NDN; Technical Report NDN-0034, 2015. http://named-data.net/techreports.html
Revision 2: January 11, 2016. Adding comparison against Attribute Based Encryption
Revision1-Oetober27,-2015. (http://named-data.net/wp-content/uploads/2015/11/ndn-0034-nac.pdf)

Name-Based Access Control
Yingdi Yu

UCLA
yingdi@cs.ucla.edu

Alexander Afanasyev
UCLA
afanasev@cs.ucla.edu

Lixia Zhang
UCLA
lixia@cs.ucla.edu

ABSTRACT

This paper presents a content-based access control access
control model for content stored in network storage. The
model enforces the access control directly over content through
encrypting content at the time of production, rather than re-
lying on a third party (such as data storage) as traditional
perimeter-based access control model. We present the de-
sign of Name-based Access Control (NAC), which imple-
ments the content-based access control model in Named Data
Networking (NDN). We demonstrate how to make use of
naming convention to explicitly convey access control policy
and efficiently distribute access control keys, thus enabling
effective access control. We evaluate the scalability of NAC
against CCN-AC, another encryption-based access control
scheme. The results suggest that NAC is more suitable for
large scale distributed data production and consumption.

1. INTRODUCTION

Sharing private content among multiple parties re-
quires end-to-end confidentiality, to ensure that no one
but those authorized parties can see the shared content.

Due to a number of reasons (scalability, availability,
economy, etc.), today’s content sharing applications, by
and large, rely on a third party to host their contents,
and the security in content sharing is provided through
encrypted channels. However these channels are not di-
rectly between content producers and consumers, but
between producers and host, and host and consumers.
This practice fails to provide end-to-end confidential-
ity because it allows a third party, the content host, to
see the shared content in plain text. This failure not
only causes the potential privacy concern, but also in-
troduces liability on content hosts, or make them an
attractive attack target since a single host may store
content for a large number of customers.

To achieve true end-to-end confidentiality, one must
decouple the content confidentiality from any hosting
party by securing the content directly. More specifi-
cally, a content producer should encrypt content at the
time of production, then it can control the sharing of
its content by controlling the distribution of the cor-
responding decryption keys. In this way, supporting

content-based confidentiality means addressing the fol-
lowing two questions: (1) how to encrypt content, and
(2) how to securely distribute the decryption keys.

To address these two problems, we designed NAC,
a name-based access control scheme which provides se-
cure, distributed content sharing by encrypting content
directly. Although the design described in this report is
for use by applications running over an NDN network,
we believe that the solution can be generally applicable
to other applications which use a data-centric commu-
nication model, e.g., web, file sharing.

In the rest of this report, Section 2 provides a briefing
of NDN, Section 3 introduces our basic access control
model, Section 4 described how to use name in access
control, Section 5 does security analysis, and Section 6
discusses a number of design considerations. We dis-
cuss related work in Section 7 and conclude our work in
Section 8.

2. NAMED DATA NETWORKING

Named Data Networking (NDN) is a proposed Inter-
net architecture which provides data-centric communi-
cation primitives. NDN changes the Internet’s commu-
nication model from delivering packets to an end host
to retrieving content for a given name. A host requests
content by sending an interest packet, which specifies
the name of the desired content, and the network re-
sponds by sending back a data packet containing the
requested content. Since the requester only specifies
what it wants (i.e., the data name), the network has
the freedom to make intelligent decisions on where to
forward an interest packet. It could be sent toward a
replica of the data hosted by the original data producer
or by a third-party storage provider, or get satisfied en-
route by an router cache containing the requested data.

NDN uses a content-based authenticity model by re-
quiring every data packet be signed. Besides the signa-
ture, each data packet also carries additional metadata
including the signing key name as shown in Figure 1.

To authenticate a data packet, one needs a trust model
that defines which keys are authorized to sign which
data (trust rules), and specifies one or more trusted

Data packet

Name Data packet (key)
Content

¢ < Name
Signature " | Content &
KeyLocator ----- Signature PR
KeyLocator-}----" .

Figure 1: Authentication elements in NDN data packet

keys to bootstrap the trust (¢rust anchors). Any entity—
applications, dedicated network storage elements, and
even network routers-that learns the trust model for
a given piece of content can verify its authenticity, and
may perform necessary actions when the authentication
fails (e.g., discard the packet, or try an alternative path
to retrieve). Keysin NDN are just another type of data,
thus they also have unique names and can be authen-
ticated in the same way as other data packets; data
packets carrying public keys are effectively NDN cer-
tificates.

NDN defined the content-based authenticity into its
architecture. However this makes only one part of the
content-based security model. The other part of the
model, content-based confidentiality must also be pro-
vided. In the rest of this paper, we will demonstrate
how to use content-based confidentiality to secure con-
tent sharing application over NDN.

3. ACCESS CONTROL MODEL

To facilitate explanation and discussion in the rest
of this paper, we first introduce a simple wellness ap-
plication example (Figure 2). A user Alice uses a well-
ness application to collect her heart rate data and activ-
ity data, which is produced by two sensors respectively.
The activity sensor can produce two types of data every
minute: the number of steps and the user location, while
the pulse sensor only produces Alice’s heart rate data.

Alice may share her data with different people at dif-
ferent granularities. For example, Alice may share the
daily activity data with her husband Bob and occasion-
ally share the location data with her friend Cathy when
she is doing outdoor running exercise. Alice also wants
to share her heart rate data with her personal physician
David.

