
Adaptive Forwarding in Named Data Networking

Cheng Yi Alexander Afanasyev Lan Wang

University of Arizona UCLA University of Memphis

yic@cs.arizona.edu afanasev@cs.ucla.edu lanwang@memphis.edu

Beichuan Zhang Lixia Zhang

University of Arizona UCLA

bzhang@arizona.edu lixia@cs.ucla.edu

This article⇤ is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
In Named Data Networking (NDN) architecture, packets
carry data names rather than source or destination addresses.
This change of paradigm leads to a new data plane: data
consumers send out Interest packets, routers forward them
and maintain the state of pending Interests, which is used
to guide Data packets back to the consumers. NDN routers’
forwarding process is able to detect network problems by
observing the two-way traffic of Interest and Data packets,
and explore multiple alternative paths without loops. This
is in sharp contrast to today’s IP forwarding process which
follows a single path chosen by the routing process, with no
adaptability of its own. In this paper we outline the de-
sign of NDN’s adaptive forwarding, articulate its potential
benefits, and identify open research issues.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet-swit-
ching networks

Keywords
NDN, data plane, adaptive forwarding

1. INTRODUCTION
A network’s architecture design determines the shape and

form of its forwarding mechanism. Today’s IP Internet ac-
complishes packet delivery in two phases. At the routing
plane, routers exchange routing updates and select the best
routes to make up the forwarding table (FIB). At the data
plane, routers forward packets strictly following the FIB.
Thus, routing is stateful and adaptive, while forwarding is
stateless and has no adaptability. This smart routing, dumb
forwarding design places the responsibility of robust packet
delivery solely on the routing system.

As a newly proposed Internet architecture, Named Data
Networking (NDN) inherits the hourglass shape of the IP ar-

⇤
The material in this article is based upon the work supported by the

National Science Foundation under Grants No. 1039615, 1040036, and

1040868; and performed in a renovated collaboratory by the National

Science Foundation under Grant No. 0963183, which is an award

funded under the American Recovery and Reinvestment Act of 2009

(ARRA). Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

chitecture, but replaces the host-to-host data delivery model
at the hourglass’ thin waist by a data retrieval model [2, 5].
NDN packets carry data names rather than source or des-
tination addresses. Data consumers express Interests in the
form of desired data names, without specifying where the
data may be located. Routers satisfy the Interests by re-
trieving the data, which are bound to the names with cryp-
tographic signatures, from their own caches, intermediate
repositories, or the data producers. While routing in an
NDN network serves the same purpose as in an IP network,
i.e., computing routing tables to be used in forwarding Inter-
est packets, the data plane in an NDN network is split to a
two-step process: consumers first send out Interest packets,
then Data packets flow back along the same path in the re-
verse direction. Routers keep the state of pending Interests
in order to guide Data packets back to consumers.

Obvious benefits of NDN’s data plane include built-in net-
work caching and multicast support. A less obvious but
equally important benefit is its adaptive forwarding enabled
by the state maintained at routers. By recording pending
Interests and observing Data packets coming back, individ-
ual NDN routers can measure packet delivery performance
(e.g., round-trip time and throughput), detect packet losses,
and utilize multiple alternative paths to bypass problematic
areas. With such an intelligent and adaptive data plane, the
routing plane in an NDN network only needs to disseminate
long-term changes in topology and policy, without having to
deal with short-term churns.

The seminal paper by Jacobson et al. [2] sketched out
the blueprint of the overall NDN architecture, however the
operations of its data plane are not fully explained and the
design specifics remain to be filled in. Our main goal in this
paper is to describe how NDN’s adaptive forwarding works
and identify its main advantages as well as the design trade-
o↵s. We first outline the design of an adaptive forwarding
mechanism for NDN, illustrate its benefits using a few case
studies, then identify key open research issues. We have
carried out a preliminary evaluation of the NDN data plane
performance through simulation and the results are reported
in a longer version of the paper [9].

