
NDN, Technical Report NDN-0040, 2016. http://named-data.net/techreports.html

Revision 1: May 24, 2016

NDN DeLorean: An Authentication System for Data
Archives in Named Data Networking

Yingdi Yu
UCLA

yingdi@cs.ucla.edu

Alexander Afanasyev
UCLA

aa@cs.ucla.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
Named Data Networking (NDN) enables data-centric secu-
rity in network communication by mandating digital signa-
tures on network-layer data packets. This change introduces
a new issue with data authentication: the lifetime of data
can be longer than the lifetime of the signatures which is
limited by the validity periods of the corresponding certifi-
cates. In this paper, we introduce a new authentication sys-
tem for archived NDN data, NDN DeLorean, which uses a
look back validation model that authenticates data consid-
ering the time point when the data was produced instead of
the time it is being retrieved. As long as the archived data
received a valid signature at the time of its production, it can
stay valid perpetually. We designed NDN DeLorean as a
publicly audited timestamp service that maintains a histori-
cal evidence of the data’s validity. NDN DeLorean creates
permanent existence proofs of data (and certificates) upon
request at a time when the original data signatures are valid.
With both data and its signing key certificates being time
stamped, DeLorean frees data producers from necessity to
periodically re-sign archived data in order to keep it valid.

1. INTRODUCTION
Named Data Networking (NDN) changes the network

communication model from “delivering packets to an
end host” to “retrieving (immutable) data by name,”
enabling and integrating many of the long sought-after
functions into a unified network delivery framework, in-
cluding efficient data distribution via multicast, delay-
tolerant communication, ad hoc communication, and
many more. This change in communication semantics
relies on a data-centric security model, which is in part
realized through digital signatures on every network-
level data packet. Regardless from where a data packet
is retrieved, it can always be authenticated directly,
i.e., without trusting either the data storage or delivery
channels.

Unlike physical signatures, digital signatures may not
be considered trustworthy over prolonged time periods:
given enough computation power and time, it is possi-
ble to reconstruct the corresponding private key and is-

sue impersonated signatures.1 In addition, each created
signature “weakens” the privacy of the private key [4],
and there is also a chance that the keys get acciden-
tally or maliciously leaked to adversaries. As a result,
the current practices recommend the use of relatively
short-lived signatures/certificates (from serval months
to couple years) [2]. This limited lifetime span works
well for channel-based security model since communica-
tion channels have a limited duration, but not so well
for data-centric security model of NDN. The lifetime
of an NDN data packet can outlive the lifetime of its
signature, especially in cases of historical data archives.

In this paper, we propose an authentication system
for NDN data archives, dubbed NDN DeLorean, which
uses a look back data authentication model: data au-
thentication is performed with the clock rolled back to
the time of the data creation. In order to allow con-
sumers to securely rollback the reference time for data
authentication, we designed a publicly auditable times-
tamp service that issues proofs of data creation times
by logging the fingerprints of archived data in the form
of Merkle tree (Section 5). Given a data packet, the
certificates that authenticate its signature (certification
chain), and the proof of the creation time of data and
certificates, one can always authenticate the data, re-
gardless of the signature expiration and even the fact
that the private key may have become known to every-
body.

Our main contributions in this work include a) the
look back validation model as the solution to long-lived
data maintenance in NDN (Section 4), and b) the de-
sign of the first publicly auditable timestamp service
over NDN (Section 5). They represent a significant step
toward effective authentication of long-lived data. We
also identified a number of remaining issues (Section
3) to be addressed in our future work to complete the
construction of a fully functional validation system for
long-lived data.

2. BACKGROUND
1Luckily, with the current computation technology and rea-
sonably strong keys, it would take many years to do so [1].

1

Named Data Networking (NDN) is a proposed net-
working architecture that uses data fetching as a com-
munication primitive. Producers secure data chunks as
soon as they are created, assigning each a unique and hi-
erarchically structured name. Consumers can then use
names to fetch specific data chunks and authenticate
them.

NDN defines two types of network packets to sup-
port the data-centric communication: interest packets
as request to retrieve desired data, and data packets
that carry the actual data. Data consumers send inter-
ests and NDN routers forward interests based on the
names carried in the interests toward potential data
sources, setting up a state of “pending interests” along
the way. Upon receiving an interest, a data producer
returns the corresponding data packet which may al-
ready exist or is created on demand. This data packet
is returned back to the consumer or consumers follow-
ing the breadcrumb path of pending interest states. Be-
cause each data packet is immutable and identified by
a unique name, and can be authenticated on its own,
NDN routers can cache data packets to satisfy subse-
quent interests for the same data.

For illustrative purposes, in the rest of the paper we
use an electronic version of “USA Today” newspaper as
an example. We assume that USA Today publishes all
its articles under a namespace with the name pattern
“/UsaToday/[Date]/[Category]/[ArticleID]”. For example,
a data packet with the headline story “Youth Jailed”
from October 22, 2015 would be named “/UsaToday/2015
/10/22/headline/YouthJailed”.2 All the data packets of an
articles are signed by the keys of its author, who should
have a unique name under the namespace “/UsaToday
/journalist”. For example, Compu Fax, the author of
“Youth Jailed” article,3 would sign the above article
with the key “/UsaToday/journalist/CompuFax/10/KEY”.

Note that NDN eliminates the requirement that data
producers (USA Today) and consumers (its readers)
have to be online at the same time to communnicate.
A data producer can move its produced data packets
to a third party storage to meet future requests for the
data, or the data can be carried by some devices to meet
future consumers as in a DTN scenario.