In order to facilitate data sharing, Alice may upload
all the wellness data to a data storage (e.g., cloud), so
that the authorized consumers can retrieve data at any-
time. Alice assumes that the data storage will guarantee
the availability of her wellness data, but does not rely
on the data storage to enforce access control.

3.1 Content-Based Access Control

Figure 2 highlights a specific access control model,
which we call content-based access control. In this model,
the data owner (e.g., Alice) directly controls both data

@ .2

| sensor | produce

| data -) by
; ~ ~"upload Untrusted | 1 i0ve
; [— > <" data Storage .10 4
| Activity | B \ 4 | Cathy
i sensor | X
Data Qq
Producer
David
“Data
Consumer

Figure 2: Example of health data sharing

production and access, i.e., who is authorized to pro-
duce data under specific branches of her namespace, and
who is authorized to read the data. To avoid reliance
on any intermediate device (e.g., data storage, firewalls,
and routers) to enforce the access control, data producer
must produce data in an encrypted format, so that only
authorized data consumers (e.g., Bob) can decrypt the
data.

Data Owner
Production ' ! Consumption
credential i & ! credential i
signing signing i Alice i Ekey-encrypt key-decryptg

key certificater Sem-soic i

- key -~ key

Data Consumer

Data Producer

Figure 3: Production credential and consumption cre-
dential in content-based access control.

To achieve content-based access control, the data owner
needs to provide two types of credential: production
credential and the consumption credential, as shown in
Figure 3. A production credential lets an authorized
producer authenticate itself to data receivers. A pro-
ducer generates a pair of public/private keys for data
signing and verification. The data owner issues a pub-
lic key certificate for the producer. In this certificate,
the data owner explicitly specifies the production privi-
lege, i.e., the data set that the producer is authorized to
produce. The data producer signs data with the corre-
sponding private key. Any data receiver (e.g., end con-
sumers and data storage) can verify, with the producer

certificate, if the producer is authorized to produce the
data.

A producer encrypts content using a symmetric key
(content key), which is generated by the producer. A
data owner enforces read access control by controlling
the delivery of content keys. A data owner generates
a pair of public/private keys, which we call consump-
tion credential. As shown in Figure 3, all authorized
consumers will obtain the private key (key-decrypt key,
or KDK), while data producers retrieves the public key
(key-encrypt key, or KEK) and use it to encrypt content
key. The data owner explicitly specifies the privilege of
consumption credential, i.e., the data set that a con-
sumer is authorized to read, so that producers know
which content keys should be encrypted using a partic-
ular KEK.!

3.1.1 Design Issues

To achieve practically usable content-based access con-
trol, we must address the following design issues.

A data owner must be able to explicitly specify
privilege in both production credential and con-
sumption credential. Expressing privilege explicitly
in credentials is an important premise to provide fine-
grained access control. For example, when Alice can ex-
plicitly specify in the activity sensor certificate that the
sensor can only produce activity data, data consumers
or the data storage can reject any non-activity data pro-
duced by the activity sensor. When Alice can explicitly
specify the readable data set for each consumption cre-
dential, a consumer with the KDK can read data only
within the data set, because data producers will not use
the corresponding KEK to encrypt content key whose
corresponding content is beyond the data set.

A data owner must be able to deliver the cre-
dentials to the corresponding entities. None of
data owner, data producers, and data consumer will be
online all the time. The only always-online entity in
the system is the data storage. Similar to normal data,
credentials will also be stored in the untrusted storage
and delivered through the untrusted network. This im-
plies that producers and consumers must directly au-
thenticate credentials, independent from any retrieval
mechanism. Sensitive credentials, such as decryption
keys, must be properly encrypted, so that they are only
visible to authorized consumers.

A data owner must be able to revoke the ac-
cess of producer and consumer. A data owner must
retain the ability of preventing a producer (or a con-
sumer) at any time from further producing (or reading)
data.

!Note that public/private key pair is only one of possible
implementations for consumption credential. Other imple-
mentation may include identity-based encryption, attribute-
based encryption, and etc.

In the next section, we demonstrate how to leverage
named data and keys, together with naming conven-
tions, to solve the above three problems.

4. NAMED ACCESS CONTROL

In this section, we first explain how to name data,
followed by the explanation on how to name produc-
tion credential (signing/verification keys) and consump-
tion credential (key-decrypt/decrypt keys) to specify
different access privileges. We will also show how to
distribute keys in a distributed system to achieve the
content-based access control and discuss how to revoke
the access.

4.1 Naming Data

In NDN, data is named under a hierarchical names-
pace. This allows us to group data with the same prop-
erty into the same namespace. As an illustrative ex-
ample, Figure 4 shows the naming hierarchy for Alice’s
health data. Alice can put all her health related data
(including keys as we will show later) under a names-
pace “/alice/health”. Under this namespace, Alice allo-
cates a sub-namespace “/alice/health/samples” for the
data produced by sensors. Alice can further sort her
health data into two categories: “activity” and “medi-
cal”, and give each of them an individual namespace:
“/alice/health/samples/activity” and “/alice/health
/samples/medical”. The activity namespace covers two
types of data: steps (“alice/health/samples/activity
/steps”) and location (“/alice/health/samples/activity
/location”). Each piece of data is named under the
namespace for its own type, with a suffix that can de-
scribe additional information of the data. For example,
the data under name “/alice/health/samples/activity
/steps/2015/08/27/16/30” refers to the step data that
is produced during 16:30 to 16:31 on August 27th, 2015
(assuming activities are measured in the time unit of
one minute).

