Data synchronization delay (ms)

C
D

F

●●

●●●●●●●●●
●●●

●●●

●●●●●●
●●●●●●●●●●●
●

●●●●●●●●

●●●

●●●●●●●
●●●●●●●
●●
●●●●●●●●●●
●●

●●●●
●●●●●●

●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●●● ● ●

●●●●●●●●●
●●●●●●
●●●
●●●●●●
●●●●●●●●
●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●● ●● ● ● ● ● ●

VectorSync
ChronoSync

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5% packet loss

Data synchronization delay (ms)

C
D

F

●●●●
●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●
●
●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●● ● ●

●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●● ●●●●● ●●●

VectorSync
ChronoSync

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10% packet loss

Data synchronization delay (ms)

C
D

F

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●● ●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●

VectorSync
ChronoSync

Fig. 9. Data synchronization delay: VectorSync vs. ChronoSync

Figure 9 shows the CDF plots of the data synchronization
delay of VectorSync and ChronoSync under different packet
loss rates. We can see that even when there is no packet loss in
the network, ChronoSync nodes still experience significantly
longer synchronization delay for about 40% of the published
data. This is due to simultaneous data publishing and state
divergence that cause ChronoSync nodes to spend extra round-
trips to fetch simultaneous sync replies or even invoke the
recovery mechanism. On the other hand, VectorSync is re-
silient to simultaneous data publishing because the notification
Interest carries explicit information about the new data name
(instead of a state digest), which allows receiving nodes to
fetch the new data immediately after receiving the notification.
When the packet loss rate increases, both sync protocols
experience longer synchronization delay but VectorSync still
performs better than ChronoSync.

We also measure the total number of Interest and Data pack-
ets transmitted over the network during the experiment, which
is shown in Figure 10. Compared to VectorSync, ChronoSync
generates much higher volume of Interest packets because
ChronoSync nodes need to send additional multicast Sync
Interests with exclude filter to detect simultaneous updates
every time they receive a Sync Reply. The recovery Interests
for repairing diverged states also contribute to the high number
of Interests. On the other hand, in VectorSync the Interest
traffic volume grows only slightly as the packet loss rate
increases, due to the retransmission of expired Interests.

B. Dynamic Membership Changes

In this subsection, we study the impact of dynamic group
membership changes on the performance of VectorSync. We
set up the simulation scenario where each node leaves the
group (by shutting down the data publishing application and
the VectorSync module) at a randomly selected time point,

Interest Data

VectorSync
ChronoSync

To
ta

l #
 o

f p
ac

ke
ts

 (
k)

0
20

0
40

0
60

0
80

0
10

00

0% packet loss

Interest Data

VectorSync
ChronoSync

To
ta

l #
 o

f p
ac

ke
ts

 (
k)

0
20

0
40

0
60

0
80

0
10

00

1% packet loss

Interest Data

VectorSync
ChronoSync

To
ta

l #
 o

f p
ac

ke
ts

 (
k)

0
20

0
40

0
60

0
80

0
10

00

5% packet loss

Interest Data

VectorSync
ChronoSync

To
ta

l #
 o

f p
ac

ke
ts

 (
k)

0
20

0
40

0
60

0
80

0
10

00

10% packet loss

Fig. 10. Total number of packets transmitted in the network: VectorSync vs.
ChronoSync

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0% packet loss

Data synchronization delay (s)

C
D

F

●●
●

●●
●●
●●●●

●●
●●

●

●●
●
●●●●●●
●●●●●

●●

●●
●

●
●
●●●●
●●●●

●●●●
●
●●●●●

●●
●

●●
●●
● ●

●●

●●
●●

●●●
●●
●●

●●

●●●
●
●●
●●
●●

●

●●
●
●●●●

●●●
●

●
●●●
●
●●
●●●
●●

●●●
●●
●●●

●●

●●●

●●●

●●
●●●
●●
● ●●

●●
●

●

Stable group
Dynamic group

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1% packet loss

Data synchronization delay (s)

C
D

F

●●
●●
●●●●●
●●●●
●●●
●●
●

●●
●●●
●●●●●
●●
●●●
●●●●●
●●
●●●●
●
●●●●
●●●●●

●

●●●
●●●●●●●●

●●

●●
●●●●●
●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●

●●●●●●
●●●●●
●●●●●
● ●●●●●

●●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●
●●●●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●● ●● ● ● ● ● ●