2. OVERVIEW OF NDN’S DATA PLANE
In this section we briefly introduce NDN with a focus

on its stateful data plane. NDN is a receiver-driven, data-

ACM SIGCOMM Computer Communication Review 62 Volume 42, Number 3, July 2012

centric communication protocol. All communication in NDN
is performed using two distinct types of packets: Interests
and Data, both of which carry a name, which uniquely iden-
tifies a piece of data. A consumer puts the name into an In-
terest packet and sends it to the network. Routers use this
name to forward the Interest towards the data producer,
and the Data whose name provides the best match to the
Interest is returned to the consumer. All data packets carry
a signature that securely binds the name to the data.

Similar to IP packet delivery, an NDN network performs
best e↵ort data retrieval. An Interest or Data packet can be
lost, and it is the end consumer’s responsibility to retrans-
mit the Interest if it does not receive the desired data after
the expected round trip time.However, unlike IP’s location-
centric approach to data delivery, NDN packets carry data
names instead of source or destination addresses. This ba-
sic di↵erence in design leads to two profound di↵erences in
operations. First, although the name in an Interest packet
is used to guide its forwarding, similar to how a destination
address guides the forwarding of an IP packet, the Interest
may cross a copy of the requested Data at an intermediate
router or data repository and bring the Data back, while an
IP packet always reaches the destination (if not dropped).
Second, NDN consumers have neither addresses nor names
to be used for Data packet delivery. Instead, NDN routers
keep track of incoming interfaces for each forwarded Inter-
est (a pending Interest) and use this information to bring
matched Data packets back to consumers.

2.1 Forwarding Process
Each NDN router maintains three data structures: a Con-

tent Store for temporary caching of received Data, a Pend-
ing Interest Table (PIT), and a forwarding table (FIB) (see
Fig. 1). By its name, each PIT entry records an Interest
packet that has been forwarded, waiting for the Data packet
to return. The entry records the name, the incoming in-
terface(s) of the Interest, and the outgoing interface(s) to
which the Interest has been forwarded. An NDN router’s
FIB is similar to the FIB in an IP router except that it
contains name prefixes instead of IP address prefixes, and
it may show multiple interfaces for a given name prefix (see
Section 3.3). In addition, each NDN router has a strategy
module that makes forwarding decisions for each Interest
packet (see Section 3.4).

When a router receives an Interest packet, it first checks
whether there is a matching Data in its Content Store. If
a match is found, the Data is sent back to the incoming
interface of the Interest packet. If not, the Interest name is
checked against the entries in the PIT. If the name exists in
the PIT already, it means an Interest from another consumer
for the same name has been received and forwarded earlier,
and the router simply adds the incoming interface of this
newly received Interest to the existing PIT entry. If the
name does not exist in the PIT, the Interest is added into
the PIT and further forwarded.

In addition to the data name, each Interest packet also
carries a random nonce generated by the consumer. A router
remembers both the name and nonce of each received Inter-
est, so it can tell whether a newly arrived Interest is indeed
a new one or an old one that looped back (and drops it).
Thus, Interest packets cannot loop. Because Data packets
follow the reverse path of the corresponding Interest packets,
they do not loop either.

Content
Store

Pending Interest
Table (PIT)

FIB
Interest ✗ ✓ ✗

forward

✓ Data ✓
add incoming
interface

✗

drop or
NACK

Content
Store

Pending Interest
Table (PIT)

✗

Data ✓ forward

discard Data

cache

Downstream Upstream

✗ lookup miss ✓ lookup hit

Figure 1: Interest and Data processing in NDN

When a Data packet is received, its name is used to look
up the PIT. If a matching PIT entry is found, the router
sends the Data packet to the interfaces from which the In-
terest was received, caches the data, and removes the PIT
entry. Otherwise, the Data packet is unsolicited and dis-
carded. Each Interest also has an associated lifetime; the
PIT entry is removed when the lifetime expires.