Figure 4: An example of naming hierarchy for Alice’s
health data

4.2 Naming Production Credential

Since data is organized under the hierarchical naming
structure, a data owner can express the privilege of a

production credential as the namespace under which the
producer is authorized to produce data. For example,
a namespace “/alice/health/samples/activity”’ repre-
sents the privilege of producing Alice’s activity data,
including both step and location.

/alice/health/samples/activity/b4a89e/KEY

Data Namespace Key ID

Figure 5: The naming convention of signing key

To authorize a data producer to produce data under a
given data namespace, a data owner can issue a signing
key certificate which associates the producer’s signing
key with the authorized namespace. Figure 5 shows the
naming convention of signing key. A signing key name
consists of three parts: 1) a prefix indicating the data
namespace; 2) a key ID that with the prefix uniquely
identifies the signing key; and 3) a special name compo-
nent “KEY” that distinguishes the key from normal data
under the same name.

We mentioned in Section 2 that NDN requires data
producer to put its signing key name into the “KeyLo-
cator” field of each produced data packet. With this
information, a data consumer can construct a chain of
signing keys from the producer signing key to a trusted
key it already knew (e.g., Alice’s root key). Consumers
can check the authentication chain against a pre-defined
trust model, which can be described in a trust schema [6],
to decide whether a producer has been authorized to

produce a particular data packet.
ﬁ /alice/d891ae/KEY

(signs @

ﬁ/alice/health/Sfdf51/KEY Alice

Kﬁ /alice/health/samples/activity/b4a89e/KEY @

signs D
signs Activity sensor

/alice/health/samples/activity/setp/20150827080000 @

ﬁ /alice/health/samples/medical/pulse/b4a89e/KEY '

. Pulse sensor

/alice/health/samples/medical/pulse/20150827080000 @

Figure 6: Signing hierarchy of Alice’s health data

Figure 6 shows an example trust model for Alice’s
production credential authentication. This hierarchi-
cal trust model has the root key of Alice’s own names-
pace “/alice” as the trust anchor. A separate key, “/al-
ice/health/5£df51/KEY”, is created to manage the well-
ness sub-namespace (“/alice/health”), which is used to
sign the certificate of each authorized data producer
(pulse sensor and activity sensor).

A data owner may adopt different trust model for
the production credential authentication. Discussions
on alternative trust models are beyond the scope of this
paper. Interested readers are referred to our previous
work [6] about trust management in NDN.

4.3 Naming Consumption Credential

In our design consumption credential is another pub-
lic key pair (KEK/KDK) for content key encryption.
We use well defined naming convention to help a data
owner explicitly specify the privilege of a consumption
credential. We mentioned earlier that the privilege of
a consumption credential is a data set that a consumer
with the key-decrypt key (KDK) can access (indirectly
through decrypted content keys). With the privilege
encoded in the corresponding key-encrypt key (KEK)
name, a data producer can tell which content key should
or should not be encrypted through the key-encrypt key.

The naming of key-encrypt/decrypt key (KEK/KDK)
must accommodate four facts. First, key-encrypt/decrypt
keys have different usage than the signing/verification
keys introduced above. A signing key is possessed by
an authorized producer while a KDK is held by an au-
thorized consumer. The roles of these two pairs of keys
are different, and the key name must explicitly reflect
such differences.

Second, consumption credential is created and man-
aged by data owner. The naming convention of con-
sumption credential should prevent other entities (e.g.,
producers or consumers) from issuing valid consump-
tion credential.

Third, a data owner may want to delegate the con-
sumption credential management to a third party. The
consumption credential naming convention should fa-
cilitate such management delegation, at the same time,
a data owner must be able to restrict the privilege of
this third party to consumption credential management
only. In other word, the third-party entity should not
be able to produce wellness data on behalf of the data
owner.

Last, the data set that a consumption credential cov-
ers may need additional description that cannot be ex-
plicitly encoded as the data namespace. For example,
a data owner may want to create a consumption cre-
dential that allows consumers to access data produced
during certain time period, e.g., from 6pm to 10pm on
every workday. Therefore, the consumption credential
name must be able to carry additional information to
enforce a variety of access restrictions beyond the data
naming hierarchy.

We will present a naming design that can address the
four issues above.

4.3.1 Consumption credential namespace

To distinguish consumption credentials apart from
production credentials, we allocate a separate names-
pace for consumption credential, which is parallel to
the data namespace as shown in Figure 7. Take Alice’s
health data as an example, Alice can create a namespace
“/alice/health/read” for consumption credentials. The
naming hierarchy of the consumption credential names-
pace mirrors that of the data namespace, except that
data under this hierarchy are all consumption creden-
tials.

consumer credential
namespace

data namespace

Figure 7: An example of consumption credential names-
pace along with data namespace

With a separate consumption credential namespace,
a data owner can delegate the whole or part of the con-
sumption credential management to a third party. The
data owner can publish the delegation as a certificate
which binds the third party’s public key to the delegated
consumption credential namespace or sub-namespace.
Figure 8 shows an example of consumption credential
delegation in which Alice delegated her physician to
control the read access to her medical data. As re-
stricted by the certificate name, the delegated entity
(e.g., Alice’s physician) can only issue consumption cre-
dential for certain type of data (e.g., medical data), and
cannot issue any production credential nor produce any
data, including medical data.

Name: /alice/health/read/medical/9fe23d/KEY/v1

Content: ﬁ [S — ... Public key of
Alice's physician
Signature:

KeyLocator:

1b3d76/KEY /]|

Figure 8: An example of consumption credential dele-
gation.