●

●●●
●●
●●●
●
●●

●

●
●
●●●●
●●●●
●●
●
●
●●
●●●
●●●
●●●●
●●

●●
●●
●●●●
●●●●
●●
●●
●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●
●

●●●●
●●●●

●●●●●
●●●●

●●●●
●●●●

● ●●●●
●●●●

●●●●
●●●●● ● ●● ● ●● ● ● ● ●

Stable group
Dynamic group

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5% packet loss

Data synchronization delay (s)

C
D

F

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●
●●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●
●●●●●
●●●●●●
●●●●
●●●●●●
●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●● ● ● ● ● ●● ● ●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●●●●●●●●

● ●●●●
●●● ● ●● ●●●● ●●● ● ●●● ●● ●

Stable group
Dynamic group

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10% packet loss

Data synchronization delay (s)

C
D

F

●●●●●●
●●●●●●
●●●●●●
●●●●●

●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●
●●●● ●●●●●●●● ●●● ● ● ● ●● ●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●●

●●●●
●●●●
●●●●●●●

●●●●●
●●●●

●● ●●●●
●●● ●●●●●

●●●●
●●●●

●● ●●●●● ●●●●●
●●● ● ●●

Stable group
Dynamic group

Fig. 11. Data synchronization delay with and without dynamic membership
changes

and compare the data synchronization delay to the previous
results under the scenario with no membership changes.

Figure 11 shows the CDF plots of the data synchro-
nization delay under different packet loss rates with and
without dynamic membership changes. As we can see, the
data synchronization delay is mostly unaffected by the view
change process when the packet loss rate is below 10%.
This is mainly due to three important design properties of
the VectorSync protocol. First, VectorSync decouples view
change from dataset synchronization: nodes can always fetch
the new data based on the explicit information carried in the
notification Interest even if their membership knowledge is not
synchronized with the data producer yet. Second, VectorSync



synchronizes the membership information by publishing the
ViewInfo and announcing the view ID in every notification
Interest, which enables the nodes to synchronize their views
quickly after the membership changes. Third, VectorSync
utilizes a deterministic leader selection algorithm that allows
the group to pick a new leader as soon as the current one
leaves, which also improves the view synchronization speed.

The main reason for the noticeable increase in the data
synchronization delay under 10% packet loss is because the
overall data rate in the group gradually decreases as the nodes
leave the group over time; consequently, the remaining nodes
have to wait longer for the next application data or heartbeat
packet to provide updated state vector in order to detect
missing packets. Note that in the scenario with no packet
loss, the maximum data synchronization delay under dynamic
membership changes is longer than that without membership
changes. This is because the benefit of in-network caching
diminishes when there are less number of nodes in the network
(near the end of the experiment) to fetch the published data.

VII. DISCUSSION

In this section we discuss a few open issues that are usually
outside the scope of sync protocol design but closely related
to the sync protocol operations. While our discussion focuses
on VectorSync, the proposed solutions can be applied to other
sync protocols as well.

A. Group Rendezvous

The group communication in NDN sync requires an efficient
rendezvous mechanism through which the distributed nodes
can reach each other. All existing sync protocols, including
VectorSync, assume the availability of network-layer multicast
so that the participants in a distributed application can easily
send multicast Interest packets to all the others at once.
However, deploying network-layer multicast over wide-area
Internet is proven to be difficult in practice. Moreover, there
are a number of application scenarios where the network-
layer multicast is either infeasible or prohibitively expensive
(e.g., ad hoc environments). One solution to the scalable
multicast communication problem is to establish some (vir-
tual) topology among the communicating parties, e.g., using
Distributed Hash Table (DHT) [19], over which the multicast
Interests can be propagated. Another solution currently under
our investigation is to utilize a multicast overlay that contains a
number of dedicated rendezvous points in the network. Those
rendezvous points are responsible for collecting and delivering
the multicast Interests via the overlay to every participant.
A third alternative is to adopt the viral propagation (also
called epidemic dissemination) [20] model, where a node
disseminates a message to a subset of its neighbors and those
neighbors further propagate the message until all nodes in
the group have received it. This communication model is
particularly suitable for infrastructure-less and ad hoc network
environments.