2.2 Datagram State
An NDN router maintains an entry in its PIT for every

pending Interest packet, thus we say the router contains
“datagram state.” This state leads to a closed-loop two-way
symmetric packet flow: over each link, every Interest packet
pulls back exactly one Data packet, maintaining one-on-one
flow balance, except in (rare) cases where packets get lost
or matching data does not exist.

We note that NDN’s datagram state di↵ers in fundamen-
tal ways from the virtual circuit state for ATM or MPLS.
First, a virtual circuit sets up a single path between an
ingress-egress router pair; when it breaks, the state has to be
recovered for the entire path. Second, a virtual circuit pins
down the path to be used for packet forwarding; if some
link along the path gets overloaded due to traffic dynam-
ics, packets on the same virtual circuit cannot be diverted
to adapt to the load changes. In contrast, NDN’s datagram
state is per-Interest, per-hop. At each hop, the router makes
its own decision on where to forward an Interest. When a
router crashes, only the Interest state in that router is lost;
the previous hop routers can quickly detect the problem and
forward future Interests around the failure.

3. ADAPTIVE FORWARDING
In this section we describe an initial design that utilizes

NDN routers’ datagram state to build an intelligent and
adaptive data plane. The main goal is to retrieve data
via the best performing path(s), detect any packet delivery
problems quickly and recover from them.

3.1 Interest NACK
In the original sketch of NDN [2], after a router forwards

an Interest, it starts a timer based on estimated RTT. When
the expected Data packet comes back before the timer ex-
pires, RTT is updated; otherwise there may be potential
problems on the path. However, the timer-based problem
detection can take time. Worse yet, when the data cannot
be found along certain path, the unsatisfied Interest (which
we call dangling state) remains in the network until its life-
time expires, potentially blocking other consumers’ Interests
for the same data, since the PIT entry already exists and
the routers simply wait for the Data to return.

ACM SIGCOMM Computer Communication Review 63 Volume 42, Number 3, July 2012

name Interface ID,
lifetime

Interface ID,
send-time

……

List of incoming
interfaces

List of outgoing
interfaces PIT

name prefix

1 2 3 4 5 6

… … … … …

……

interface ID, routing preference, RTT, status, rate limit

Interfaces ranked by
forwarding policies FIB

.

.

.

.

.

.

nonce

List of
nonces

stale time

Figure 2: Forwarding State in PIT and FIB

In this paper we introduce Interest NACK to address
these issues. When an NDN node can neither satisfy nor
forward an Interest (e.g., there is no interface available for
the requested name), it sends an Interest NACK back to the
downstream node. A NACK carries the same name as the
corresponding Interest packet, plus an error code explain-
ing why the NACK is generated (e.g., Congestion, No Path,
etc.). If the downstream node has exhausted all its own for-
warding options, it will send a NACK further downstream.

In the absence of packet losses, every pending Interest is
consumed by either a returned Data packet or a NACK. A
NACK notifies the downstream node of network problems
quickly, which can then take proper actions based on the
error code, and delete the unsatisfiable Interest from PIT.
Note that Interest NACKs are di↵erent from ICMP mes-
sages: a NACK is sent to the previous hop while an ICMP
message is sent to the source host. Thus, their e↵ects are
entirely di↵erent.

3.2 PIT
PIT maintains datagram forwarding state (Figure 2). A

PIT entry is created for each requested name. It contains a
list of incoming interfaces from which the Interests for that
name have been received, a list of nonces that have been
seen for that name, as well as a list of outgoing interfaces to
which the Interest has been forwarded. Within a PIT entry,
each incoming interface records the longest Interest lifetime
it has received; when the lifetime expires the incoming inter-
face is removed from the PIT entry. Each outgoing interface
records the time when the Interest is forwarded via this in-
terface, so that when Data packet returns the RTT can be
computed.

