
NDN, Technical Report NDN-0008, 2012. http://named-data.net/techreports.html
Revision 1: October 10, 2012

1

Chronos: Serverless Multi-User Chat Over NDN
Zhenkai Zhu∗, Chaoyi Bian†, Alexander Afanasyev∗, Van Jacobson‡, and Lixia Zhang∗

∗ {zhenkai, afanasev, lixia}@cs.ucla.edu, UCLA, Los Angeles, California, USA
†bcy@pku.edu.cn, Peking University, Beijing, China
‡van@parc.com, PARC, Palo Alto, California, USA

F

Abstract—Multi-user applications are commonly implemented using a
centralized server. This paper presents a new design for multi-user chat
applications (Chronos) that works in a distributed, serverless fashion
over Named Data Networking. In Chronos, all participants share their
views by exchanging the cryptographic digests of the chat room data
set. A newly generated message causes a change of the digest at
the message originator, which leads to retrieving the new data by all
other participants in an efficient way and resynchronization of chat room
views. Chronos does not have a single point of failure and eliminates
traffic concentration problem of server-based implementations. We use
simulations to evaluate and compare Chronos with a traditional server-
based chat room implementation. Our results demonstrate Chronos’
robustness and efficiency in data dissemination. Chronos’ approach of
replacing centralized servers by distributed data synchronization can be
applied to a variety of distributed applications to simplify design and
ease deployment.

1 INTRODUCTION

Multi-user chat is widely used to share information via
text with a group of users. Traditionally, the design of
such applications is centralized in nature: a single server
is used to host a chat room and maintain a roster of
participants in the room. Users send text messages to the
server through TCP connections, and the server mirrors
all the received messages to all other users on the roster
except the sender.

A 1000-foot view of such a system represents a class
of distributed (semi) realtime applications, such as file
synchronization, collaborative editing, and audio confer-
encing. These applications share a common requirement
that a group of distributed participants must maintain an
identical view of shared data set all the time. Most of the
existing applications use a central-server based imple-
mentation, where every participant synchronizes its data
with the centralized server. However, such designs lead
to traffic concentrations at the server and make the appli-
cations vulnerable to single point of failure. Furthermore,
because participants may be distributed over wide areas,
no matter where the server is placed, at least some data
packets are subject to triangle paths between producers
and consumers. Deploying multiple distributed servers
can help alleviate the above problems, but it also intro-
duces a set of new problems to be addressed, such as
who would provide those servers, and how to keep data
synchronization among the servers.

Can we achieve the goal of data synchronization for
distributed applications without centralized server(s)?
There are a number of synchronization algorithms [1]–
[3], most of them addressing the problem of efficient
data synchronization between a pair of nodes. Hence,
one could achieve data synchronization among a set of
distributed participants through a pair-wise, full-mesh
synchronizations between every pair of nodes. However,
it is unclear how a new participant may learn about
all the existing participants in order to set up the pair-
wise synchronization with them. Furthermore, letting
every node communicate with every other node through
unicast leads to inefficiency. A more practical way is to
let the participants share their views of the data set and
exchange the actual application data directly once they
figure out the differences in their views, as suggested
in [4], [5], both done in a multicast fashion. However,
the designs in [4], [5] either report a full-list of statuses
in order to figure out the difference, which may be costly,
or have a limited view on how large the difference can
be between the data sets.

In this paper, we evolve the distributed data syn-
chronization idea to design a serverless multi-user chat
application over Named Data Networking (NDN) [6].1

In NDN, every piece of data has a unique name, thus
one can represent a chat room’s state as a collection
of all the data names. Each client in a chat room can
hash its collection of names to a cryptographic digest to
be exchanged with other clients in the same room. In
the steady state, everyone has the same digest. When a
new piece of data is generated, it leads to a difference
in the digests and notifies others of the new data. A
good design of the naming rules facilitates participants
to quickly figure out the names for the missing data; the
actual data can then be fetched from the data producers
directly and efficiently through built-in multicast data
delivery in NDN.

We implemented Chronos as an open-source serverless

1. NDN project is one of the four flagship projects funded by NSF
Future Internet Architecture program, aiming to transform the host-
to-host communication paradigm of the current Internet to a data-
centric, receiver-driven model in order to accommodate emerging
demands on scalable data dissemination, mobility support, and secure
communications.

2

multi-user chat package that runs over NDN and works
with any existent chat client that supports XMPP pro-
tocol. We also adapted the implementation Chronos to
NS-3 NDN simulator to evaluate Chronos’ performance
and compare it against that of traditional server based
implementations.

Our contributions in this paper are two-fold. First, we
explored a novel design of multi-user chat, which elim-
inates the need for a central server and demonstrated
its robustness and efficiency through simulation eval-
uations. Second, we believe that the distributed multi-
party data synchronization approach used in Chronos
can serve as a first example for a class of simple and
elegant solutions to various distributed applications run-
ning on top of NDN, such as collaborative editing, audio
conferencing, and file synchronizations.

2 NDN BACKGROUND

In this section we briefly go over a few basic concepts
of NDN [6] that are essential to describe the design of
Chronos.

Communications in NDN are driven by data con-
sumers. Each piece of content is cryptographically as-
sociated to a data name. To retrieve data, a consumer
sends out an Interest packet, which carries a name that
identifies the desired data. A router remembers the
interface from which the Interest comes in, and then
forwards the Interest packet by looking up the name in
its Forwarding Information Base, which is populated by
routing protocols that propagate name prefixes instead
of IP prefixes. Each received Interest is kept in a Pending
Interest Table (PIT). If additional Interest packets for the
same data name are received, the router simply records
the arrival interfaces in the PIT entry for the name. Once
the Interest packet reaches a node with the requested
data, a Data packet is sent back.