2.1 Data-Centric Authenticity
Since the data-centric communication model enables

consumers’ interests “to pick data from anywhere possi-
ble”, traditional security solutions, e.g., TLS [8], IPSec [10],
are no longer applicable as they are designed to create
secure channels between two fixed end nodes. NDN em-

2A large article may need to be split into multiple data
packets, each getting a unique name with this prefix and
a suffix that represents the segment number, e.g., “/ s=1”,
“/ s=2”, etc.
3Compu Fax is indeed a program that can write automated
stories for USA Today in “Back to the Future” film.

Name: /UsaToday/journalist/
CompuFax/10/KEY/v_3
Content: ...
Signature:

Data packet (key)

Name: /UsaToday/journalist/
78/KEY/v_2
Content: ...
Signature KeyLocator

Data packet (key)

Trust Anchor

/UsaToday/15/KEY

Name: /UsaToday/2015/10/22/
headline/YouthJailed/v_1
Content: ...
Signature:

Data packet (target)

KeyLocator

KeyLocator

Figure 1: An example of certification chain con-
sists of target data, intermediate keys, and trust
anchor.

braces a data-centric security which ensures integrity,
provenance, and secrecy of data itself, instead of rely-
ing on the delivery channel security.

NDN data producers attach digital signatures to data
packets and consumers who have the producer’s public
key can directly authenticate such data, not worrying
about from where this data came. If consumers do not
have the producer’s public key at hand, they can ap-
ply trust schema [19] to recursively retrieve the signing
keys (certification chain) following the information in
the KeyLocator field of data packets, validate the chain
according the trust model defined by the schema (i.e.,
that names of data and keys are as expected and chain
terminates in a pre-trusted key—trust anchor), and ver-
ify validity of all signatures in the chain. Figure 1 shows
an example of certification chain for our USA Today ex-
ample. Note that keys are just another type of general
NDN data, and given the data packet carrying a pub-
lic key binds the key to its name through the packet’s
signature, it is effectively a public key certificate.

All digital signatures have a limited lifetime. NDN
data packet signatures carry explicit validity period fields,
which define periods when the signatures are considered
valid. Moreover, the effective validity period of a sig-
nature can be shorter than its defined validity period.
For a USA Today article in our example, the effective
validity period will be defined as the intersection of the
validity periods of all the keys along the certification
chain. Therefore, to be able to verify the validity of
data packets over prolonged time periods, one has to
either set the validity periods of all signature to unre-
alistic values, or keep refreshing signatures of the data
and keys along the certification chain, or use NDN De-
Lorian framework introduced in this paper to be able
to look back in time to check the packets.

2.2 Data Immutability
All data packets in an NDN network are immutable.

Any modification to the content of a data packet leads
to a new version of the data packet, which must have
its own unique name. A common naming convention is

2

to embed an additional name component that specifies
the data’s version number, e.g., a modified or re-signed
version of the USA Today article, would be named as
“/UsaToday/2015/10/22/headline/YouthJailed/ v=2”.

3. THREAT MODEL AND ASSUMPTIONS
In this paper we focus on long-lived data, i.e., the

data packets or data collections that need to be pre-
served for a long period of time. Typical examples of
such data include newspaper articles, library archives,
historical records, experimental results, etc. Although
DeLorean could be used in all scenarios, it may be con-
sidered prohibitive expensive in terms of processing and
storage overheads if one were to use DeLorean for un-
bounded volumes of data. The key security issue we ad-
dress in this paper is to ensure that the long-lived data
can stay authenticatable, potentially many years after
the data producer ceased to exist. Note our focus is on
the authentication aspect of the data; ensuring long-
term secrecy of confidential data is outside the scope of
the current work.

We assume that the cryptographic keys in the the
corresponding trust chains of long-lived data have lim-
ited validity periods in order to restrict key exposure
and potential harm of the key compromise. We also
assume that the consumers know which trust schema
should be used to authenticate data and that the trust
anchors do not change over time. We plan to address
these assumptions in the next milestone of our research.

In order to authenticate the data with the above as-
sumptions, NDN DeLorean implements a notary ser-
vice that “certifies” the existence of data at particular
points of time. To ensure that this third party ser-
vice behaves correctly, there must be continuous audit
of its consistency by either or both dedicated parties
and volunteers (auditors). Potential misbehaviors of
the notary service include timestamp denial, repudia-
tion, reordering, and injection: the timestamp notary
should not be able to deny access to the previously is-
sued proofs, pretend that the previously issued proof is
invalid, alter timestamp of the existing proof, or inject
a new proof for a past timestamp. Any such misbehav-
ior can be noticed by the public auditors, who can then
take actions to remediate the issue: request immediate
correction of the timestamp service behavior or switch
to alternative timestamp service provider. The design
described in this paper assumes the existence of a sin-
gle timestamp service; we briefly discuss how multiple
alternative timestamp services can co-exist in Section 7.

In this paper we assume that the key used to sign
data is valid during timestamp certification and is not
leaked during its validity period, i.e., there is no pro-
ducer impersonation while the trust chains are within
their validity. For example, if a USA Today article is
timestamped at time t, we assume this article has a

…

Data Packets for
the Volume

Per-Timestamp
Volumes

2015-10-22
10:40am

2015-10-22
10:50am

2016-05-10
3:30pm

…

Figure 2: DeLorean’s data chronicle

valid signature at the time, and only USA Today can
create the signature during the validity period of the
corresponding trust chain. As part of our future work
we plan to extend the design to incorporate revocation
of the archived data to address potential producer im-
personation problem during validity periods of the keys.