B. Storage Scalability

As the participants in the sync group continue to generate
new data, the size of the shared dataset may exceed the
storage size of any individual node. If the application requires
permanent storage of all historical data published in the group,
the whole dataset has to be sharded across multiple nodes
for storage scalability. One way to achieve that is to build a
data sharding service on top of VectorSync using consistent
hashing [21] or DHT techniques to distribute the data objects
among the current members in the group. When a sync node
receives notification of a new data packet, it consults the data
sharding service to decide whether it is responsible for storing
that data. If it is, the node will subsequently fetch the data and
store a local copy of it; otherwise, it simply updates the local
sync state but does not fetch the data. Note that the nodes
are still able to sync up with each other even if each of them
maintains only a subset of the shared data because the sync
state is solely based on the namespace of the dataset.

VIII. RELATED WORKS

As an abstraction for multi-party communication, NDN
sync is closely related to the reliable multicast protocols
in the TCP/IP architecture such as RMTP [5], PGM [4],
and SRM [3], with a lot of commonalities in the protocol
design approaches. Similar to VectorSync (and its predeces-
sors), those reliable multicast protocols also utilize sequence
numbers for naming individual data pieces from the senders
and detecting packet losses at the receivers. They also provide
periodic messages (driven by either senders or receivers) to
ensure eventual delivery of all data in the multicast group. In
particular, the SRM protocol resembles VectorSync on several
important design aspects. First, each member in SRM multi-
casts periodic session messages that carry the highest sequence
number from the active data sources for loss detection, and
allow the participants to determine the group membership
information. The session message essentially provides the
equivalent functionality as the heartbeat message does in
VectorSync. Second, SRM introduces the concept of pages
to partition the state of a large group. Each page is identified
by the page initiator’s ID and the page number. Each member
may participate on any page and report only the state of its
current page in the session messages. This is analogous to how
VectorSync manages the group membership through views and
synchronizes the dataset state among the active members in
each view.

The fundamental difference between NDN sync and the
reliable multicast protocols in IP is that the NDN sync pro-
tocols can benefit from the data-centric network architecture
to improve the efficiency in the group communication. For
example, NDN sync decouples the synchronization of the
dataset namespace from the retrieval of actual data, thanks to
the unique and secured binding between names and immutable
data objects in NDN. When disseminating the data to multiple
nodes in the group, the sync protocols can utilize NDN’s
built-in data multicast delivery capability that automatically
suppresses duplicate Interests and Data with flow balancing,



maintains the multicast data delivery path via the Pending
Interest Tables, and caches the data in the network to satisfy
future requests. Those built-in data-centric communication
features greatly simplify the design of the NDN sync pro-
tocols. On the other hand, the IP-based reliable multicast
protocols have to introduce complex mechanisms for duplicate
suppression, packet aggregation, multicast tree maintenance,
etc., which essentially implements many of the NDN features
on top of IP networks. Besides, none of them considered
the data security issue, leaving it to the application layer to
address.

IX. CONCLUSION

This paper presents VectorSync, a new sync protocol
for the NDN architecture that provides reliable multi-party
communication with built-in group membership management.
Managing the group membership at the sync layer enables
VectorSync to utilize a concise vector representation for the
dataset state and eventually prune the departed members from
the state. It also facilitates data authentication and access
control in the sync communication. The simulation study
shows that VectorSync is able to improve the efficiency of sync
across different network environments compared to Chrono-
Sync and achieve efficient group membership management
without affecting the dataset synchronization performance.

Our work on the design and implementation of VectorSync
is still preliminary and there are many opportunities for future
research. First, the protocol may benefit from different sync
state representations, such as compressing the version vector
with Invertible Bloom Filter for large groups. Second, it is
interesting to investigate how VectorSync can adapt to the
application scenarios where it may not be necessary or feasible
to closely manage the group membership (e.g., wireless ad hoc
network environments). Finally, as discussed in Section VII,
group rendezvous and storage scalability are pratical issues
that need to be addressed. Given the importance of sync in
the NDN architecture, we would like to call on the ICN com-
munity to join the effort of advancing this exciting research
area.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in Proceedings
of the 5th ACM International Conference on Emerging Networking
Experiments and Technologies (CoNEXT), 2009, pp. 1–12.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM SIGCOMM Computer Communication Review (CCR), vol. 44,
no. 3, pp. 66–73, Jul. 2014.