The naming hierarchy under the consumption creden-
tial namespace also enables multi-level delegation. For
example, Alice’s physician can further delegate a cardi-
ology expert to manage the read access to Alice’s heart
rate data.

4.3.2 Consumption credential name convention

Under the consumption credential namespace, a data
owner can name a consumption credential at any level of

the naming hierarchy (e.g., “/alice/health/read/medical”,
and “/alice/health/read/medical/pulse”) with the mean-
ing that consumers with the credential can only ac-
cess data under the corresponding data namespace. We
mentioned earlier that our design uses a public key pair
(KEK/KDK) to construct a consumption credential.
Both keys need to be named properly to convey the
privilege of a consumption credential.

Key-Encrypt Key Name
A

r N\
/alice/health/read/activity/step/E-KEY/20150827T001600/20150828T001800

< >l >
Start Timestamp ""End Timestamp

Data Type <« —>

Additional Restriction

/alice/health/read/activity/step/D-KEY/20150827T001600/20150828 T001800
N J

Credential
Namespace

Y
Key-Decrypt Key Name

Figure 9: The key naming convention of consumption
credential

Figure 9 shows the naming convention for the keys of
a consumption credential. Both key-encrypt key (KEK)
and key-decrypt key (KDK) share the same naming
structure. They all start with a particular prefix un-
der the consumption credential naming hierarchy. After
the prefix, each type of keys has a key-tag component
that distinguishes the usage of these keys: “E-KEY” for
key-encrypt key and “D-KEY” for key-decrypt key. After
the key-tag, a data owner can append other additional
restrictions that have not been explicitly encoded in the
data namespace. For example, the key names in Fig-
ure 9 says that a consumer with this corresponding cre-
dential can access Alice’s step data produced between
4pm to 6pm on August 27, 2015.

4.4 Credential Delivery

For producer credential, we assume that a producer
creates and retains signing key and data owner issues
signing key certificate using conventional certificate is-
suing mechanism. Only consumers need to retrieve sign-
ing key certificates for data authentication. Since a sign-
ing key certificate is an NDN data packet, data owner
can simply upload the issued certificate to a data stor-
age. Potential data consumer can follow “KeyLocator”
in data packet to retrieve the certificate later.

The key-encrypt/decrypt key of a consumption cre-
dential, however, are created by data owner and should
be delivered to related data producers and authorized
consumers respectively. We will explain how to deliver
these keys to related entities.

4.4.1 Key-encrypt key delivery

As mentioned earlier, the key-encrypt key (KEK) in
this design is a public key. A data owner can name a
KEK as we mentioned above (Figure 9), and publish the
key as a data packet. Since each encryption key has the

data owner’s signature, they can be safely uploaded to
the data storage, retrieved and verified by data produc-
ers and consumers. As long as a data producer knows
the key-encrypt key naming convention, it can infer the
name of the key-encrypt key to retrieve. The naming
convention can be tailored for specific applications to
facilitate key retrieval.

Let’s consider the wellness application as an example.
In this application, producers (e.g., sensors) produce
wellness data continuously. With the naming conven-
tion defined in Figure 9, a data owner can specialize
the “additional restriction” as a time interval, and cre-
ate a sequence of KEKs. The time interval of these
KEKs can be concatenated together to cover a contin-
uous time period as shown in Figure 10. Note that this
naming convention implies that the ending timestamp
of a KEK is the starting timestamp of the next KEK.

alice/health/read/activity/step |

E 8a
/<prefix>/E-KEY/20151016T000800: Oct. 16

I<prefix>/E-KEY{20151016T001800/2015101 GTOOQZOOI?&) Friday

/<prefix>/E-KEY/20151016T002200/20151017T000800
8a

Oct. 17
/<prefix>/E-KEY/ Saturday
12p
) Oct. 18
/<prefix>/E-KEY/20151018T000000/20151018T000800
Sunday

. 8a

Figure 10: A sequence of key-encrypt keys cover a con-
tinuous time period.

To construct an interest to retrieve a KEK, a data
producer must first determine the credential prefix. Note
that there could be multiple prefixes which a data pro-
ducer can infer from the name of produced data. For ex-
ample, given Alice’s step data “/alice/health/samples
/activity/step’, the activity sensor can derive the most
specific credential prefix “/alice/health/read/activity
/step” corresponding to the step data namespace. Since
every parent credential prefix of the most specific pre-
fix also covers the step data, the data producer can
determine all the possible credential prefix by tracing
back to the root of the credential namespace (e.g., “/al-
ice/health/read”). In the example above, the activity
sensor can deterministically derive three prefixes: “/al-
ice/health/read”, “/alice/health/read/activity”, and
“/alice/health/read/activity/step’.

For each derived credential prefix, a data producer
needs to determine the starting timestamp for the KEK
to retrieve. We mentioned earlier that the ending times-
tamp of a KEK is the starting timestamp of the next
KEK. When a data producer has already obtained a
KEK, it can construct an interest for the next KEK
by specifying the starting timestamp using the ending
timestamp of the obtained key. Routers and data stor-

age can apply the longest prefix match to pick the next
KEK and satisfy the interest.

If a data producer has not received any KEK before,
the data producer can express an interest with the cre-

dential prefix (e.g., “/alice/health/read/activity/E-KEY”).

The interest can bring back a KEK which can serve as
a starting point for the KEK enumeration as described
above.

When a retrieved KEK’s ending timestamp is much
earlier than current timestamp, KEK enumeration may
become inefficient. In this case, a data producer can use
“Selectors” to speed up the key enumeration process.
More specifically, a data producer may use “Exclude”
filter to exclude any KEK whose starting timestamp
is earlier than the latest one among all the received
KEKs.2 A data producer may also specify “ChildSelec-
tor” to select the “rightmost” KEK under the credential
prefix.