However, an attacker may launch impersonation at-
tack after the timestamp creation. In this case, an at-
tacker may pre-produce data signed by an uncertified
key and record the data in DeLorean chronicle (de-
scribed below). The attacker may recover the key of
the victim’s certificate issuer after certain amount of
time (through key leaking or brute force computation).
At this point, the attacker can create a certificate for its
previously uncertified key and claim that the data was
valid when it was produced. Our counter measure to
this is to timestamp both data and their signing keys,
and ask consumers to verify the existence of both data
and keys. In this way, consumers can reject the falsified
certificate because it cannot proof its existence before
the data production.

4. OVERVIEW
In this section, we present a high-level overview of

DeLorean, a verifiable and publicly audited timestamp
service, as the solution to the threats described above.

DeLorean is an always-on service that publishes a
data “chronicle” (Figure 2). The chronicle consists of
a sequence of volumes, each containing fingerprints of
the witnessed data packets, such as specific USA Today
articles, within a fixed timeslot, e.g., 10 minutes. The
existence of a data packet (its fingerprint) in a particu-
lar volume is a timestamp proof that the data packet has
existed before the end of the corresponding time slot.
Each volume is finalized at the end of each time slot and
published as a set of data packets, given the volume’s
information may not fit into a single data packet. After
the volume is finalized, it cannot be changed without
invalidating consistency with any future volumes.

At any time, a data producer (article’s author) or an
archive service on the producer’s behalf (USA Today

3

DeLorean

Producer
(USA Today publisher)

Consumer
(USA Today readers)

P.3. Publish data
& proof

P.
1.

 R
eq

ue
st

pr

oo
f

C.1. Retrieve data
& proofs

Chronicle
Storage

D. Publish
chronicle volumes

Auditor

A. Consistency
checking

P.2
. R

etrie
ve proof

Data
Storage

C.2. Verify proof

Figure 3: DeLorean workflow

publisher) can request a timestamp proof for data (ar-
ticles) from DeLorean (Flow P.1 in Figure 3), supplying
a fingerpint of the archived data in form of a hash digest
of an individual data packet or a digest of the manifest
that represents a data collection. The response to this
request is a name of the chronicle volume that will be
published by DeLorean at the end of the current cycle
(Flow D) and the index of the fingerprint in the volume.
After waiting until the volume is ready (on average a 5
minute wait in our example), the producer can retrieve
the volume to verify whether DeLorean has included the
data fingerprint in the volume (Flow P.2). In the end,
the producer can publish the timestamp proof, which
includes the full name of the volume and the index of
data fingerprint, alongside the data (Flows P.3).

To verify data independently of its signature validity,
consumers need to “look back” to the timepoint when
data was produced (or time stamped). A consumer first
obtains the corresponding timestamp proof, which can
be stored alongside the data (Flow C.1), and verifies
the data existence by retrieving several additional De-
Lorean volumes (see Section 5). Similarly, the consumer
verifies the existence of the data’s signing key certifi-
cates.4 With all certificates proving their existences,
the consumer can verify the data signature as if it was
at the time of production or time stampping.

In order to ensure the correct and truthful opera-
tions of DeLorean, a set of third-party auditors con-
tinuously check the consistency of the chronicle (Flow
A), i.e., checking that DeLorean has not modified the
previously published volumes. If auditors detect that
DeLorean has modified the chronicle, the users of the
service (auditors, data producers, and consumers) will
take immediate actions to either fix the issue or aban-
don the specific instance of DeLorean service. In order
to guarantee consistency, each DeLorean volume has to

4Certificate issuers request timestamp proofs for the issued
certificates. Alternatively, a data producer can request and
publish the timestamp proofs of the data and the corre-
sponding certificates as a bundle, similar to our previous
certificate bundle proposal [18].

be retrieved at least by one auditor around the time it
is published. The more auditors are involved in the pro-
cess, the less frequently each individual auditor needs
to perform consistency checking. Note that although
consumer and producer roles are separated from the au-
ditor role in Figure 3, they can be (and, from security
perspective, should be) combined.

4.1 Design Objectives
The first DeLorean’s design objective is to minimize

the storage and verification overheads, as overwhelm-
ing overheads would prohibit any use of system. For
example, a näıve solution to consistence verification is
to ask each auditor to maintain a local copy of the whole
chronicle by retrieving volumes at the end of each time
slot. Such solution not only requires impractical stor-
age at the auditor side, but also requires each auditor
to timely retrieve each volume. On the other hand, if
consistency verification cost is trivial, it can encourage
more users to audit DeLorean, improving fidelity and
overall usefulness of the system.

The second design objective is to prevent DeLorean
from knowing identities of auditors and knowing if au-
dit requests are coming from the same auditor(s) or not.
If DeLorean could do that, it would be able to present
one consistent chronicle to a group of auditors while
presenting a completely different consistent chronicle to
another. In this case, none of auditors in the two groups
can detect any modification, while the timestamp ser-
vice would be obviously inconsistent.

The third design objective is to minimize the mainte-
nance overhead. Given the number of volumes increases
over the time, the amount of data stored in the volume
should be sufficiently concise yet faithfully record all
evidence in the corresponding time periods. Moreover,
consistence and existence verifications involve continu-
ous retrieval of the published volumes, desiring as low
overhead as possible.

For the these design objectives, we will present the
solutions in detail in Section 5. However, there are sev-
eral design objectives that we have not addressed yet.
For example, how to prevent a single party from monop-
olizing the recording of chronicle; how to increase the
robustness of DeLorean; and how to reboot DeLorean in
case of inevitable failures. We will discuss the potential
solutions to these objectives in Section 7.