3.3 FIB
NDN FIB di↵ers from IP FIB in two fundamental ways.

First, an IP FIB entry usually contains a single best next-
hop, while an NDN FIB entry contains a ranked list of multi-
ple interfaces. Second, an IP FIB entry contains nothing but
the next-hop information, while an NDN FIB entry records
information from both routing and data planes, providing
input to adaptive forwarding decisions (see Figure 2).

3.3.1 Routing Information

FIB entries record all the name prefixes announced in
routing. When a name prefix is withdrawn by routing, it is
not immediately removed, but kept for a stale time period
(or longer if Interests for the corresponding prefix continue
to be satisfied). This minimizes transient unreachability
during routing convergence, when some reachable prefixes
are temporarily withdrawn.

Each FIB entry lists all policy-compliant interfaces to-
gether with their routing preference for reaching the given

name prefix. That is, an interface is included, unless it is
forbidden to serve the prefix by routing policy. Routing pref-
erence is the outcome of applying routing policy and metrics
to paths computed by routing. It is one of the inputs that
we use to rank the interfaces.

3.3.2 Forwarding Performance Information

A FIB entry also records for each interface the data re-
trieval status. Exactly what is the best way to represent
this status is an open research question; we are currently
experimenting with a simple coloring scheme:

• Green: the interface is working.
• Yellow: the interface may or may not work.
• Red: the interface does not work.

When an interface comes up online or a new FIB entry is
created, the interface status is Yellow. It turns Green if
Data is currently flowing back from that interface. A Green
interface turns Yellow when a pending Interest times out, or
after it is unused for a while. An interface is marked Red if
it has failed, or the router has received a “No Path” NACK
from the upstream.

A FIB entry also maintains an RTT estimate for data re-
trieval via each interface. It is a moving average of RTT
samples taken every time a Data packet is received. This
RTT estimate provides an input to interface ranking; it is
also used to set up an exploration timer based on the ex-
pected Data packet return time, as we explain in Section 3.4.

3.3.3 Interface Ranking

All the Interfaces in a FIB entry are ranked in order to
help forwarding strategy choose which interface(s) to use.
For each prefix, the ranking of its interfaces is based on rout-
ing preference, observed forwarding performance, as well as
the forwarding policy set by operators. A wide variety of for-
warding policies can be supported in an NDN network. For
example, if the policy is “the sooner the better,” then inter-
faces with smaller RTTs will be ranked higher; if the policy
is performance stability, then the current working path is
ranked higher. Yet another example is a higher preference
for a particular neighbor, which leads to forwarding a higher
percentage of Interests to that interface than other equally
available ones. Note the di↵erences between routing policy
and forwarding policy: the former determines which routes
are available to the data plane, while the latter determines
which routes may be used and in which order.

3.3.4 Rate Limit

The one-to-one flow balance between Interests and Data
o↵ers NDN networks e↵ective means of congestion control.
By pacing Interests sent to the upstream direction of a link
(towards producer), one can prevent congestion caused by
Data packets in the downstream direction of the link.

We experimented with a simple calculation to set the In-
terest rate limit over an interface: Li = ↵⇥Ci/S̄i, where Li

is the Interest rate limit of interface i, Ci is the upstream link
capacity of i, S̄i is an estimate of the size of the Data pack-
ets that have been received over i, and ↵ is a configurable
parameter. The ratio Ci/S̄i is the maximum data rate that
is allowed from upstream measured in packets per second
(pps), which should be the same as the maximum Interest
rate going upstream. The coefficient ↵ is used to compen-
sate for errors in the calculations (e.g., imprecise data size
estimate, link and network layer overheads).

ACM SIGCOMM Computer Communication Review 64 Volume 42, Number 3, July 2012

When Li is reached, a node cannot forward more Interests
out to Interface i. If the node does not have other choices
to forward an Interest, it sends a NACK with error code of
congestion back to the downstream. The downstream node
then explores alternative paths to forward the Interest.