A Data packet carries the name and the actual data,
along with a signature created by the original data
producer that binds the two together. When a router
sees a Data packet, it finds the matching entry in its
PIT and forwards the packet to the interfaces where the
corresponding Interests come from and removes the PIT
entry. As a result of the Interest state that have been set
up at the intermediate routers, the Data packet traces
the reverse paths back to all the data consumers in a
multicast fashion. Each Interest is kept in the PIT until
the desired Data is retrieved, or until its time-to-live
period expires. It is the data consumer’s responsibility
to re-express an Interest when it expires, assuming the
Data is still desired then.

3 CHRONOS DESIGN

3.1 Overview

Chronos design has two main components: data set state
memory and data storage (see Fig. 1). The data set state
memory maintains the current knowledge of the chat

Chronos participant

Data set state memory

Digest Tree

Digest Log

Data storage

(actual chat messages)

N
DN

 A
PI

Sync Interests

Sync Data

Chat data
Interests

Chat Data

Fig. 1: Chronos design components

data set in form of digest tree, as well as maintains
history of the data set changes in form of digest log.

Chronos participants interact using two types of Inter-
est/Data message exchanges: synchronization (sync) and
chat data. A sync Interest represents the sender’s knowl-
edge of the current chat data set in form of cryptographic
digest, obtained using digest tree, and is delivered to
every other participant. Any recipient of the sync Interest
who detects that it has more information, satisfies this
Interest with a Data packet that includes the missing part
of the data set. Common state and knowledge difference
discovery is performed using the digest log.

As soon as a participant discovers new knowledge
about the chat room state, it sends out chat data Interests
to pull actual messages from their originators. Chronos
guarantees that a user can learn and infer all the names
for the chat data produced by the participants of a room.
However, as there is no central storage server, partici-
pants should setup or choose a persistent content storage
for their data if they wish the data to be accessible after
they get offline.

Chronos uses a soft-state method to manage the roster.
A user is added to the roster when his presence message
to the chat room is received. The participants period-
ically send “heartbeat” messages if they have no chat
messages to send. If nothing is heard from a user for a
certain amount of time, the user is no longer considered
as a current participant of the chat room.

3.2 Naming Rules

Naming is an important aspect of any NDN application
design. There are two sets of naming rules in Chronos.
One set determines names for sync exchanges, while the
other regulates the naming of actual chat data.

The name for a sync message starts with a broadcast
prefix, following by the data set identifier, which rep-
resents the chat room, and the digest of the data set
(Fig. 2a). Any Interest with a broadcast prefix reaches
all the nodes within the broadcast domain, which is a

3

5/4/12& 39&

/ndn/broadcast/chronos/chat@wonderland/a1324asdfa&

Broadcast&prefix& Data&Set& Digest&

/ndn/wonderland/alice/chronos/chat@wonderland/335&

Producer’s&prefix& Data&Set& SeqNo.&

(a) An Example of Data Synchronization Message Name

5/4/12& 39&

/ndn/broadcast/chronos/chat@wonderland/a1324asdfa&

Broadcast&prefix& Data&Set& Digest&

/ndn/wonderland/alice/chronos/chat@wonderland/335&

Producer’s&prefix& Data&Set& SeqNo.&
(b) An Example of Chat room Data Name

Fig. 2: Naming in Chronos

simple and effective way to share digests among all par-
ticipants in a small network, because NDN suppresses
identical Interests. If the participants are distributed over
large networks, such as the Internet, simple broadcast
may no longer be feasible. For clarity, we describe
Chronos design using broadcast for Interests, and in
Section 5 we discuss solutions to scale Chronos sync
Interest distribution.

The chat data name consists of a unique prefix that
identifies the producer and is used to efficiently route
the Interest, the chat room identifier, and the message
sequence number (Fig. 2b). The initial message sequence
number is zero and whenever a participant generates
a new message, be it a text message, a user status, or
a heartbeat, the sequence number is increased by one.
Different from the fixed-length sequence number field
used in traditional protocols such as TCP, the sequence
number in Chronos has variable length and no upper
bound limit by virtue of NDN’s flexibility in naming,
effectively ruling out problems caused by sequence num-
ber wrapping.

3.3 Data Structures
It is critical to maintain an up-to-date view of the chat
data in order to generate digest. Chronos uses digest
tree to achieve this goal. A digest log, which records
the changes of the digests, provides a way to find and
quickly resolve the difference of views.

3.3.1 Digest Tree
The overall knowledge about the chat room can be
represented by the set of statuses of all participants
(“producer statuses”), i.e., what data each participant
has produced so far. As a result of the naming rule,
whenever a participant learns a sequence number N
for another participant, he knows for sure that data
packets with sequence numbers smaller than N from
that participant must have already been sent to the chat
room, regardless of whether he has already fetched them
or not. Hence, the producer status of a participant can be
effectively represented by the latest known data name of
that participant.

Inspired by the idea of Merkle trees [7], we use digest
tree to organize the producer statuses for quick and
deterministic digest generation, as illustrated in Fig. 3.

Fig. 3: An Example of Digest Tree

Every participant in this tree is represented as one node,
holding a crypto digest, calculated by applying, for
example, a SHA-256 [8] hash function2 over participant’s
name prefix and the most recent sequence number. The
root node keeps the digest for the whole chat room
data set, which is computed by applying the same hash
function to all of its child nodes. The child nodes of the
root are kept sorted in lexicographic order according to
their name prefixes, so that every participant generates
exactly the same digest as long as they have the same
view of the producer statuses.

The digest tree is kept up-to-date to accurately reflect
the knowledge about the current chat room data set.
Every time a participant generates a new chat message
or learn about new messages from remote participants,
the digest tree gets updated.

3.3.2 Digest Log
Digest tree is constantly updating as the conversation in
the chat room progresses and keeps track only of the cur-
rent state. However in some cases, recognizing previous
digests may be helpful to resolve the difference in views.
For example, a participant recovered from a temporary
disconnection may send out a sync Interest with an out-
of-date digest. Existing participants, recognizing the old
digest, are able to reply with the producer statuses that
have been changed since then, without resorting to more
costly recovery means.