5. DELOREAN
In this section, we present the design details of De-

Lorean. At the end of every time slot, DeLorean pub-
lishes a volume in the chronicle in a form of one or
multiple data packets, to archive data packets recorded
during the time slot. For the sake of simplicity, we first
assume that DeLorean publishes a volume as a single
data packet and explain how to expand the capacity of

4

a single volume with multiple data packets in In Sec-
tion 5.3.

The volumes per se however are also archive data. A
simple solution to ensure authenticity of old volumes
would be inclusion of crypto hash digest of the previ-
ous volume in a new volume, effectively constructing a
hash chain of chronicle volumes. In this case, to authen-
ticate any historical volume, one needs to authenticate
the latest volume which should have a valid signature,
and then verify the authenticity of previous volumes by
checking their hashes one by one.

This hash chain based chronicle however results in
large overhead, as authentication time would require
O(n) volume retrievals, where n is the number of time
slots between the current time slot and the time slot
of the volume under verification. For example, with
10-minute time slot, one has to retrieve a prohibitive
amount of records (about a million) to authenticate a
volume 20 years ago.

Inspired by Certificate Transparency [11], we design
DeLorean chronicle as a Merkle tree [13] to minimize
the authentication overhead. As we explain in detail in
Section 5.1, the state of the chronicle is represented as
a Merkle tree with volumes represented as leaves of the
tree, where the root node effectively stores a hash of
all volumes published so far. With this structure, the
verification overhead of an old volume can be reduced
to a much smaller number of operations O(log n). For
example, the same 20 year old record can be authenti-
cated by DeLorean with the binary Merkle tree using
just several dozens of retrievals, which can be even fur-
ther reduced by selecting a more optimal tree structure.

Note that the chronicle volume authentication by it-
self does not provide guarantee of the DeLorean chron-
icle consistency, i.e., DeLorean can still arbitrarily in-
ject data into past volumes and then re-create subse-
quent volumes. To provide the guarantee, a set of au-
ditors (dedicated entities, consumers, and producers) is
required to periodically retrieve and authenticate the
current volume (current state) and check consistency
with previously fetched volumes (past state). With the
trivial verification overhead, made possible by the use of
Merkle trees, the consistency check between the current
and any previously verified state is a trivial task (Sec-
tion 5.2), which can be performed by a large number of
auditors. With chronicle under public audit, consumers
can simply assume all the historical volumes are consis-
tently covered by the latest chronile state.

5.1 Chronicle Construction
Next, we describe how to construct a chronicle using

Merkle tree, and how to efficiently verify the existence
of a volume.

Merkle tree is a k-ary tree, where the value of each
node is the hash of the concatenation of the value of its

children. Similar to hash chains in which the last node
fixes all the previous nodes, root node of the Merkle tree
fixes all the leaves in the tree. Any change of any leaf
leads to the change of the root hash. Figure 4a shows
a binary Merkle tree with three leaves.

x0 x1 x2

n1,0

x3

n1,1

n2,0

x4

n1,2

n2,1

n3,0

x0 x1 x2

n1,0 n1,1

x0 x1 x2

n1,0 n1,1

n2,0

(a) (b)

(c)

n2,0

x3

Figure 4: Merkle tree examples: (a) a Merkle
tree with three leaves; (b) the evidence proof
for leaf x1 in a four-leaf Merkle tree; (c) the
consistence proof between a tree with two leaves
(x0 and x1) and a tree with five leaves (x1 to x4).

To construct a chronicle using a Merkle tree, we align
volumes as leaf nodes in a Merkle tree, adding a new
leaf to the tree whenever a new volume is published.
This addition leads to change of hash values in all of
the ancestors up to the root of the tree. If the tree
is full, it can grow one level up to accomodate more
leaves (or volumes). For example, the three-level tree
in Figure 4c grew from the two-level tree in Figure 4a
and can cover at most 8 leaves.

Whenever a new volume is added, in addition to up-
dating the Merkle tree, DeLorean also signs the root
hash and publishes it as a separate data packet, de-
scribed in the next section. The signature of this data
packet can be used to transitively authenticate all pre-
viously published volumes.

In order to verify existence of a particular volume
in the chronicle (e.g., that the volume x′1 exists), one
needs to reconstruct a part of the tree along the path
from the corresponding leaf node to the current root
node of the tree (x′1 → n′1,0 = hash(x0, x

′
1) → n′2,0 =

hash(n′1,0, n1,1) in Figure 4b). The volume x1 can be
proved to exist in the chronicle if the reconstructed
value of root node (n′2,0) matches (n2,0), the one recorded
in the tree. Therefore, if we use a k-ary Merkle tree that
has n leaves, a single verification only requires O(logk n)
hash computations in total.

5

To verify consistency of the Merkle tree evolution,
one needs to know the root digest represented some old
state and the most recent root digest. For example, to
verify consistency between states x1 and x4 in Figure 4c,
one needs to know past root digest n1,0 and the current
digest n3,0. Similar to the existence verification, one
can reconstruct nodes along the path from old to new
root: n′2,0 = hash(n1,0, n1,1) → n′3,0 = hash(n′2,0, n2,1).
The tree evolution can be declared consistent if all re-
constructed values match the one stored in the tree.