Each NDN node also maintains another rate limit, Li,n,
for interface i and name prefix n, and stores it in the corre-
sponding FIB entry as shown in Figure 2. When a conges-
tion NACK is received from interface i and for name under
prefix n, Li,n is reduced; when a matching Data packet is
received, Li,n is increased. The specific adjustment algo-
rithm is an area of our current research. One option is to
use algorithms similar to TCP’s slow start and AIMD.

When neither Li nor Li,n is reached, interface i is said
to be available for forwarding to name prefix n, otherwise
unavailable. Interests are only forwarded to available inter-
faces.

3.4 Forwarding Strategy
Given the information stored in PIT and FIB, the strat-

egy module determines which interface to use to forward an
Interest, making forwarding decisions adaptive to network
conditions. Our initial design includes the handling of new
and retransmitted Interests, Interest NACKs, and perform-
ing proactive interface probing.

New Interest: When a router does not find a match in
its PIT for a newly arrived Interest, it creates a new PIT
entry and forwards the Interest using the highest ranked
available Green interface for the name prefix. If no such
interface exists, the highest ranked available Yellow interface
is used.

Retransmitted Interest: If an Interest matches an ex-
isting PIT entry but its nonce does not exist in the nonce
list, this Interest is regarded as a retransmission. When
a router receives a retransmitted Interest before the explo-
ration timer expires, the Interest will not be forwarded. Oth-
erwise, the router will try a next best Green or Yellow avail-
able interface to forward the retransmitted Interest.

Interest NACK: When a router receives an Interest
NACK, it will send the corresponding Interest to the next
highest ranked available interface. Ideally, the router should
try a few alternative paths but not for too long (the applica-
tion may have moved on without the missing Data). Thus,
the router uses the exploration timer to limit how long this
“path exploration” should take. The timer starts when a
new or retransmitted Interest is forwarded for the first time,
with a timeout value set to the expected RTT (plus vari-
ance). A router explores alternative interfaces whenever a
NACK is received until it succeeds or until the timer expires.
After the timer expires, router will stop trying alternative
interfaces unless it receives a retransmitted Interest (by con-
sumer host).

Interface Probing: Although Interest packets should be
forwarded to Green interfaces when they are available, it is
also important to periodically probe Yellow interfaces in or-
der to discover other working paths or paths with better per-
formance, e.g., a good path becomes available after failure
recovery or a path to a cache that is closer than the producer.
A router proactively probes Yellow interfaces by forwarding
a copy of an Interest to it. Probing provides availability
and performance information for alternative paths, but also
retrieves duplicate Data. One can control this overhead by
limiting the probing frequency.

In all the above situations, if a router has no available
interfaces to forward an Interest, it will send a NACK with
a proper error code back to the downstream node. Though
routers try their best to explore alternative paths to get
around network problems, consumers are ultimately respon-
sible for retransmitting Interests if they still want the data.

4. CASE STUDIES
In this section, we use three problem scenarios, link fail-

ure, congestion, and prefix hijack, to demonstrate the advan-
tages of NDN’s stateful data plane. Our simulation evalua-
tion has also confirmed that NDN provides superior packet
delivery performance than IP in each of these scenarios [9].

Link Failure.

If link layers can detect failures quickly and inform the
network layer, failure detection time can be very short in
both NDN and IP. In other cases where lower-level detec-
tion is unavailable or inadequate, IP relies on routing proto-
cols’ periodic keep-alive messages to detect failures, which
usually takes seconds or even tens of seconds, while NDN
relies on observing two-way packet flows and can detect fail-
ures typically in the order of tens or at most hundreds of
milliseconds.

In our proposed NDN FIB design, if an interface failure is
detected or Interests sent to the interface do not bring back
Data, a router labels the interface Red or Yellow respectively
and explore alternative paths; in case no alternative path is
available, the router returns Interest NACKs, which trigger
downstream routers to explore other paths. If a consumer
does not receive data within the estimated RTT, it may
re-express the Interest, triggering consumer-side routers to
search for a working path. As soon as a working path is
found, i.e., a path that can bring back valid Data packets, it
is assigned a Green status and used to forward future Inter-
ests for the same name prefix until another failure occurs,
or a better path is found.