[3] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A Re-
liable Multicast Framework for Light-weight Sessions and Application
Level Framing,” IEEE/ACM Transactions on Networking (TON), vol. 5,
no. 6, Dec. 1997.

[4] T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S. Lin,
D. Leshchiner, M. Luby, T. L. Montgomery, L. Rizzo, A. Tweedly,
N. Bhaskar, R. Edmonstone, R. Sumanasekera, and L. Vicisano, “PGM
Reliable Transport Protocol Specification,” RFC 3208, Dec. 2001.

[5] J. C. Lin and S. Paul, “RMTP: a Reliable Multicast Transport Protocol,”
in Proceedings of IEEE INFOCOM ’96. Fifteenth Annual Joint Confer-
ence of the IEEE Computer Societies. Networking the Next Generation.,
vol. 3, Mar 1996.

[6] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized Dataset
State Synchronization in Named Data Networking,” in Proceedings of
the 21st IEEE International Conference on Network Protocols (ICNP),
Oct 2013, pp. 1–10.

[7] P. de-las Heras-Quirós, E. M. Castro, W. Shang, Y. Yu, S. Mastorakis,
A. Afanasyev, and L. Zhang, “The Design of RoundSync Protocol,”
NDN Project, Technical Report NDN-0048, April 2017.

[8] M. Zhang, V. Lehman, and L. Wang, “Scalable Name-based Data
Synchronization for Named Data Networking,” in Proceedings of the
IEEE Conference on Computer Communications (INFOCOM), May
2017.

[9] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker,
E. Walton, J. M. Chow, D. Edwards, S. Kiser, and C. Kline, “Detection
of Mutual Inconsistency in Distributed Systems,” IEEE Transactions on
Software Engineering, vol. SE-9, no. 3, pp. 240–247, May 1983.

[10] B. M. Oki and B. H. Liskov, “Viewstamped Replication: A New Primary
Copy Method to Support Highly-Available Distributed Systems,” in
Proceedings of the 7th Annual ACM Symposium on Principles of
Distributed Computing (PODC), 1988, pp. 8–17.

[11] B. Liskov and J. Cowling, “Viewstamped Replication Revisited,” http:
//pmg.csail.mit.edu/papers/vr-revisited.pdf, 2012.

[12] W. Shang, Y. Yu, L. Wang, A. Afanasyev, and L. Zhang, “Overview of
Distributed Dataset Synchronization in Named-Data Networking,” NDN
Project, Technical Report NDN-0053, April 2017.

[13] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s
the Difference?: Efficient Set Reconciliation Without Prior Context,” in
Proceedings of the ACM SIGCOMM 2011 Conference, 2011, pp. 218–
229.

[14] A. K. M. M. H. Vince Lehman, Y. Yu, L. Wang, B. Zhang, and
L. Zhang, “A Secure Link State Routing Protocol for NDN,” NDN
Project, Technical Report NDN-0037, January 2016.

[15] Z. Zhu, S. Wang, X. Yang, V. Jacobson, and L. Zhang, “ACT: Audio
Conference Tool over Named Data Networking,” in Proceedings of the
ACM SIGCOMM Workshop on Information-centric Networking (ICN),
2011, pp. 68–73.

[16] Y. Yu, A. Afanasyev, and L. Zhang, “Name-Based Access Control,”
NDN Project, Tech. Rep. NDN-0034, Revision 2, Jan. 2016.

[17] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2:
An updated NDN simulator for NS-3,” NDN Project, Technical Report
NDN-0028, Revision 2, November 2016.

[18] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
Topologies with Rocketfuel,” IEEE/ACM Transactions on Networking,
vol. 12, no. 1, pp. 2–16, Feb 2004.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions,” in Proceedings of the 2001 SIGCOMM Conference, 2001, pp.
149–160.

[20] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic Algorithms for
Replicated Database Maintenance,” in Proceedings of the 6th Annual
ACM Symposium on Principles of Distributed Computing (PODC),
1987, pp. 1–12.

[21] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web,” in Pro-
ceedings of the 29th Annual ACM Symposium on Theory of Computing
(STOC), 1997, pp. 654–663.