Hence, each participant keeps a “digest log” along with
the digest tree. The log is a list of key-value pairs, where
the key is the root digest and the value field contains
the new producer statuses that have been updated since
the previous state. The digest log always starts with the
empty set and a new item is appended after each change
in the digest tree, as depicted in Fig. 4. The size of the
digest log can be constrained by a desired upper bound
using periodical purging of old entries.

3.4 Chat Data Synchronization
Every participant always keeps one outstanding sync
Interest with the current root digest to probe for new chat
room data. Anyone with new data to the chat room can
satisfy this sync Interest, and the new producer status

2. Note that SHA-256 has negligible probability to create a digest
collision [9]. However, Chronos is able to recover even if the collision
occurs, as the digests will be recalculated as soon as any new data is
sent to the chat room.

4

Fig. 4: An Example of Digest Log

A B

C

Alice" Bob"

Cathy"

Interest" Interfaces"

/prefix/digest" 0,1,2"

1

0

2

A B

C

Alice" Bob"

Cathy"

A B

C

Alice" Bob"

Cathy"

(a) For each chat room, at most one sync Interest is
transmitted over a link in one direction. There is one
pending sync Interest at each node. Due to space limit,
only the PIT of router C is depicted.

A B

C

Alice" Bob"

Cathy"

Interest" Interfaces"

/prefix/digest" 0,1,2"

1

0

2

A B

C

Alice" Bob"

Cathy"

A B

C

Alice" Bob"

Cathy"
(b) The reply from Alice is multicasted to Bob and Cathy.

Fig. 5: Synchronizing the Views of Chat room Data

will be brought to all other participants immediately.
Whenever sync Interest gets satisfied or expires, one
sends out another one that carries the latest root digest.

When all participants have the same knowledge about
the chat room data set, their sync Interests carry identical
digests. We call it the “steady state.” Fig. 5a shows the
steady state in a simple topology. Although everyone
sends out a broadcast Interest to exchange digest, there
is only one pending sync Interest on each node in the
steady state, as the identical Interests are be suppressed
by the intermediate routers.

When a difference between the digest in the received
Interest and the root digest in local digest tree is de-
tected, a participant prepares to handle the sync Interest.
For example, in Fig. 5b, Alice sends a new text message

to the chat room. Alice noticed that the digest of others
is the same as her previous one after her digest tree has
been updated, and hence she immediately replies the
sync Interest with the data name of her new message.
By virtue of the states that have been set up in the
routers, her reply is multicasted to all other participants.
Whoever receives her reply updates the digest tree and
sends out a new Interest with the updated digest, re-
verting the system to steady state again. Meanwhile,
other participants may send separate Interests to retrieve
Alice’s text message. However, given that generally the
text message is small, it is reasonable to piggyback the
data to the reply of the sync Interest, eliminating an extra
round trip delay.

Normally, participants recognize the digest carried in
the sync Interest: it is the same as either the participant’s
current root digest, or the previous root digest if this par-
ticipant just generated chat data. However, even in loss-
free environments, participants may receive an Interest
with unknown digest due to out-of-order packet arrivals.
For instance, in Fig. 5b Cathy’s Interest with the new
digest (after incorporating Alice’s new producer status
into her digest tree, not shown on the figure) may reach
Bob before Alice’s sync reply with the old digest, due to
the possible out-of-order delivery in the transmission.
Hence, Chronos employs a randomized “wait timer”
Tw, whose value should be set on the order of the
propagation delay. In other words, a participant sets up
the wait timer when an unknown digest is detected and
postpones the processing of the sync Interest until the
timer goes off. In our example, Bob’s root digest becomes
the same as the new digest in the Interest after Alice’s
reply reaches him, moving system to the steady state.

3.5 Participant Join/Leave

Participants come and go in a chat room. A newcomer
needs to learn the current producer statuses in the room
before he can participate, and the events of both join and
leave of a participant need to be reflected on the roster.

A newcomer probes for information about a chat room
by sending out a sync Interest with the reserved digest of
the empty set3. If the newcomer is the only participant in
the chat room, the Interest will not bring back anything.
By the time the Interest expires, the newcomer updates
the empty digest tree with his default initial producer
status with sequence number being zero and sends
out an new Interest with updated digest. Otherwise,
the existing participants recognize the reserved “empty”
digest and reply with all the producer statuses, which
will be used by the newcomer to build his own digest
tree. The producer statuses of the current participants
are marked as active in the reply, so that the newcomer
can construct an initial roster.

3. Digest of the empty set is reserved so that sync approach of
Chronos is possible to support pure listeners who do not generate
any data

5

Note that the newcomer may had been in the chat
room before, and others may still remember his pre-
vious status. In such cases, the newcomer increments
his previous sequence number by one and use that as
his initial sequence number. Meanwhile, the newcomer
also receive the sync Interest from others. He waits until
the reply from others has been received to determine
his initial status and replies with the proper status,
prompting others to update their digest trees. In any
case, the newcomer’s initial producer status is the data
name for an “available” message,4 which prompts others
to update rosters. By the end everyone has the same view
of participants in the room.

Participants should inform others in the room before
actually leaving. That is, the participant that intends to
leave should reply to the sync Interest with the data
name for an “unavailable” message. On receiving the
“unavailable” message, others remove the participant
from their rosters. Sometimes a participant may not have
the chance to leave with grace. In these cases, other
participants would notice this event when they miss a
certain number of heartbeats from the participant who
had left.

3.6 Handling of Complex Scenarios
While we optimized Chronos for operations under nor-
mal network conditions, we also took care of more com-
plex scenarios where normal operations are no longer
adequate. Networks may fail, participants may generate
data simultaneously, packets may be dropped. The fol-
lowing discussion shows how Chronos copes with such
problems.

3.6.1 Network Partitions
The server-less design of Chronos ensures that partic-
ipants can communicate with each other normally as
long as there is network connectivity. However, there
could also be network partitions. In other words, the
participants can be divided into two or more groups, in
which participants in one group do not have network
connectivity to participants in other groups. Fig. 6 illus-
trates one of such situations, where participants on the
left can not communicate with participants on the right
due to a router failure.