4.4.2 Key-decrypt key delivery

Key-decrypt key (KDK) should be visible only to au-
thorized consumers. Note that a data owner may not
be online all the time, it would be desirable for the data
owner to leave the KDKs in a data storage for autho-
rized consumers to retrieve it whenever needed. Since
the data storage is untrusted, a data owner can encrypt
a KDK using the public key of each authorized con-
sumers. Each encrypted copy makes an individual data
packet.

Figure 11 shows the format of encrypted data. The
data content consists of two components: “Encryption-
Algorithm” which the meta-information about the en-
cryption scheme and “EncryptedContent” which contains
the cipher text of content. Note that the format is gen-
eral enough to carry any content which is not restricted
to KDKs but also include content key and normal con-
tent.

Name

Content

EncryptionAlgorithm
EncryptedContent

Signature

Figure 11: Data packets carrying encrypted data and
keys

Since each consumer has its own encrypted copy of
KDK, each copy must have a unique name. To dis-
tinguish different copies, we define the naming conven-
tion for encrypted data as shown in Figure 12. For
each encrypted copy, we append a special name com-
ponent “FOR” and the encrypting key name after the

2In case clock is not synchronized, one may also set “Ex-
clude” filter to exclude any KEK whose starting timestamp
is later than current timestamp.

content name. For example, a decryption key for Al-
ice’s activity data that is encrypted using Bob’s pub-
lic key is named as “/alice/health/read/activity/D-
KEY/20151016T000800/20151016T001800/FOR/bob/health/
access/E-KEY”.

/<ContentName>/FOR/<EncryptionKeyName>

Figure 12: Naming convention of encrypted data

The name of encrypting key in each data packet can
help a data consumer to construct a decryption chain
to access the original content as shown in Figure 13.
When a consumer retrieves an encrypted data packet,
it can extract the content key name from the data name.
We assume that an authorized consumer should know
its authorized credential prefix®. With the content key
name, a consumer can construct an interest by append-
ing the consumption credential prefix to the content key
name. With longest prefix match, routers and data stor-
age can satisfy the interest with the encrypted content
key. After receiving encrypted content key, the con-
sumer can extract the key-encrypt key (KEK) name and
construct an interest for the corresponding key-decrypt
key (KDK) by appending the consumer’s own name to
the KDK name. In the end, the consumer can retrieve
the encrypted KDK and recursively decrypt all the in-
termediate keys and the original content.

Interest: /<OriginalContentName> o‘gretrieve

Data: /<OriginalContentName>/FOR/<ContentKeyName>
derive

Interest: /<ContentKeyName>/FOR/<Credent|aIPref|x>ogretrieve

Data: /<ContentKeyName=>/FOR/<CredentialPrefix>/E-KEY/...
derive

Interest: /<CredentialPrefix>/D-KEY/.../FOR/<ConsumerNa1me>c>~{;retrieve

Data: /<CredentialPrefix>/D-KEY/.../FOR/<ConsumerName>/E-KEY/...

Figure 13: A chain of keys to decrypt wellness data

4.5 Fine-Grained Access Control

With consumption credential, a data owner can con-
trol the read access to content from two dimensions:
specifying the privilege of individual consumption cre-
dential and restricting the set of credentials that a con-
sumer can obtain. For example, Alice may want to share
her location information with her husband Bob all the
time, but with her colleague Cathy only during work-
ing hours. In this case, Alice can specify a sequence of
consumption credentials which cover her location data
for 9am-5pm and 5pm-9am every day. Alice can en-
crypt the KDKs for 9am-5pm from Monday to Friday

3 An authorized consumer does not have to know the com-
plete credential name, i.e., the full name of each decryption
key.

for both Bob and Cathy, and encrypt all the other de-
cryption keys for Bob only, as shown in Figure 14.

Stepdata! Mon | Tue | Wed i Thu | Fri | Sat | Sun |
KDK | 9a 5pi 9a 5p; 9a 5pi 9a 5pi 9a 5p; 9a 5pi 9a 5p;
T NN

sequence [INNINEN

Cathy's
KDK set @ . @ . @

Kg?(bsset I N N NN N

Figure 14: Different read privilege in terms of KDK set.

In fact, a data owner can divide the data set arbitrar-
ily into multiple consumption credentials (KEK/KDKs),
so that the data owner can create different combination
of KDKs to represent different privilege of individual
consumers. When the read privilege can be pre-defined,
consumption credentials can be automatically created
and published in the network.

4.5.1 Post-Facto Access Granting

The model we discussed so far focus on controlling the
access to data as they are being produced. The name-
based access control also allows a data owner to grant
a new consumer the access to the data that is produced
long time ago. When the granted access is covered by
one or more KDKs that were generated earlier, the data
owner can simply encrypt KDKs directly using the new
consumer’s public key.

Note that a data owner can always create a top-level
consumption credential (e.g., “/alice/health/read”) and
retain the KDKs to itself only. Since every producer will
publish a copy of content key encrypted using the KEK
of the top-level credential, the data owner can obtain all
the content keys. As a result, when the granted access
cannot be expressed as a combination of existing KDKs,
the data owner can re-encrypt the granted content key
directly for the new consumer.

