
NDN, Technical Report NDN-0059. http://named-data.net/techreports.html
Revision 1: April 9, 2017

1

ChronoChat on Android
Tyler Vernon Smith, Alexander Afanasyev, Lixia Zhang

Abstract—In this report I discuss my Master’s capstone project,
ChronoChat-android, an implementation of the ChronoChat
instant message application for Android mobile devices [7].
ChronoChat-android allows communication in a chatroom
cooperatively hosted by ChronoChat clients. As in other
ChronoChat implementations, chatroom participants may be
connected via an NDN hub; ChronoChat-android also supports
ad-hoc communication between mobile devices running NFD-
android with Wi-Fi Direct support [1]. This report will review
the design and features of ChronoChat-android, focusing on
aspects that are of particular importance to the Android
platform. It will also compare ChronoChat-android to another
Android app—NDN Whiteboard [3]—and to the web-based
ChronoChat-js implementation [11].

1 Introduction
The motivating use case for ChronoChat-android is to pro-
vide an example of ad-hoc messaging utilizing NDN and
Wi-Fi Direct. Contrary to my initial expectations, supporting
this type of ad-hoc connection was not the primary challenge
in development: because recent versions of NFD-android
already support Wi-Fi Direct connections to other devices,
ChronoChat-android only needed to support connections
through a local NFD-android instance to achieve ad-hoc cha-
troom support. However, adapting the programming model
provided by ChronoChat-js [11] to the Android platform
proved more difficult than anticipated.

As my introduction to ChronoSync usage [12], [8]—and,
in fact, as my introduction to Android programming in
general—I referred to NDN Whiteboard [3]. However, I
came to decide that the architecture of NDN Whiteboard
could be improved; I aimed to structure ChronoChat-android
in a more “Android-style” way, which this report will detail.

2 Using ChronoChat-android
First I will give a high-level overview of ChronoChat-
android from the end user’s perspective. To begin using
ChronoChat-android, the user must provide a screen name, a
chatroom name, and an NDN prefix for chatroom data (Fig.
1). (ChronoChat-android always connects though a local
NFD-android, rather than asking the user for a hub URI
as in ChronoChat-js. The user should ensure that the NFD
daemon has been started in the NFD-android app before
signing in.)

After login, the user enters the chatroom (Fig. 2). After
ChronoChat-android connects to the chatroom, other con-
nected clients will appear to “join” the chat. The user

Fig. 1. Login screen.

can send messages using the field at the bottom of the
chatroom window. The toolbar at the top may be used to
leave the chatroom (by tapping the arrow at left), view the
roster (second icon from right—see Fig. 3), or quit the app
(accessed through the menu at right).

ChronoChat-android displays an ongoing notification while
connected to a chatroom (Fig. 4). This helps prevent the
Android OS from terminating the app while it is running
in the background. The app will also alert the user via a
notification when messages are received while the app is
running in the background.

3 Software architecture
ChronoChat-android consists of two Android Activities and
one Service as its primary components. The central compo-
nent—i.e., the component launched when the user first opens
ChronoChat-android, and which generally coordinates most
user-facing tasks—is MainActivity. When first launched,

http://named-data.net/techreports.html


2

Fig. 2. Chatting.

Fig. 3. Viewing the chatroom roster.

Fig. 4. Ongoing service notification.

Fig. 5. Overview of primary application components.

MainActivity will discover that no login information has
been set, and launch LoginActivity to request it from the
user. This will display the screen shown in Fig. 1. When the
user signs in, LoginActivity will return the information to
MainActivity, which will then display the chatroom screen
shown in Fig. 2.

Network tasks are handled by the ChronoChatService
component. Communication between MainActivity and
ChronoChatService consists of Intents, which are the usual
means of interprocess (and “inter-component”) communica-
tion in Android. When MainActivity signals ChronoChat-
Service to send a message, the service starts up, estab-
lishes a connection to the chatroom, and publishes the
data via ChronoSync. It remains running as a foreground



3

service—indicated by the ongoing notification shown in Fig.
4—to prevent the Android OS from killing the ChronoChat-
android process whenever the user is not interacting with the
app. The service maintains its connection to the chatroom
and relays any received messages to MainActivity via In-
tents, while also keeping track of the chatroom roster and
periodically sending “heartbeat” messages to the chatroom.
MainActivity may also send Intents to retrieve the current
roster from the service, or direct it to shut down.

Contrary to what the terminology may suggest, an Android
“Service” such as ChronoChatService does not exist in a
separate process or thread [5]. To avoid blocking the main
“UI thread,” ChronoChatService spawns a “network thread”
on which it performs nearly all of its work aside from
communication with MainActivity.