In an IP network a failure detection will trigger routing
announcements being sent out and the routing system goes
through a convergence process, during which inconsistent
paths among routers may lead to packet loops or dead ends.
As long as IP routers forward packets strictly following the
routing table, the network may su↵er from routing conver-
gence delays and even significant packet losses during this
period. The problem is especially prominent when the rout-
ing convergence takes long time, which can be seconds in
regular OSPF and tens of seconds or even minutes in BGP.

Although an NDN network also uses routing protocols
to propagate prefix reachability information throughout the
network, its data plane does not solely rely on routing to
forward packets. Instead, NDN routers use both routing
information and feedback from the data plane to guide for-
warding decision. Therefore, NDN routers can quickly adapt
failures and provide uninterrupted data delivery.

Congestion.

When an NDN router detects that a link has reached its
load limit, it will automatically try other available links to
forward the Interests. If all the available links are congested,
the router will return NACKs to downstream routers, which
will try their alternative paths. Consequently, traffic in
NDN can automatically split among multiple parallel paths
as needed, leading to better network utilization and better
application performance.

ACM SIGCOMM Computer Communication Review 65 Volume 42, Number 3, July 2012

This feature of NDN is in sharp contrast to today’s IP
routing, which in general does not take congestion into con-
sideration due to concerns of route oscillation and frequent
routing updates. When traffic flows experience congestion,
the only option is to slow down the sending rate. If keep-
alive messages between routers are lost due to congestion, IP
routers will consider the link down and start routing conver-
gence process, switching all traffic away from the overloaded
link. Thus, IP routers either do not detect the congestion
or misdiagnose the problem.

Another benefit of NDN’s way to deal with congestion
is accurate knowledge and control of available resources.
When excess Interests trigger NACK returns from upstream
routers, a router can dynamically adjust its rate limit based
on the percentage of Interests returned. Therefore, a down-
stream router can match its sending rate to what upstream
router can support. If the network reaches its capacity, the
Interest NACKs will eventually be returned all the way back
to the consumer and cause the application or transport layer
to adjust the sending rate. The adjustment of Interest send-
ing rate is done before excessive Data packets being pulled
into the network, a more e↵ective control than reacting to
congestion after it occurs. Moreover, when a router needs to
return Interest NACKs due to congestion, it can return In-
terests selectively to achieve certain policy goals. For exam-
ple, to enforce fairness rules, it can return Interest NACKs
to downstream routers in proportion with the number of
Interests received from each.

Overall, NDN enables hop-by-hop adaptive congestion con-
trol mechanism, which reacts to congestion quickly and uti-
lizes multiple paths as needed, and is able to accommodate
administrative policies.

Prefix Hijack.

Assuming a prefix hijack attack leads to packets falling
into black holes, NDN can easily detect such attacks because
they disrupt the normal two-way packet flows. The attack,
when a hijacker announces a victim’s name prefix and drops
all Interests going to the name prefix, can be mitigated in
the following ways. First, some routers may see that a pre-
viously unused interface (Yellow) gets ranked higher by the
routing protocols than the current face (Green) in use. The
routers will continue to forward Interests through the cur-
rent working interface (which leads to the legitimate prefix
origin), and will probe the higher ranked Yellow interface
by sending copies of the Interests to it at the same time.
Since this new interface leads to the hijacker and does not
return Data packets back, it will remain Yellow and unused.
Second, for the routers whose current path goes through the
hijacker’s router even before the hijack happens, they will
notice that Data packets stop coming back. This will result
in the current interfaces being labeled Yellow and routers
switch to better paths if they exist; the consumer will also
eventually start retransmitting failed Interests to trigger the
exploration of alternative paths.