5.1.1 Proof Publishing
To verify existence of the volume in DeLorean re-

quires knowledge of all sibling nodes along the path to
the root (nodes circled by dashed line in Figure 4b). In
order to allow it, DeLorean publishes each node of the
Merkle tree as an individual data packet, including the
hash values of all its children (Figure 6). Note that with
a 1500-byte MTU and SHA-256 hash algorithm being, a
single data packet can safely carry 32 SHA-256 hashes
(1024 bytes in total), leaving enough space for other
fields in the data packet. For that reason, we chose

Level

3

2

1

0

2048, 2049

1

... ...

...

Index: 0, 1, , 31,

......

......

n3,0

n2,0 n2,1 n2,2

n1,0
n1,64

Figure 5: 32-ary Merkle tree example

32-ary Merkle tree to construct DeLorean’s chronicle,
exemplified in Figure 5. In this case, a chronicle with
volumes for each 10 minute time interval will require
only four levels of the Merkle tree to record 20 years
worth of state.

Note that retrieving nodes individually leverages ef-
ficient data distribution of NDN: requests from mul-
tiple auditors can be efficiently joined or served from
in-network caches. Because nodes at higher layers are
involved in more verifications, they are more frequently
requested and have a high chance of being universally
cached in the network.

5.1.2 Node Naming Convention
For the Merkle tree nodes we defined the naming con-

vention as shown in Figure 6a, which consist of five
parts. The first two parts specifies the tree prefix and
the hash algorithm used to construct the tree.

The third part of the name is a component indicat-

hash
algorithm

node
location

node
value

tree
prefix

node
state

Name: /DeLorean/sha256/complete/2/1/5b3dc9..
Content:

Signature: ...

a2ed8b.. 7ac9dd.. 757be1.. 1b595f..
32 children hashes

...

(a)

(b)

/DeLorean/sha256/complete/1/32/a2ed8b..
/DeLorean/sha256/complete/1/33/7ac9dd..
/DeLorean/sha256/complete/1/34/757be1..

/DeLorean/sha256/complete/1/63/1b595f..
...

/ DeLorean / sha256 / complete / 2 / 1 / 5b3dc9…
/ DeLorean / sha256 / incomplete=2050 / 1 / 64/ 3e945d…

Figure 6: (a) Naming convention of 32-ary
chronicle tree node; (b) An example of 32-ary
chronicle tree node data.

ing a state of the node: “complete” when a node has
the full set of descendents (e.g., white nodes n1,0, . . . ,
n1,63, n2,0, and n2,1 in Figure 5), or “incomplete” when
one more descendents do not yet exist (gray nodes in
Figure 5). The hash values of the incomplete nodes
are keep changing until all leaves added to the corre-
sponding subtree, after which the node becomes com-
plete with the perpetually fixed hash value. Given a
node can have as many incomplete states as the half
of the leaf nodes it covers, to disambiguate the name
for different states, we included the sequence number
of the next leaf node that can be added to subtree.
In Figure 5 example, all incomplete nodes would have
“/incomplete-2050” as a node state component (e.g., the
first name in Figure 6a).

Note that all nodes in all states are represented as
immutable data packets, and can be easily replicated in
the network. At the same time, only the latest state of
the node is needed to perform the volume existence or
chronicle consistency verifications: the content of the
data packet that represents a new state includes all in-
formation that existed in previous data packets. There-
fore, as soon as the new state of the node is created, the
old state data can be safely removed from the system.

The fourth part of a node name includes two parts:
the level of the node and the index of the node at the
specified level. Given the total number of nodes in the
Merkle tree n, the sequence number s of the leaf node,
and the level l (0 ≤ l ≤ dlog32 ne) of the intermediate
node, its index in the level can be calculated as il =
bs × 32−lc. Using these simple conversions, consumers
and auditors can request intermediate nodes for any
desired level, e.g., requesting them simultaneously.

6

The last part is the hash value of the node, which is
also the digest of data content. During existence and
consistency verifications, consumers and auditors can
explicitly request a node using the expected hash digest
value, calculated from the pre-verified parts of the tree.

5.2 Public Audit
A chronicle, once being detected as inconsistent (i.e.,

a previous volume being modified), immediately loses
its trustworthiness. As we explained before, by build-
ing DeLorean chronicle over Merkle tree, the consistence
verification overhead is on the order of O(log n). With
this trivial overhead, a large number of auditors can oc-
casionally and effortlessly check the consistence of the
DeLorean chronicle. The collective behavior of the au-
ditors can ensure that at each time slot the consistence
of DeLorean chronicle is checked by at least one audi-
tor. Therefore, it is difficult for the chronicle publisher
to modify previous volumes without being caught, thus
effectively deterring the chronicle publisher from modi-
fying the history. For example, it would be impossible
for DeLorean to modify the record for October 22, 2015
issue of USA Today or deny its existence without ac-
tually using the time machine and altering the reality.
Moreover, since the producers and consumers of data
recorded by chronicle rely on it to provide the existence
proofs, they have strong motivation to audit the consis-
tence of the chronicle.

5.2.1 Consistence Verification
To audit the consistence of the Merkle tree based

chronicle, auditors occasionally retrieve the root hash
of the tree and check whether it “covers” a root hash
that the auditor has retrieved before. Once an auditor
verifies the consistence between the two hashes, the au-
ditor can keep the new root hash and discard the old
one. Therefore, the auditor’s storage overhead is con-
stant.

Similar to existence verification, the consistence veri-
fication is to re-compute the new root hash from the old
one, other nodes retrieving nodes along the way. With
all the nodes of the chronicle tree being published, an
auditor can retrieve the nodes that are necessary for
consistence verification in at most O(log n) number of
iterations.