ChronoChatService is structured as a concrete implementa-
tion of the abstract ChronoSyncService class; I tried to place
code that was not ChronoChat-specific into ChronoSyncSer-
vice such that future ChronoSync-based Android applica-
tions could be built on ChronoSyncService.

4 Comparing the ChronoChat-
android architecture to NDN
Whiteboard

Like ChronoChat-android, NDN Whiteboard also uses an
Activity as its “central” component, but unlike the former,
NDN Whiteboard gives ownership of various persistent
objects—namely, its equivalent of the “network thread”
and the NDN Face object—to the Activity instead of to
a Service. I opted to use a Service for this purpose because
Activity objects are routinely destroyed by the Android OS.
For example, switching an Android device from portrait to
landscape orientation causes a foreground Activity to be
destroyed and re-created; maintaining state in these cases
is normally tedious and sometimes impossible. Services,
however, can be configured to remain resident, and if
run as a foreground service—as ChronoChatService is—the
service should only be destroyed if the enclosing process is
terminated by the system under extreme memory pressure
from a foreground process [6], [4].

NDN Whiteboard uses a chain of AsyncTasks to initialize
its ChronoSync implementation. While AsyncTasks are use-
ful to prevent blocking the UI thread, NDN Whiteboard
launches its initial AsyncTask from an Activity, meaning
that if the Activity is destroyed, the entire chain of Async-
Tasks will be lost. I found this chaining arrangement to
be confusing and seemingly fragile, so I opted to perform
all ChronoSync setup tasks in the same network thread
that performs ongoing ChronoSync tasks post-setup. This
arrangement also follows the instructions given by the NDN-

CCL documentation [9], which seems to warn of thread-
safety issues.1

5 Comparing ChronoChat-android
to ChronoChat-js

ChronoChat-android is designed to be interoperable with
ChronoChat-js and have generally equivalent features.
ChronoChat-android uses a Google Protocol Buffer (“Pro-
tobuf”) definition taken from jNDN [10] for compatibility
with the protocol used by ChronoChat-js. The app’s Gradle
script pulls in a Protobuf build plugin from Maven [2] which
in turn compiles the protocol definition to a Java class.

ChronoChat-android reorders any messages received out-of-
order (by timestamp2) before displaying them to the user;
this doesn’t seem to be a part of the ChronoChat protocol
currently implemented by ChronoChat-js.

I originally designed ChronoChat-android to avoid retrieving
“old” messages that were published before joining the
chatroom. I was concerned that users might be confused
by the sudden arrival of numerous “old” messages upon
connecting to the chat. However, I ultimately reverted to
retrieving these “old” messages the way ChronoChat-js does,
because this is an expected behavior of the ChronoChat
synchronization protocol. My concerns about user confusion
were also mitigated by the fact that received messages are
displayed in timestamp order.

6 Miscellaneous issues encoun-
tered

ChronoChat-js will sometimes repeatedly display the last
message published by a ChronoChat-android client. I believe
the problem lies with ChronoChat-js, specifically in how it
handles “recovery” sync states, but I haven’t been able to
track down the exact cause.

During my testing, mysterious “broken pipe” error messages
from ChronoSync would occasionally appear in the debug
log, without any Java exception being thrown to the sur-
rounding code. I suspect that ChronoSync may be losing
its connection to NFD-android due to components of the
latter being spontaneously destroyed by the Android OS. (I
assume that NFD-android is susceptible to this because it
doesn’t run as a foreground service.)

The Gradle configuration I used for the Protobuf Gradle
plugin differs from the instructions given by the plugin’s
maintainers [2]. I couldn’t get the “javalite” versions of the
plugins to work as described, so I found a way to make
things work using the standard Java versions.

1 It should be noted that despite such warnings, I did not encounter any
obvious thread-safety bugs in my testing of NDN Whiteboard or alternative
threading arrangements in ChronoChatService.)

2 ChronoChat-android trusts the sender-specified message timestamp.



4

7 Conclusion: limitations and future
additions

ChronoChat-android can only connect to one chatroom at
a time, and lacks the chatroom discovery feature of the
original ChronoChat. The security configuration is based on
NDN Whiteboard—i.e., it lacks “proper” security.

Some users may wish to silence or disable the “new
message” notifications displayed by ChronoChat-android,
but the app currently lacks such configuration options. The
ability to save chatroom history to persistent storage could
also be useful.