Although participants within each group may con-
tinue to chat without requiring any special handling,
there may be problems when the partition heals. De-
pending on the activities of participants, there can be
three different types of scenarios when the connectivity
resumes.

First, participants may not send any data (including
heartbeats) to the room during the period of network
partitioning. As a result, everybody keep sharing the
same view of the chat room data set and no special action
is needed.

4. Status messages, including “available,” “unavailable,” and others
are treated in the same manner as any normal text chat message.

A B

Alice" Bob"

D C

David" Cathy"

Fig. 6: Network Partition Example

Second, data might have been generated only in one
group. In this case, the wait timer and digest log solve
the problem efficiently. For example, in Fig. 6, partici-
pants on the right side may have had several rounds of
conversation while those of the left side remained silent
during the partition. When the connectivity resumes,
Bob and Cathy receive sync Interest from left side with
digest dL and they immediately find dL in the digest log,
recorded just before the partition. Hence, they reply the
Interest with any producer statuses that have updated
afterwards. On the other hand, Alice and David see a
digest dR which is unknown to them at first, so they start
the wait timer Tw. Before the timer expires, the reply
from Bob and Cathy comes in and triggers the digest
tree updating processes, after which their root digests
also become dR and the system resumes to the steady
state.

Third, participants in all groups may have produced
data during the network partitioning. Under such con-
ditions, the participants in any of the groups cannot rec-
ognize the digests of the participants in any other group
after the partition heals. Hence, no one has enough
information to infer the chat room state differences using
digests from the received sync Interests. Chronos resorts
to the following way to break the impasse.

When the wait timer Tw expires and the unknown
digest is still unrecognizable, a participant proceeds to
send a recovery sync Interest as shown in Fig 7. It has a
component ”recovery” to differentiate from normal sync
Interests and includes the unknown digest at the end.
The purpose of such a Interest is to request missing
information about the data set from those who recog-
nize digest. Therefore, when a recovery sync Interest is
received, those who have the digest in their digest log
reply the interest with all current producer statuses5,
while others should silently ignore it. Upon receiving
a recovery reply, a participant compares the producer
statuses included in the reply with those stored in the
digest tree and updates the tree whenever the one in the
reply is more recent. This guarantees to revert the system
into the steady state.

5. They have no idea what information is missing at the other end,
and hence replying all the producer statuses is the only way to do it.

6

5/23/12& 39&

/ndn/broadcast/chronos/chat@wonderland/a1324asdfa&

Broadcast&prefix& Data&Set& Digest&

/ndn/wonderland/alice/chronos/chat@wonderland/335&

Producer’s&prefix& Data&Set& SeqNo.&

/ndn/broadcast/chronos/chat@wonderland/recovery/142a2sdzd&

Broadcast&prefix& Data&Set& Unknown&Digest&

Fig. 7: An Example of Recovery Sync Interests

A B

C

Alice" Bob"

Cathy"

Interest" Interfaces"

/prefix/digest" 0,1,2"

1

0

2

A B

C

Alice" Bob"

Cathy"

A B

C

Alice" Bob"

Cathy"

Fig. 8: Alice and Bob simultaneously generate chat data.
They can not receive each other’s reply to the sync
Interest, and Cathy can only receive reply from one of
them.

3.6.2 Simultaneous Data Generation
Chronos depends on successful multicasting of the new
chat data from a participant to all other participants to
quickly resume to the steady state. When simultaneous
data generation happens, i.e., more than one participant
sends a chat message to the room almost at the same
time, this assumption no longer holds since one sync
Interest can only fetch one Data packet [6].

Once a router has forwarded a Data packet, the cor-
responding PIT entry is removed. Fig. 8 illustrates how
data flows when two participants simultaneously send
messages to the room. When Alice’s reply reaches router
B, it will be dropped as the corresponding pending
Interest has been satisfied by Bob’s reply. Consequently,
Alice and Bob cannot receive each other’s reply. Simi-
larly, Cathy only receives reply from one of them. Thus,
when they send out new sync Interests, Alice and Cathy
can not recognize Bob’s digest, and vice versa. This
scenario is the same as the third case in network partition
handling, and the same technique can be used to solve
the problem.6

3.6.3 Random Packet Loss
Similar to the current IP networks, Interests and Data
transmissions are best-effort only in NDN.

When a sync Interest or reply gets dropped, it is possi-
ble to break the steady state if the loss happens to occur
on a link that is the only link between two subsets of
participants7. For example, in Fig 9, participants in group

6. According to a previous study about the chat systems on the
Internet [10], including IRCs, web chat and popular instant messaging
applications, the occurrence of simultaneous data generation (chat
messages to the room with small interarrival gap) is rare and hence
this technique, despite of the perhaps unnecessary inclusion of older
producer statuses in the reply, is sufficient in handling the problem.

7. Otherwise, the reply could go through another link and reach
every participant

0 1

3 2
(a)!

0 1

3 2
(b)!

0 1

3 2
(c)!

A" B"

Fig. 9: Random Packet Loss

A B

C

Alice& Bob&

Cathy&

A B

C

Alice& Bob&

Cathy&

(a) The loss near the producer

A B

C

Alice& Bob&

Cathy&

A B

C

Alice& Bob&

Cathy&

(b) The loss near the receiver

Fig. 10: Both Data and Interest Lost on a Bridge Link

A have an out-dated view of the data set because the
sync reply from a participant in group B gets dropped
on the bridging link. However, participants in group A
will send a sync recovery Interest shortly after the sync
Interest from participants in group B arrives, as they do
not recognize the new digest. The information brought
back by the recovery Interest would restore the system
to the steady state.

If the recovery Interest also gets dropped, it will be
re-expressed in a exponentially-backoff fashion. Because
it is certain that there is unknown information, the
initial re-express interval could be set to the estimated
round-trip delay (RTT), which each participant main-
tains independently using some algorithm similar to
TCP’s smoothed RTT calculation.