4.6 Access Revocation

With content-based access control, revoking write ac-
cess is equivalent to revoking the producer’s public key
certificate, so that neither data storage nor end con-
sumers will accept data of the revoked producer. A
data owner can also easily prevent a previously autho-
rized consumer from reading any new data by stopping
publishing consumption credentials for the consumer.
However, revoking data access that has been granted
requires strict control on the availability of KDKs, i.e.,

preventing a revoked consumer from accessing these KDKs.

For example, a data owner may delete from a data stor-
age the KDKs encrypted for a revoked consumer.

A more effective solution can be provided at the ap-
plication layer. For example, to control the access to
video with copy right, a video provider (e.g., Netflix,
Hulu) may ship its own video player as a blackbox to

user. The video player not only decrypts the video
stream, but also can prevents users from retaining a
copy of the decrypted video. We assume the same tech-
niques can be applied here to control the access to the
KDKs. More specifically, the blackbox can negotiate
an ephemeral keys for KDK distribution and throw the
ephemeral keys and KDKs away after data decryption.
For a revoked consumer, the blackbox will fail to obtain
an ephemeral key, thus preventing the consumer from
accessing content.

S. EVALUATION

We perform a comparative evaluation on NAC. We

first compare NAC with CCN-AC [4], another encryption-

based access control scheme using regular public key
cryptography, about the overhead of crypto computa-
tion and key retrieval. We examine the difference be-
tween NAC and Attribute-Based Encryption [3], an-
other encryption scheme which is often mentioned as an
easy-to-use solution for encryption-based access control.

5.1 NAC vs. CCN Access Control

CCN-AC [4] is an encryption-based access control
scheme where each data producer has complete knowl-
edge about the access control policy, i.e., who are the
authorized consumers and what the consumers are al-
lowed to access. We first consider the total number of
encryption/decryption operations that both NAC and
CCN-AC must perform to distribute content keys. We
compare the two schemes under two scenarios.

The first scenario includes m producers under the
same namespace and n consumers that are authorized
to access data under the namespace for one day. For
both schemes, we assume that each producer will gen-
erate per-hour content key to encrypt data it produces
within each hour.

In CCN-AC, each producer needs to explicitly en-
crypt the content key for each authorized consumer.
Therefore, the total number of encryption operations
in one day can be calculated as:

Neen—ae = 24dmn (1)

For NAC, a data owner can create a consumption cre-
dential for all the data produced in one day and encrypt
the credential KDK for each authorized consumer. Each
producer only needs to encrypt each content key with
the credential KEK.

Npae = 24m +n (2)

Clearly, the number of encryption operations that NAC
has to perform is much less than CCN-AC, especially
in cases of a large number of producers or consumers.
In the second scenario, we also consider m producers
but 24 consumer groups, and each group has n con-
sumers. Fach group of consumers can access data pro-

duced in a particular hour of a given day. In CCN-AC,
each producer will encrypt a content key for all the au-
thorized consumers:

Neen—ae = 24m + 24mn (3)

For NAC, a data owner needs to create 24 credentials. A
data owner will encrypt each KDK for authorized con-
sumers, while each data producer encrypts the content
key using the corresponding credential KEKs:

Npae = 24m + 24n (4)

The result suggests that NAC scales better than CCN-
AC when there is more than one producers in the sys-
tem. Note that the scalability comes from the one-level
indirection of data owner, which aggregates multiple
consumers into a group, so that data producers only
need to be aware of the group’s KEK rather than the
key of each group member.

Our second evaluation metric is the overhead in key
retrieval. CCN-AC puts all encrypted content keys into
a single data blob, called manifest. A consumer must
retrieve the whole manifest to extract the content key
encrypted for it. When the size of the data blob is larger
than the network’s maximum transmission unit (MTU),
the data blob must be segmented. Assume that MTU
is 1500 bytes and that consumers use RSA keys, one
data segment can carry about 4 encrypted content keys.
Assuming that a content key is granted to n consumers,
the average number of data packets that a consumer
must retrieve is:

Np = [[n/4] - 2] ()
This analysis suggests that a CCN-AC consumer only
needs to retrieve one key packet when there are fewer
than 4 authorized consumers for a content key, but will
need to retrieve multiple key packets when the num-
ber of authorized consumers increases, and the num-
ber increases linearly with the number of authorized
consumers. In contrast, NAC requires a consumer to
retrieve a content key and a key-decrypt key, of which
each is carried by a separate data packet, therefore only
two data packets are needed to retrieve these two keys.

5.2 NAC vs. Attribute-Based Encryption

Before we make a brief comparison between NAC
and Attribute-Based Encryption (ABE) [3], it is help-
ful to understand the working mechanism of ABE (Fig-
ure 15(b)). Unlike traditional encryption techniques,
ABE encrypts data using a set of predefined, descriptive
attributes instead of crypto keys, eliminating the need
for data producers to fetch encryption keys. To enable
such a scheme, ABE requires a key authority that knows
the attributes of all the receivers and can generate a
master key and its corresponding public params. An
ABE receiver (data consumer) must obtain its private
key from this key authority. The key authority derive

a user’s private key from the master key together with
the user’s attributes. Users with the identical attribute
set will obtain the same private key. An ABE sender
(data producer) generates ciphertext using the public
params together a set of attributes. A receiver can de-
crypt a ciphertext only if the receiver’s attributes match
the attributes with which the ciphertext is generated.

(@ obtain Data
from data owner Owner (@ request key-decrypt key

(@ retrieve key-encrypt /
A corresponding to key-encrypt
key, verify it using \ key fr(fm datz? owney ®

[Producer] [Consumer]

@) encrypt data l l (® decrypt data if receiver has

through key- the corresponding key-
encrypt key decrypt key.