Incomplete Node Issue.
Note that the previously recorded root hash is most

cases would be represented as an incomplete node, whose
status will change to complete or a different incomplete
state. For example, an incomplete node n2,0 in Fig-
ure 4a captures state of volumes x0, x1, x2, while the
same node becomes complete when capturing state for
volumes x0, . . . , x3 in Figure 4b. This fact, while com-
plicating the process, does not impact the ability to

perform the tree reconstruction. The auditor will need
to retrieve the latest state of the node and check that it
is a superset of the old state. The exact current state of
any node in the Merkle tree is determined by the num-
ber of leaves. For a 32-ary tree with the largest volume
sequence number s, for a node at the level l,

node state is

{
“complete”, if s ≥ 32l

“incomplete-(s+1)”, otherwise

Multiple History Issue.
The only way that the chronicle publisher can mod-

ify the history without being detected is to present a
different chronicle consistently to the same group of au-
ditors, which is usually called a multiple history issue.
The stateful data retrieval and in-network caching of
NDN architecture, however, intrinsically eliminate the
possibility of creating multiple histories that target dif-
ferent auditors.

Interests that request node data do not reveal any
information about the requesters, or in this case audi-
tors. Therefore, it is impossible for DeLorean to craft
the auditor-specific responses.

In addition to that, DeLorean will not receive all in-
terests for node data, as they can be aggregated (when
multiple auditors request state at the same time) or
served from in-network caches. The higher-level nodes
of the DeLorean chronicle can be used to verify many
different individual states, Therefore, we expect that
the data packets that correspond to these states will be
universally cached throughout the NDN network, fur-
ther reducing any possibility of DeLorean to crafting
individual responses.

5.3 Volume Construction
In the previous description we focused on verifica-

tion of the state of the chronicle volumes. Consumers,
however, would want also to verify the existence of a
data packet in the volume, which represent a collection
of data packet fingerpints submitted within the corre-
sponding time interval. In the simplest case, the volume
is represented as a single data packet which records all
submitted fingerprints for the corresponding time pe-
riod. However, a volume may need to record a large
number of data packet fingerprints, exceeding capacity
of a single data packet. Therefore, a volume needs to
be constructed as a set of data packets, but in a way to
minimize overhead for data existence verification.

To accommodate a large number of data fingerprints
and yet provide efficient verification, we construct the
volumes with the help of Merkle trees. Leaves of the
volume-specific Merkle tree represet hashes of data (the
recorded fingerprints), and root hash of the tree “fixes”
all fingerprints in the volume (Figure 7). Recoding the
volume tree’s root hash as a leaf node of the chronicle’s

7

Merkle tree, effectively “fixes” this volume in time.

chronicle tree

volume trees

t0 t1 t2 t3 t4

data hashes in
volume 1

data hashes in
volume 4

...

Figure 7: Two-level Merkle tree hierarchy of the
timestamp service.

Given a volume tree, a consumer can quickly locate
a record according to the local record index. Based on
the local index, a consumer can compute a verification
path from the record back to the volume tree root and
verify the existence of the record in a volume, same way
volume existence verification described in Section 5.1.

In summary, to assure that a specific data packet ex-
isted at a specific time point, the consumer needs to
have: (1) volume hash, (2) volume index, and (3) local
record index within a data volume. The first two are
used to reconstruct the relevant portions of the chron-
icle tree; and the last one along the fingerprint of the
data (obtained from data directly) can reconstruct and
verify consistency of the volume tree.

5.4 Hash Rollover
For the sake of simplicity, we used only one hash algo-

rithm (SHA-256) in the description above. However, no
hash algorithm can be secure forever. Once a hash algo-
rithm is broken (though not very often), all the records
in the chronicle are no longer secure.

A proper hash algorithm rollover is the key for De-
Lorean to prevent hash breaking. More specifically, be-
fore the hash algorithm in use is broken,5 DeLorean can
publish another chronicle tree with the same volume se-
quence but using a stronger hash algorithm. Auditors
can verify the new chronicle tree against the existing
one to ensure the correctness. Note that hash algorithm
breaking happens rarely, the overhead of verifying a new
tree though expensive is still affordable.

In some rare case, a hash algorithm may break un-
expectedly. In order to survive from the “hash crisis”,
DeLorean can always publish two sets of chronicle tree,

5In most cases, a hash algorithm does not completely break
immediately.

of which each is constructed using a hash algorithms
with different crypto strength. Since it is really rare
(if not impossible) that the two hash algorithms will be
broken at the same time, the stronger hash algorithm
offers the publisher to find another hash algorithm with
more crypto strength and rebuild the chronicle trees.

Note that hash rollover cannot address the broken
hash issue completely. Although it can secure the chron-
icle tree and volume tree, it cannot prevent an attacker
to utilize hash collision to modify data content if the
hash algorithm of the original data signature is broken.
However, given the chance of falsifying a meaning con-
tent with the same digest is really rare, we will address
this issue in our future work.

6. STORAGE REQUIREMENTS
Since DeLorean chronicle is a permanent record of

archived data and is growing over time, it is impor-
tant to evaluate the storage requirements. We consider
a 20-year chronicle with 10-minute time slots, with both
chronicle and volumes represented as 32-ary Merkle trees.

The storage overhead of DeLorean consists of two
parts: the chronicle tree and volume trees. A 20-year
chronicle involves about 1 million (i.e., ' 324) volumes.
Therefore, the chronicle tree has four levels and 32259
intermediate nodes.6 Assume the size of each node
packet is 1500 bytes, the total storage capacity required
to save 20 years of chronicle tree is about 48 MB.