A more hazardous kind of scenarios is when both the
new Data and the new Sync Interest get lost in a bridge
link. Fig 10 depicts two possible scenarios of such loss.

In Fig 10a, both the new Data and the new Interest get
lost near Alice. Consequently, neither Bob nor Cathy is
aware of the new Data. This gives Alice a hint about
the loss, as Alice is expecting the new Sync Interest
from others. If the new Interest does not come within
a time interval (approximately the same as the RTT),
Alice would start retransmit the new sync Interest in an
exponentially-backoff fashion. When Bob and Cathy re-
ceive the retransmitted new Interest, they send recovery
sync Interest to figure out the difference.

The situation in Fig 10b is more subtle. The loss
happens near Cathy, and hence Bob receives Alice’s new

7

Data, and Alice receives the new sync Interest from Bob.
As a result, there is no hint to anyone about the loss:
Alice and Bob have the same view of the data set, and
Cathy thinks she also has the up-to-date view because
neither new Data nor sync Interest with unknown digest
comes. There are two ways to get out of this situation:
1) Cathy’s old sync Interest expires, and she re-expresses
the Interest and fetches Alice’s Data cached in router A;
and 2) some participants generates new data, and the
new Interest with digest unknown to Cathy prompts her
to send recovery sync Interest.

The situation depicted in Fig 10b is the only situation
where Chronos is not able to infer the loss within
approximately RTT delay, and hence the time needed
to recover depends on the re-express interval of the sync
Interests and the rate of new data generation. In all other
situations, Chronos would infer the loss and recover
from it reactively.

However, the problem in Fig 10b is not really caused
by Chronos design. Rather, it is a more general problem
of multicast. It is always hard to detect loss immediately
and efficiently. For example, in the reliable multicast
work of S. Floyd et al. [4], receivers send low-rate,
periodic, session messages that announces the known
highest sequence numbers of others, and receivers com-
pare the sequence numbers to detect loss. Hence, it is
also possible there for some messages to experience long
delay. In fact, the periodically re-expressed sync Interests
have the same role as the session messages in [4]. The
sutle difference between the two is: the session messages
are multicasted and will not be suppressed, whereas
the identical sync Interests would be suppressed by
the routers. Hence, receivers in [4] may have slightly
better chance to detect the loss when the number of
participants is small,8 but Chronos would detect the loss
faster when the number of participants is large, as the
sync re-express interval is independent of the number of
participants.

IRC on the other hand uses unicast and the sender is
responsible to ensure the data delivery to all receivers.
Hence, it is easier for the sender to detect the loss,
but the price to pay is the overhead in the redundant
transmissions.

However, in any situation, Chronos will resume to
steady state deterministically and reliably. To avoid the
rare cases of long delay caused by situation in Fig 10b
and at the same time avoid re-expressing sync Interest
too frequently, the re-express interval of sync Interest
should be dynamically adapted depending on the loss
probability and the rate of new data generation.

4 EVALUATION

To show benefits of Chronos and compare it to the
conventional centralized multi-party chat approach, we
conducted a number of simulation-based experiments.

8. As the session message interval is proportional to the number of
participants to save the bandwidth

We performed our experiments using NS-3 simulator,9

for which we implemented the NDN protocol module
that approximates behavior of the existing code base of
NDN project (CCNx project [11]). We also implemented
a simple TCP-based approximation of the conventional
centralized Internet Relay Chat (IRC) service. For sim-
plicity of the simulation, we did not implement heartbeat
messages for neither Chronos nor IRC service. Though
heartbeats are necessary components of any chat service
(e.g., they allow maintaining an up-to-date roster of
the participants), they are handled in the same manner
as normal chat messages and do not introduce new
challenges for the protocol.

In our evaluations we used the Sprint point-of-
presence topology [12], containing 52 nodes and 84 links.
Each link was assigned measurement-inferred delays,
100 Mbps bandwidths, and drop-tail queues with 2000
packet capacities.

All nodes in the topology acted as clients for multi-
user chat service, consisting of one chat room. The traffic
pattern in each room was defined based on the multi-
party chat traffic analysis by Dewes et al. [10] as a stream
of messages of sizes from 20 to 200 bytes with inter-
message gap following the exponential distribution with
the mean of 5 seconds (the Poisson process).

In our implementation of Chronos-based text service,
the actual data is piggybacked alongside with the state
information. In other words, there is no need to request
data separately after discovery of a new sequence num-
ber for a user.

4.1 Performance under normal network conditions
The first question that we answer is how Chronos com-
pares with the conventional IP chat approaches under
normal network conditions (no failures or packet loss)
in terms of packet overhead. For this purpose, we per-
formed 20 runs of the chat room simulation with 52-node
topology and 1000 messages. Each individual simulation
run featured different sets of messages injected to the
chat room (different delays, different participant), as well
as different choices for the central server in IRC case.

Fig. 11 shows the number of packets transferred over
different links (packet concentration) in the simulated
topology. When counting the packets, we include both
Interest and Data packets in Chronos, and both TCP
DATA and ACK packets in IRC. For each individual
run, the links were ordered and analyzed by the packet
concentration value. For instance, the leftmost point,
alongside with 97.5% confidence interval, represents a
range of values for links with the maximum packet
concentration in a run.

As it could be expected from the centralized archi-
tecture of IRC, a number of links close to the server
have extreme packet concentration. For example, when
the server is single-homed in 52-node topology, a single
message causes 51 DATA-ACK transmissions. At the

9. https://www.nsnam.org/

8

0

2.5k

10k

22.5k

40k

62.5k

90k
●

●

●

●
●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

Different links

To
ta

l n
um

be
r

of
 p

ac
ke

ts
(s

qr
t s

ca
le

)
● IRC

Chronos

Fig. 11: Number of packets in links (packet concentra-
tion)

100k

200k

300k

400k

●

●

●

●
●

●
●

● ●

20 40 60 80

Number of links counted in total

To
ta

l n
um

be
r

of
 p

ac
ke

ts

● IRC

Chronos

Fig. 12: CDF of per-link packet concentration

same time, in IRC some links are not used at all if they
are not on the shortest paths to and from the server.