(a) Name-Based Access Control

Key
Authority

(@ obtain /4

from key authority

[Sender] [Receiver]

(@ encrypt data using l l (@ decrypt data if receiver has
and

@ request decrypt keys for certain
attributes from key authority

decrypt keys corresponding

a set of attributes to the required attributes

(b) Attribute-Based Encryption

Figure 15: Comparison between attribute-based en-
cryption and name-based access control

Figure 15 shows the working flow of both NAC and
ABE. Next, we will compare ABE based access control
and NAC on four aspects: setup, encryption, decryp-
tion, and revocation.

5.2.1 Setup

Both NAC and ABE requires an authority (the data
owner or key authority) that determine how encryption
and decryption keys match up. In NAC, the encryption
and decryption keys are generated by the data owner.
The data owner names the encryption/decryption keys
by their encryption scope and signs the keys, both pro-
ducers and consumers must learn the owner public key
at the setup phase, so that they can authenticate the
encryption/decryption keys and use them properly.

In ABE, an encryption key can be constructed by any
sender, and the corresponding decryption key is derived
by the key authority. In order to pair up encryption and
decryption keys, a sender must learn the public param-
eters of the key authority at the setup phase, and use
them to generate encryption key correctly. Receivers
must learn certain information (e.g., key authority’s

public key) so that they can securely request decryp-
tion keys from the key authority.

The ABE scheme, however, also requires each sender
to be configured with the knowledge about all the sup-
ported attributes, i.e., which attributes should be used
to encrypt which data. In contrast, NAC does not re-
quire such configuration, but relies on the encryption
naming convention to determine which keys should be
used to encrypt a particular piece of data.

5.2.2 Encryption

NAC and ABE differ most significantly in encryption.
NAC requires producers to periodically retrieve KEKs
from data owners, thus introducing the overhead of key
retrieval. While failure in retrieving a KEK does not
block data production, it may prevent consumers from
accessing the data. In contrast, ABE waives the need of
key retrieval. A sender can directly encrypt data with
a set of descriptive attributes. In order to control the
time granularity of encryption, a sender may add time
as one of encrypting attributes.

The computational overhead of two schemes are de-
termined by different factors. In NAC, a producer en-
crypt data using a content key, which in turn is en-
crypted by one or more key-encrypt keys. In the worst
cases where there is a key-encrypt key at each level of
the key hierarchy, the computational overhead is pro-
portional to the depth of the key hierarchy. However,
in ABE, a producer may need to process each attribute
used in encryption, the computational overhead will lin-
early increase with the number of attributes used in the
encryption.

5.2.3 Decryption

Both NAC and ABE relies on the authority (data
owner or key authority) to generate decryption keys and
distribute the keys to corresponding consumers if they
have authenticated themselves to the authority. In both
scheme, the generated decryption keys must be securely
delivered to the consumers.

NAC creates a decryption key hierarchy and assign
consumers into the different levels in the hierarchy ac-
cording to the consumer’s privileges. ABE expresses
a consumer’s privilege in terms of the consumer’s at-
tributes and crafts decryption keys according to the
consumer’s attributes. While ABE waives the need of
maintaining the decryption key hierarchy, the process of
key generating and decryption is non-trivial, and may
introduce significant computation overhead.

5.2.4 Revocation

Both NAC and ABE handle revocation through re-
stricting the livetime of encryption keys. In both schemes,
consumers have to periodically “renew” the correspond-
ing decryption keys. In NAC, data owner explicitly

specifies the lifetime of KEKs in the key name. As a
result, the data owner controls the temporal granular-
ity of keys. In contrast, senders in ABE specify the
validity period of the encryption key as an attribute in-
volved in the encryption. When the validity period of a
receiver’s decryption key does not satisfy the required
attributes, the receiver must request a new decryption
key with appropriate validity period from the key au-
thority. Therefore, the lifetime of encryption keys is
usually determined by the senders in ABE.

6. DISCUSSION

6.1 Consumption Credential Implementation

Besides public/private key, there are several other de-
sign options of implementing key-encrypt/decrypt key
in consumption credential. The first one is symmetric
key. In this case, a data owner not only needs to en-
crypt the symmetric key for each authorized consumer,
but also needs to encrypt the symmetric key for each re-
lated producers. Therefore, this design introduces more
encryption overhead.

Another option is attribute-based encryption. In this
case, a data owner does not need to publish key-encrypt
key for data producers. Instead, a data producer can
encrypt content key with well-known attributes. This
option requires delicate design of attribute set. We plan
to compare the complexity of attribute-based encryp-
tion against NAC, and investigate the feasibility of im-
plementing consumer credential using attribute-based
encryption.

6.2 Emergent Revocation

A data owner needs to pre-specify the effective time
interval of each consumption credential, but it is pos-
sible that the data owner may want to revoke a con-
sumer’s access before the end of the time interval. A
data owner can publish a new consumption credential
with a new starting timestamp as an indication of revok-
ing the previous KEK/KDK, so that producers will use
the new KEK/KDK to encrypt content key. However,
this solution requires producers to pro-actively retrieve
KEK all the time. Another solution is to specify short-
lived consumption credentials. This solution alleviates
the burden of data producers, but it requires data own-
ers to publish credential more frequently.

6.3 Forward Secrecy

Forward secrecy requires past communication to be
free from compromise of a long lived key. Since our
design directly encrypt KDKs using a consumer’s public
key, compromise of a consumer’s private key may allow
an attacker to access all the data that the consumer has
accessed before.