Outside of ChronoChat-android, I would suggest providing
a way to interact with NFD-android via Intents, instead
of through a persistent Face object. I believe this would
make it easier to develop NDN applications for Android, by
providing a more natural and “Android-style” asynchronous
programming model. Finally, as I previously alluded to, I
believe NFD-android would be more reliable if configured
to run as a foreground service.

I hope that ChronoChat-android will serve as a useful
addition to the suite of NDN mobile apps, and an example of
how to structure a ChronoSync-based Android application.

8 Acknowledgement
This work is partially supported by the National Science
Foundation under awards CNS-1345318 and CNS-1629922.

References

[1] Alexander Afanasyev. NFD-android. URL: https://github.com/
named-data-mobile/NFD-android.

[2] Google. Protobuf Plugin for Gradle. URL: https://github.com/google/
protobuf-gradle-plugin.

[3] Sumit Gouthaman and Alexander Afanasyev. NDN Whiteboard. URL:
https://github.com/named-data-mobile/apps-NDN-Whiteboard.

[4] Android Open Source Project. Android API Guide: Processes and Ap-
plication Life Cycle. URL: http://developer.android.com/guide/topics/
processes/process-lifecycle.html.

[5] Android Open Source Project. Android API Guide: Processes
and Threads. URL: http://developer.android.com/guide/components/
processes-and-threads.html#Threads.

[6] Android Open Source Project. Android API Guide: Services.
URL: https://developer.android.com/guide/components/services.html#
Foreground.

[7] Tyler Vernon Smith. ChronoChat-android. URL: https://github.com/
tylervernonsmith/ChronoChat-android.

[8] NDN Project Team. NDN Common Client Libraries API 0.5.1
Documentation: ChronoSync2013 Class. URL: http://named-data.net/
doc/ndn-ccl-api/chrono-sync2013.html.

[9] NDN Project Team. NDN Common Client Libraries API 0.5.1 Doc-
umentation: Face Class. URL: http://named-data.net/doc/ndn-ccl-api/
face.html#face-processevents-method.

[10] Jeff Thompson. ChronoChat Protobuf definition. URL:
https://github.com/named-data/jndn/blob/master/examples/src/net/
named_data/jndn/tests/chatbuf-proto.proto.

[11] Jeff Thompson. ChronoChat-js. URL: https://github.com/named-data/
ChronoChat-js.

[12] Zhenkai Zhu and Alexander Afanasyev. Let’s ChronoSync: De-
centralized Dataset State Synchronization in Named Data Net-
working. In 21st IEEE International Conference on Network Pro-
tocols (ICNP 2013). October 2013. URL: https://named-data.net/
wp-content/uploads/2014/03/chronosync-icnp2013.pdf.

https://www.nsf.gov
https://www.nsf.gov
https://github.com/named-data-mobile/NFD-android
https://github.com/named-data-mobile/NFD-android
https://github.com/google/protobuf-gradle-plugin
https://github.com/google/protobuf-gradle-plugin
https://github.com/named-data-mobile/apps-NDN-Whiteboard
http://developer.android.com/guide/topics/processes/process-lifecycle.html
http://developer.android.com/guide/topics/processes/process-lifecycle.html
http://developer.android.com/guide/components/processes-and-threads.html#Threads
http://developer.android.com/guide/components/processes-and-threads.html#Threads
https://developer.android.com/guide/components/services.html#Foreground
https://developer.android.com/guide/components/services.html#Foreground
https://github.com/tylervernonsmith/ChronoChat-android
https://github.com/tylervernonsmith/ChronoChat-android
http://named-data.net/doc/ndn-ccl-api/chrono-sync2013.html
http://named-data.net/doc/ndn-ccl-api/chrono-sync2013.html
http://named-data.net/doc/ndn-ccl-api/face.html#face-processevents-method
http://named-data.net/doc/ndn-ccl-api/face.html#face-processevents-method
https://github.com/named-data/jndn/blob/master/examples/src/net/named_data/jndn/tests/chatbuf-proto.proto
https://github.com/named-data/jndn/blob/master/examples/src/net/named_data/jndn/tests/chatbuf-proto.proto
https://github.com/named-data/ChronoChat-js
https://github.com/named-data/ChronoChat-js
https://named-data.net/wp-content/uploads/2014/03/chronosync-icnp2013.pdf
https://named-data.net/wp-content/uploads/2014/03/chronosync-icnp2013.pdf

	Introduction
	Using ChronoChat-android
	Software architecture
	Comparing the ChronoChat-android architecture to NDN Whiteboard
	Comparing ChronoChat-android to ChronoChat-js
	Miscellaneous issues encountered
	Conclusion: limitations and future additions
	Acknowledgement
	References