For the same traffic pattern, results for Chronos are
significantly different: all links in the topology have
about the same packet concentration, on order of the
number of transmitted messages (from 3,000 to 4,000).
This result is not a surprise, since for any single link,
both nodes send sync Interests to each other and each
Interest will yield at most one Data (since Data is not
forwarded to the interface it was received from, some
Interests will be unanswered).

The fact that Chronos utilizes all the links raises the
question of how aggregate packet concentration relates
to IRC. Fig. 12 shows a cumulative sum of packet concen-
trations (e.g., the second point from the left represents
the number of packets in two most-utilized links of a
run). The results presented in this graph highlight the
fact that even with the broadcast-like nature of Interest
distribution in Chronos, the overall packet count stays
below IRC, while providing the same (and, as we show
later in this Section, more robust) text conferencing
service.

Another metric that is important for text conferencing
is the delay between message generation and delivery to
the interested parties. Fig. 13 shows the distribution of
the message delivery delays, which include propagation,
queuing, and processing components. As it can be seen,

0

100k
(10%)

200k
(20%)

300k
(30%)

400k
(40%)

0ms 40ms 80ms 120ms 160ms 200ms 240ms

Delay of message delivery

N
um

be
r

of
 m

es
sa

ge
de

liv
er

ie
s

(2
0

ru
ns

)

IRC

Chronos

Fig. 13: Distribution of message delays

delays in Chronos are much shorter than in IRC case
(40% cases among 20 runs in Chronos have delay less
than 20 ms, compared to ≈13% of IRC cases for the
same delay range). The reason for this is that in Chronos
packets from the message producer to other participants
follow the direct (optimal) paths, while in the IRC paths
are usually triangular, as the packets have to go through
the central server.

4.2 Performance in face of failures
The key feature of Chronos is its serverless design,
which means that Chronos should allow communication
between parties whenever there is connectivity between
them. That is, even when the partition happens, the
group of participants in each connected network should
still be able to communicate with each other, and when
the partition heals, different groups should synchronize
the chat room data automatically.

To verify this property we conducted a small-scale 4-
node simulation with link failures and network parti-
tioning (Fig. 14). The total simulation time of 20 minutes
was divided into 5 regions: 0–200 seconds with no link
failures (Fig. 14a), 200–400 seconds with one failed link
between nodes 0 and 1 (Fig. 14b), 400–800 seconds with
two failed links between nodes 0, 1 and 2, 3 (partitioned
network, Fig. 14c), 800–1000 seconds with one failed link
between nodes 2 and 3, and finally 1000–1200 seconds
period with no link failures.

We performed several runs of the simulation, all of
them giving the same result: until network is really
partitioned (period between 400–800 seconds), all parties
continue to communicate with each other without notic-
ing any problems. Results from one of the runs presented
in Fig. 15, which visualizes the knowledge of node 0
about the current states (i.e., latest messages) of all other
participants as a function of the simulation time.

Fig. 15 confirms not only that parties within a con-
nected network continue to communication during the
partition, but also the fact that when partition heals,
the state is getting synchronized as soon as Interests
start flowing into the formerly failed link. This will
happen when either a new message is generated by a

9

0 1

3 2
(a)!

0 1

3 2
(b)!

0 1

3 2
(c)!

Fig. 14: Simple 4-node topology with link failures (link
delays were chosen uniformly at random in the interval
1–2 ms)

 0

10

20

30

40

50

60

Li
nk

 b
et

w
ee

n
0

an
d

1
fa

ile
d

Li
nk

 b
et

w
ee

n
2

an
d

3
fa

ile
d

Li
nk

 b
et

w
ee

n
0

an
d

1
he

al
ed

Li
nk

 b
et

w
ee

n
2

an
d

3
he

al
ed

 200 400 600 800 1000

Time, seconds

M
es

sa
ge

 s
eq

ue
nc

e
nu

m
be

r

0's knowledge about 1 2 3

Fig. 15: Chronos performance in face of link failures
(sequence number progress)

party inside the healed network, or outstanding Interests
are timed out and re-expressed. Alternatively, routers
should re-send pending broadcast Interests upon discov-
ery of a new working link. In our evaluations we relied
only on application-level Interest retransmissions/re-
expressions, which resulted in relatively large partition
recovery times (≈5 seconds, which in our simulations is
the expectation for both the inter-message gap and the
Interest lifetime).

To demonstrate benefits of Chronos on a bigger scale,
we used again a 52-node topology, which was subjected
to varying level of link failures. In each individual run
of the simulation we failed from 10 to 50 links (different
set of failed links in different runs), which corresponds
to ≈10% and ≈60% of overall link count in the topol-
ogy). We performed 20 runs of the simulation for each
level of link failures, counting the number of pairs that
are still able to communicate, despite severe network
degradation (Fig. 16). We used the violin plot10 for this
graph to highlight a bimodal nature of the distribution
for the percent of communicating pairs in the centralized

10. The violin plot is a combination of a box plot and a kernel density
estimation plot. Wider regions represent higher probability for samples
to fall within this region.

0%

20%

40%

60%

80%

● ●

●

●

●

●

●

●

●

●

10 20 30 40 50

Number of failed links

P
er

ce
nt

 o
f c

om
m

un
ic

at
in

g
pa

irs
 (

26
52

 p
ai

rs
 to

ta
l) IRC

Chronos

Fig. 16: Distribution of the number of communicating
pairs versus number of failed links (violin plot)

IRC service. As it can be seen from the graph, it is
quite common for the central server gets isolated from
the rest of the network, even with a small level of link
failures, which causes complete chat service disruption.
In Chronos, there is always a substantial number of pairs
able to communicate. For instance, in more than 60% of
failed links, at least 12% of node pairs can communicate
with each other, inside their respective clusters.