10

A possible solution is to encrypt KDKs using an eph-
emeral key which is negotiated through a plain-text
key exchange protocol, such as Diffie-Hellman key ex-
change [1]. Since the ephemeral key will be thrown
away once the KDK is decrypted, compromise of a con-
sumer’s private key cannot help an attacker to recover
ephemeral keys.

An online key distribution service, however, must ex-
ist to run the key exchange protocol and negotiate eph-
emeral keys with consumers. In this paper, we assume
the only always-online entity is an untrusted data stor-
age. For applications or systems that requires forward
secrecy, we may relax the restriction on the online entity
and enable key exchange service on it.

6.4 Content-Based v.s.
cess Control

Perimeter-Based Ac-

Both models have their own advantages and disad-
vantages. Content-based access model eliminates the
trust over data storage and middle boxes. However, it
requires additional mechanism to control the content
availability. As a results, revocation in content-based
access control cannot prevent a consumer from reading
data whose read access was granted to the consumer
previously, as long as both the data and keys are avail-
able. In contrast, perimeter-based access model directly
controls data availability, but it requires the enforce-
ment of access control policy in every device on the
perimeter.

6.5 Key-Encrypt Key Distribution

In Section 4, we explained how to leverage naming
conventions to facilitate the key-encrypt key distribu-
tion when the additional restriction has only one di-
mension (e.g., time). However, when there are more
than one dimension of additional restriction (e.g., geo-
fencing), data producers need a name-independent mech-
anism to retrieve key-encrypt keys (KEKs).

We consider data synchronization as a promising ap-
proach to distribute KEKs with various additional re-
quirement. For example, a data owner can create sev-
eral data sets (one for a particular consumption creden-
tial prefix) and publish new KEKSs in the corresponding
data set. Producers can synchronize the KEK set that
is related to their interest, so that they can get notifi-
cation at first time when a new KEK is published.

6.6 Automated Consumer Authorization

In this paper, we assume that data owner manually
authorizes each consumer. It is also possible to auto-
mate the consumer authorization. For example, a data
owner may accept read requests from consumers. Af-
ter a consumer’s key is authenticated, the consumer’s
public key can be automatically used to deliver the key-
decrypt key (KDKs) for the authorized data set. Dif-

ferent data owner may apply different trust model to
authenticate consumers. Trust schema [6] can help data
owner to customize their trust model and automate con-
sumer authorization.

6.7 User Key Management

The NAC design requires participants to have their
own public/private key pairs. How to educate users
to correctly manage their keys remains a challenging
security problem. In NDN, we assume key management
has become a normal practice for users.

7. RELATED WORK

There are several existing works on enforcing access
control over information-centric network. Ghali [2] pro-
posed an interest-based access control solution. How-
ever, the solution requires every router in the network to
enforce the data producer’s access control policy. Our
work made a weaker assumption that network is not
trustworthy, and we aimed at minimize dependency on
intermediate devices to enforce access control.

Kurihara [4] proposed an encryption-based access con-
trol framework. The framework enforce access control
by encrypting content directly. However, the frame-
work assumes that each producer has full knowledge
about the access control policy. In contrast, our work
consider a more general scenario in which multiple pro-
ducers may collectively produce content under the same
namespace. In this scenario, it may be infeasible to no-
tify each producer of any change in the access control
policy, e.g., adding a new consumer or removing an ex-
isting one. Our work introduces one-level indirection by
explicitly dividing the information about access control
policy into two parts, thus having better scalability.

Misra [5] proposed another encryption-based access
control scheme which used broadcast encryption to achieve
large scale content delivery.

8. CONCLUSION

Content-based access control model provides a new
perspective for end-to-end confidentiality. By requiring
content encryption at the time of production, the model
minimize the dependency on any intermediate device for
access control. Therefore, the model can achieve true
end-to-end confidentiality at the application level, thus
can be naturally fit into the data-centric architecture,
such as NDN.

The hierarchical namespace of NDN can convey rich
contextual information about access control. Our de-
sign reveals that by defining correct naming conventions
for encryption/decryption keys and signing/verification
keys, one can achieve effective access control at fine
granularity, even with simple public key cryptography.
We also demonstrate in this report that a well-designed

naming convention can convey access control policy clearly,

11

thus significantly reducing the number of crypto oper-
ations and facilitate encryption key distribution in cer-
tain scenarios.

Name-based access control is our first step to achieve
content-based access control. It introduced several in-
teresting open questions as we discussed above. We will
address these questions in the future to provide a usable
solution for content-based access control.

9. REFERENCES

[1] W. Diffie and M. E. Hellman. New directions in
cryptography. Information Theory, IEEE
Transactions on, 1976.

[2] C. Ghali, M. A. Schlosberg, G. Tsudik, and C. A.
Wood. Interest-based access control for content
centric networks. In Proceedings of the 2nd
International Conference on Information-Centric
Networking. ACM, 2015.

[3] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access
control of encrypted data. In ACM CCS, 2006.

[4] J. Kurihara, C. Wood, and E. Uzun. An
encryption-based access control framework for
content-centric networking. In IFIP Networking
Conference, 2015.

[5] S. Misra, R. Tourani, and N. E. Majd. Secure
content delivery in information-centric networks:
design, implementation, and analyses. In
Proceedings of the 3rd ACM SIGCOMM workshop
on Information-centric networking. ACM, 2013.

[6] Y. Yu, A. Afanasyev, D. Clark, ke claffy,

V. Jacobson, and L. Zhang. Schematizing trust in
Named Data Networking. In Proceedings of the 2nd
International Conference on Information-Centric

Networking. ACM, September 2015.