If chronicle volumes contain on average 1024 finger-
pints of data packets, the corresponding volume trees
would have two levels, with the leaf nodes as 32-byte
hashes. Therefore, a volume tree involves 33 interme-
diate nodes (32 nodes at level 2 and one root node).
A single volume tree would take about 50 KB, and the
total storage requirement for 1 million volumes would
be about 50 GB. If we increase the average capacity of
a volume to 32768 (i.e., 323) data packets, the storage
overhead of a single volume would increase to 1.6 MB,
renderring the total storage overhead for all volumes to
1.6 TB. And for volumes with 1 million data packet ca-
pacity (i.e., 324), the total storage would be only 50 TB,
which is still modest compared to the current commer-
cial servers.

7. DISCUSSION

7.1 Scaling DeLorean Storage
Although our analysis above suggested that DeLorean

may potentially record a large amount of data over the
time, the storage however will still be overwhelmed if all
the produced packets in the world would require times-
tamp certification. Therefore, there has to be a limit on
6The leaf nodes of chronicle tree is also the root node of
volume tree, so they are included in the volume tree storage
calculation.

8

the number or frequency of the certifications. This limit
can be enforced, for example, by business relationships
between data producers and DeLorean provider where
producers pay for each certification using real money
or time working as system auditor (e.g., auditing De-
Lorean for an hour gives a credit for one timestamp
certification).

The limit on number of certifications does not mean
that only a limited number of data packets can be times-
tampped. Using manifest-based aggregation techniques [3,
16, 14] producers can request a single certification for
a large collection of data packets. For example, USA
Today publisher does not need to request timestamp
proofs for every single article published on October 22,
2015, instead it can create a manifest linking all Octo-
ber 22 articles (in a simple list or a tree of manifests)
and request proof just for that manifest.

As part of our future work we will investigate how
to support safe deletion or compression volume records
that are no longer needed [7]. This will allow further
reduction of the storage overhead and relaxing of the
enforced certification limit.

7.2 Recovery from Audit Failures
Whenever the auditors detect that the DeLorean provider

is not consistent with the previously recorded states,
they need to take actions to remediate the issue. The
first course of actions would be to publicly contact the
provider and attempt to correct the problem, which
highlights necessity of an open channel to the provider
through which problems can be reported. This way, the
issue can be confirmed by multiple auditors, forcing the
provider to immediately address the problem.

In an unlikely case when the DeLorean provider does
not respond to the reported issues or no longer wishes
to provide the service, it is possible to transition to a
new provider. Recall that the authenticity of previous
volumes can be implicitly verified through Merkle tree
state. The new provider can pick up the service from
a state under the consensus of the auditors and obtain
copies of the existing volumes that represent the last
consistent state. After updating the publisher public
key, users of the timestamp service can keep using the
same historical volumes.

7.3 Resiliency & Multiple DeLorean Providers
The example presented in this paper only involves a

single instance of DeLorean. However, it is important
to avoid a single point of failure, which can be imple-
mented in part using a set of hot backup instances. As
soon as there is an issue with a primary DeLorean in-
stance, another timestamp service instance can imme-
diately resume from any mirror. Note that all the data
structures (e.g., Merkle trees and hash chains) of De-
Lorean are publicly audited, thus it is trivial to keep

them in-sync among backup instances.
It is also possible to run multiple independent De-

Lorean instances: it would be producer’s decision on
which instance to use. The only change to the described
protocol would be in the naming: instead of a single
“/DeLorean” prefix, the chronicle volumes will be pub-
lished under “/google/DeLorean”, “/apple/DeLorean”, and
similar prefixes. However note that consistency guaran-
tee of a single DeLorean instance depends on the quality
of the public audit. In case a consumer does not have
much confidence about public audit, it can still audit a
particular instance by itself at a frequency that satisfies
the consumer’s own need.

7.4 Impact Timestamping on Data Production
Data aggregation and timestampping does not block

data production and consumption. It is an additional
procedure to ensure data can still be authenticated after
the signature expires. In other words, before the orig-
inal signature on data packets expires, consumers can
directly verify the data without needing the timestamp.
For example, “Youth Jailed” article of USA Today can
be directly authenticated on October 22, 2015 or sev-
eral days after, until the original signature is still valid.
Only when readers access that article year or so later,
they may need to use the timestamp proof in order to
ensure authenticity of the article at the time it was orig-
inally published.

8. RELATED WORK
To the best of our knowledge, Haber and Stornetta [9]

were the first to propose the use of the timestamp ser-
vice to secure digital documents. They built the service
by linking documents in a time order using a crypto
hash function, allowing users to check the existence of a
document by checking against a set of documents along
the timeline. Buldasi et al. [5] later proposed a binary
linking timestamp that simplified implementation of the
timestamp service. Additional information and history
of the timestamp service designs is available in the sur-
vey by Vigil et al. [17].

The timestamp service work that is most related to
DeLorean design is KASTS [12]. KASTS not only times-
tamps signed documents, but also keeps a secure storage
of verification keys. Compared to KASTS that builds
the timestamp service over hash chains, DeLorean uses
Merkle tree hierarchy to allow efficient public auditing.
Moreover, KASTS is focused on a single trust model,
i.e., the PKI model, while DeLorean supports data sign-
ing under arbitrary trust models, as long as consumers
know the corresponding trust schema.

The foundation of DeLorean design is a work of Crosby
and Wallach [7] that proposes the use of Merkle tree to
implement a tamper-evident logging system. They con-
ducted the detailed performance analysis to prove effi-

9

ciency of the Merkle tree based logging system. They
also proposed a scheme to safely delete log entries that
are no longer needed, which we plan to investigate in
the next revisions of the DeLorean design.