4.3 Performance in face of random loss

We also evaluated Chronos in lossy link environments
with various per-link loss rates ranging from 1% to
10%.11

Fig 17 demonstrates the packet concentrations in face
of losses in IRC and Chronos respectively. The numbers
of packets transmitted over different links in Chronos
are relatively the same under each loss rate, although
the absolute values go up as the loss rate grows, due to
the overhead caused by recoveries from the loss. On the
contrary, a few links (probably the ones near the server)
in IRC always have a huge number of packets, and the
numbers grow significantly when the loss rate increases,
which may in turn worsen the situation.

Fig 18 compares the delays experienced by packets in
IRC and Chronos under different loss rates. To better ex-
amine the difference, we blow up the figures using expo-
nential y axis. Regardless of the loss rate, more messages
in Chronos experienced smaller delay compared to those
in IRC. This trend is more clear as the loss rate grows: the
percentage of messages with small delays drops rapidly
in IRC and in Chronos it drops more gracefully. How-
ever, there is a small percentage of messages in Chronos
that experienced delay longer than 10 seconds (probably

11. We also evaluated Chronos with lower per-link loss rates, and
the performance of Chronos was almost unaffected. Thus, we focus on
the uncommon high loss rate to study the effects of random packet
loss.

10

●

●

●

●
●

●●●

IRC

0

20k

40k

60k

80k

100k

120k

20 40 60 80

Different link IDs

To
ta

l n
um

be
r

of
 p

ac
ke

ts
Loss rate

● 0%

1%

5%

10%

●●

Chronos

0

1k

2k

3k

4k

5k

6k

7k

20 40 60 80

Different link IDs

To
ta

l n
um

be
r

of
 p

ac
ke

ts

Fig. 17: Packet concentration in face of packet losses

due to the situation illustrated in Fig 10b)12, whereas in
IRC almost all messages experienced delay smaller than
10 seconds. This is because in TCP the sender will keep
re-sending the data until the ACK is received, and in
Chronos, sometimes it is not possible to detect the loss
and has to resort to the sync Interest re-expression to
recovery from the loss. To confirm our hypothesis, we
compared the CDFs of message delays in Chronos under
5% loss rate with re-expression intervals of 5 seconds
and 10 seconds respectively in Fig 19. As it shows, the
longest delay experienced by messages dropped to half
when the re-expression interval is reduced to 5 seconds
from 10 seconds.

Fig 20 compares the total number of packet trans-
missions. As the loss rate increases, the number of
total transmissions increases in both IRC and Chronos.
However, the deviation in IRC grows significantly, while
in Chronos it does not change much. Overall, the number
of packet transmissions in Chronos is lower.

To conclude our evaluation, Chronos, leveraging ben-
efits of the serverless design and NDN primitives (Inter-
est/Data naming, loop-free Interests broadcasting, Data
caching), provides a multi-party chat service that has
lower aggregate overhead, delivers messages faster, and
is robust against link failures and packet losses.

12. In our simulation, the sync Interests re-express interval is 10
seconds

5 DISCUSSIONS

In this section we briefly discuss how to make Chronos
scale well, both with large numbers of participants and
in large-scale networks, such as the Internet. We also
briefly discuss the security concerns for Chronos and the
proposed solutions.

5.1 Support Large Number of Participants

As the number of participants grows, the storage over-
head for producer statuses and computation overhead
for the root digest at each node grow linearly. Similarly,
the overhead due to heartbeats also increases as the
number of current participants in a chat room goes up.

5.1.1 Scale the digest tree
Participants may come and go in a chat room. Remem-
bering every participant that had ever entered the room
is both costly and unnecessary. One way to reduce the
overhead is to trim off the nodes in the digest tree for
the participants who have left the chat room.

If the number of current participants in a chat room is
large, one can effectively control the overhead by adding
a level in the hierarchy of the digest tree, as depicted in
Fig. 21. Participants can be uniformly distributed to a
few groups by using a uniform hashing algorithm over
their name prefixes. There is a child node of the root for
each group that contains the digest of data generated
by all the participants in that group. When a participant
sends a new message to the room, only the digests of
the corresponding group node and the root need to
be changed. However, when handling partition healing,
a two-round process may be needed to “walk down”
the digest tree [13]. That is, instead of immediately
replying to a sync Interest with all producer statuses,
participants may first reply with a list of digests of
groups. The recipients compare and identify the groups
whose digests differ, and then send Interests to retrieve
producer statuses of participants in those groups.

Depending on the number of participants, one can
easily add more levels to the digest tree as needed.

5.1.2 Adaptive heartbeat interval
Heartbeat messages are used to maintain a roster of
participants in a soft-state fashion. As the number of
active participants grows, more bandwidth is utilized for
heartbeat messages, as it becomes more likely that some
participant generates a heartbeat at any time. A method
similar to the one used in RTP [14] can be applied
here to limit the bandwidth consumed by heartbeats.
The interval to generate a heartbeat should be inversely
proportional to the number of active participants in the
roster, which Chronos already maintains. With such a
dynamically adjusted interval, the proportion of band-
width consumed by heartbeat messages can stay con-
stant regardless of the number of active participants in
a chat room.

11

●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●●

●●
●●

●●
●
●
●
●
●

●
●
●
●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●

●●●●●●●
●●●●●

●●
●●●

●●
●●

●●
●
●
●●

●●●
●
●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●

IRC Chronos

0%
20%

40%

60%

80%

100%

4ms 16ms 62ms 0.2s 1s 4s 16s 4ms 16ms 62ms 0.2s 1s 4s 16s

Delay

C
D

F

Random loss ● 0% 1% 5% 10%

Fig. 18: Packet delivery delay in face of packet losses

0%
20%

40%

60%

80%

100%

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●

●
●

●

●
●

●

●

●

●●
●

●

●
●

●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

4ms 16ms 62ms 0.2s 1s 4s 16s

Delay

C
D

F

Interest retransmission ● Every 10s Every 5s

Fig. 19: Comparison of delays with different re-express
intervals

5.2 Chronos in Large Networks

Chronos relies on broadcasting sync Interests to ex-
change digests of the chat room data set. However, it is
unrealistic to assume that sync Interests could be broad-
casted to the participants scattered in large networks,
such as the Internet. However, sync Interests can still be
broadcasted locally, while an overlay broadcast network
can be used to propagate them to remote participants.
As shown in Fig. 22, each network with Chronos par-
ticipants sets up a gateway node, which knows how
to forward sync Interests to other Chronos-supporting
gateways. The issue of how gateways learn each other’s
presence is out of scope for this paper.13 A gateway
node relays the sync Interests received from its local
network to gateways in other networks. Vice verse, the

13. We are currently working on a parallel project on making such
Interest routing strategies scalable.

200k

400k

600k

800k

1000k

0% 1% 5% 10%

Random loss

To
ta

l n
um

be
r

of
 p

ac
ke

ts

Type

IRC

Chronos

Fig. 20

Fig. 21: Digest Tree with Additional Layer for Groups

sync Interests received from other gateway nodes would
also be broadcast in the local network. As a result, the
broadcast of sync Interests is confined to networks where
there are users participating in the Chronos chat service.
Furthermore, besides supporting Chronos, the gateway
nodes can be configured to forward sync Interests for
other applications that use Chronos approach for data
synchronization.14

14. After the successful Chronos development, we are applying the
same approach to several other application developments including
joint editing and distributed file sharing.

12

5/2/12" 42"

A"

B"

C"

Fig. 22: Overlay Broadcast Network for Chronos

Note that the overlay gateways differ from the dis-
tributed servers in fundamental ways. Their role is to
facilitate scalable propagation of sync Interests. A failure
of any of them has no impact on Chronos service as long
as the overlay remains connected.

5.3 Security Considerations

There are mainly two security concerns: how to prevent
outsiders from accessing data of a private chat room
and how to handle non-cooperative participants, who
may disrupt a chat room by injecting false information
about other producers’ statuses. We assume that Chronos
participants can securely obtain each other’s public keys
through a trustworthy key management system.15

To enforce access control, Chronos may employ the
encryption-based approach. In other words, each private
chat room should have a moderator that decides who
are legitimate participants. Each participant publishes an
encryption public key. As each Data packet in NDN is
signed, the moderator can easily fetch and verify these
keys. The moderator uses the encryption public keys of
legitimate participants to encrypt a secret key, which
then can be retrieved and decrypted by the eligible
participants. Both the chat data and producer status data
of private chats should be encrypted using the secret key,
effectively preventing outsiders from eavesdropping.

Provenance of producer status can be achieved by
requiring participants to sign their own statuses. This
signature is stored along with the corresponding pro-
ducer status. Whenever one needs to reply the sync
Interest with producer statuses, one always include the
original signatures for the statuses as well. Fig. 23 depicts
a sync reply to a newcomer that contains the producer
statuses for current participants. The recipient can verify
the signature of each producer status and update the
digest tree only if the signature for producer status is
valid.

15. Manually configured key files, certificates signed by a CA, or any
other key management system could work here.

Fig. 23: A Sync Reply with Signed Producer Statuses

6 CONCLUSION

In this paper we presented Chronos, a novel multi-user
chat approach for Named Data Networking paradigm,
that provides a way for a group of participants to
communicate without relying on any central server. This
make the system more robust and efficient compared
to the traditional centralized designs. We verified and
evaluated our implementation using simulation-based
experiments, which demonstrated lower aggregate over-
head, while delivering messages faster, and being more
robust against link failures and packet losses. The server-
less data synchronization approach used in Chronos
design can be applied to various applications other than
text chat, ranging from real-time audio conferencing to
file synchronization applications. We hope our work
could spark more discussions on the design space of the
serverless data synchronization and further ease the job
of application developers.

REFERENCES
[1] A. Tridgell and P. Mackerras, “The rsync algorithm,” TR-CS-96-05,

1996.
[2] D. Eppstein, M. Goodrich, F. Uyeda, and G. Varghese, “What’s

the difference? efficient set reconciliation without prior context,”
Proc. of SIGCOMM, 2011.

[3] S. Agarwal, D. Starobinski, and A. Trachtenberg, “On the scal-
ability of data synchronization protocols for PDAs and mobile
devices,” IEEE Network, vol. 16, no. 4, 2002.

[4] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang,
“A reliable multicast framework for light-weight sessions and
application level framing,” in Proc. of SIGCOMM, 1995.

[5] X. Zhang, J. Liu, B. Li, and T.-S. Yum, “CoolStreaming/DONet: A
data-driven overlay network for peer-to-peer live media stream-
ing,” Proc. of INFOCOM, 2005.

[6] L. Zhang et al., “Named data networking (NDN) project,” PARC,
Tech. Rep. NDN-0001, 2010.

[7] R. C. Merkle, “A certified digital signature,” in Proc. of Advances
in Cryptology, 1989.

[8] National Institute of Standards and Technology, “Secure hash
standard (SHS),” FIPS PUB 180-3, 2008.

[9] H. Gilbert and H. Handschuh, “Security analysis of SHA-256 and
sisters,” Selected Areas in Cryptography, 2004.

[10] C. Dewes, A. Wichmann, and A. Feldmann, “An analysis of
Internet chat systems,” IMC’03.

[11] Palo Alto Research Center, “Ccnx,” http://www.ccnx.org.
[12] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measur-

ing ISP topologies with Rocketfuel,” IEEE/ACM Transactions on
Networking, vol. 12, no. 1, 2004.

[13] L. Wang, D. Massey, and L. Zhang, “Persistent detection and
recovery of state inconsistencies,” Computer Networks, 2006.

[14] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications,” RFC 3550, 2003.