Certificate Transparency (CT) [11, 6] offers one of the
most important use cases of Merkle tree based logging
system and inspired the design of DeLorean. CT is de-
signed to mitigate the certificate mis-issuance problem
through a “security through publicity” approach. CT
uses Merkle tree to build a public board, on which cer-
tificate authorities are required to post all the issued
certificates. Using this board, the legitimate owners of
the domain names can easily detect the mis-issued cer-
tificates. DeLorean borrows the same “security through
publicity” concept, but applies it to verification of ab-
solute time of the chronicle volumes: any attempt to
“back-publish” or modify volume will be detected by a
set of public auditors. Because of the nature of IP proto-
col, CT instance will always know the source address of
the requester. To avoid problem of multiple consistent
views to different users, CT design includes an addi-
tional gossip protocol [6]. DeLorean intrinsically avoids
this problem by being an NDN-based system: data re-
trieval in NDN does rely on source addresses, but uses
states set up by the incoming requests.

BitCoin [15] represents another example of “security
through publicity” approach to support a consistent
append-only log based on hash chain. However, Bit-
Coin requires an efficient peer-to-peer overlay multicast
network and also requires each peer in the system to
keep a copy of the history, thus making it unsuitable
for maintenance of a large amount of long-lived data.

9. CONCLUSION
In this paper we presented the design of DeLorean.

After the data is archived using DeLorean, it can be
validated through “look back” authentication by us-
ing the issued time proofs to safely roll back the clock
to check the validity of signatures. The heart of De-
Lorean is the timestamp service that publishes the data
chronicle which consisting of volumes of data finger-
pints, each volume corresponding to a specific time in-
terval. We structure the chronicle as a multi-ary Merkle
tree which enables quick and efficient public audit of
the record consistency, enforcing the operation correct-
ness through publicity. To our best knowledge, it is the
first ICN system whose deisgn applies the concept of
security-through-publicity.

DeLorean is our first step toward securing long-lived
data in NDN and lays the foundation for our future
work in certificate revocation and trust bootstrapping.
DeLorean effectively decouples lifetimes of long-lived
data and their signatures. The decoupling of signature
lifetime from the data lifetime encourages the use of
short-lived signatures for important data (as long as

their lifetime is long enough to obtain proofs), reducing
dependency on key revocation mechanisms.

Although DeLorean is designed for signature valida-
tion, we believe the design is general enough to accom-
modate other append-only logging systems over NDN.
We expect to see more uses of the same idea in other ap-
plications, such as transaction systems, databases, etc.,
in the future.

10. REFERENCES
[1] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid.

Recommendation for Key Management. NIST Special
Publication 800-57, July 2015.

[2] R. Barnes, J. Hoffman-Andrews, and J. Kasten. Automatic
certificate management environment (ACME).
https://tools.ietf.org/html/draft-ietf-acme-acme-02,
October 2015.

[3] M. Baugher, B. Davie, A. Narayanan, and D. Oran.
Self-verifying names for read-only named data. In
Computer Communications Workshops (INFOCOM
WKSHPS), 2012 IEEE Conference on. IEEE, 2012.

[4] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval.
Key-privacy in public-key encryption. In Advances in
Cryptology—ASIACRYPT 2001, 2001.

[5] A. Buldasi, P. Laud, H. Lipmaai, and J. Villemson.
Timestamping with binary linking schemes. In
CRYPTO’98, 1998.

[6] L. Chuat, P. Szalachowski, A. Perrig, B. Laurie, and
E. Messeri. Efficient gossip protocols for verifying the
consistency of certificate logs. In Communications and
Network Security (CNS), 2015 IEEE Conference on, pages
415–423. IEEE, 2015.

[7] S. A. Crosby and D. S. Wallach. Efficient data structures
for tamper-evident logging. In Security Symposium, pages
317–334. Usenix, 2009.

[8] T. Dierks and E. Rescorla. The transport layer security
(TLS) protocol version 1.2. RFC 5245, 2008 August.

[9] S. Haber and W. Stornetta. How to time-stamp a digital
document. In CRYPTO’90, 1990.

[10] S. Kent and K. Seo. Security Architecture for the Internet
Protocol. RFC 4301, December 2005.

[11] B. Laurie. Certificate transparency. Queue, 2014.
[12] P. Maniatis and M. Baker. Enabling the archival storage of

signed documents. In the USENIX Conference on File and
Storage Technologies (FAST) 2002. Usenix, 2002.

[13] R. C. Merkle. Protocols for public key cryptosystems. In
Security and Privacy, 1980 IEEE Symposium on, pages
122–122. IEEE, 1980.

[14] I. Moiseenko. Fetching content in Named Data Networking
with embedded manifests. Technical Report NDN-0025,
NDN, 2014.

[15] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system, 2008.

[16] C. Tschudin and C. Wood. File-like ICN collection (FLIC).
Internet-Draft, draft-tschudin-icnrg-flic-00, 2016.

[17] M. Vigil, J. Buchmann, D. Cabarcas, C. Weinert, and
A. Wiesmaier. Integrity, authenticity, non-repudiation, and
proof of existence for long-term archiving: a survey.
Elsevier Computers & Security, 2015.

[18] Y. Yu. Public key management in Named Data
Networking. Technical Report NDN-0029, NDN, 2015.

[19] Y. Yu, A. Afanasyev, D. Clark, k. claffy, V. Jacobson, and
L. Zhang. Schematizing trust in named data networking. In
Proceedings of the 2nd International Conference on
Information-Centric Networking. ACM, 2015.

10