The above built-in and e↵ective mitigations against black
holing attacks are again in contrast to the difficulties in deal-
ing with the same problem in an IP network. When the rout-
ing table is polluted, either accidentally or intentionally, the
routing system cannot detect the problem itself. Traffic will
be drawn to the false origin until the hijack is stopped by
operator interventions.

If the hijacker returns bogus Data packets instead of black

holing, NDN routers need to be able to detect bogus packets,
so that they can mark the face Yellow and try alternative
paths. This detection can be accomplished either by signa-
ture verification over randomly selected Data packets, or by
notifications received from end consumers. Gasti et al. [7]
provide a comprehensive analysis of DoS threats to NDN
networks and mitigation strategies.

5. RESEARCH ISSUES
In previous sections we have argued that adaptive for-

warding with datagram state can achieve robust packet de-
livery as well as simplified routing. There are also a few
important design choices and research challenges that we
would like to discuss briefly.

5.1 Forwarding State
NDN’s per-packet datagram state brings with it a signi-

ficant cost, both in router storage and in packet processing
overhead. More specifically, since an Interest stays in the
PIT of each router along the path until the corresponding
Data packet returns, the number of PIT entries in a router is
roughly on the order of Bandwidth⇥RTT/P , where P is the
average size of Data packets. For a 10 Gbps link, we need
about 100 k PIT entries assuming RTT = 100 ms and P =
1000 bytes. If a router has 10 such interfaces, then its PIT
needs to hold 1 M entries. Although today’s core routers
can handle more than 1 M entries in IP routing tables, a
PIT entry is likely to be larger in size than an IP routing
entry. As the routers get more interfaces and networks go
faster over time, the PIT table will also grow. Therefore,
one open research issue is how to reduce the size of PIT so
that it can be stored efficiently on the routers.

Another research question is how to efficiently lookup and
operate on the PIT. For every incoming packet, either In-
terest or Data, a router has to perform a lookup on the PIT
using the name. PIT entries need to be added when a new
Interest is received, deleted when a pending Interest is satis-
fied or expired, and updated when a retransmitted Interest
or an Interest NACK is received. All these lookup and oper-
ations need to be performed at line speed. There are already
several research e↵orts looking into this issue (e.g., [8]).

5.2 Forwarding Strategies
In Section 3, we presented a simple forwarding strategy

design, which, according to our evaluation [9], works rea-
sonably well in handling the network problems described in
Section 4. However, it remains an open question whether
we can design even better forwarding strategies to satisfy
di↵erent needs of the network operators and users. Below
we discuss three main issues.

How to discover a working path for a new or retransmitted
Interest? There is a spectrum of strategies between trying a
single interface each time (our current strategy) and flooding
to all interfaces, with di↵erent trade-o↵s between the over-
head and delay to retrieve data. We can also apply di↵erent
strategies to first transmission, retransmission, and NACK.
For example, the retransmissions can be forwarded to sev-
eral interfaces simultaneously while the first transmission is
forwarded to only a single interface.

How to use multiple paths? For Interests matching the
same name prefix, our current approach is to use a single
best path as long as it is able to handle all the traffic. That
is, only after a problem occurs to that path, such as con-

ACM SIGCOMM Computer Communication Review 66 Volume 42, Number 3, July 2012

gestion and packet loss, will a router divert excess traffic to
other paths. Another approach is to proactively split traffic
along multiple paths. This way, a router can keep getting
feedback on data plane performance from multiple paths,
and a failure may a↵ect a smaller portion of the traffic. The
two approaches are not exclusive of each other. We are cur-
rently investigating which one NDN needs, or whether NDN
needs both.

How to do interface probing? Routers periodically send
Interests to previously failed or unused interfaces to search
for better paths. There are two questions associated with
probing: when to perform probing and which interface to
probe. For the first question, probing can be triggered ev-
ery N seconds or every M packets. The exact numbers of
N and M depend on the overhead that the network opera-
tors are willing to tolerate. As to which interface to probe,
one approach is to explore a higher-ranked yellow interface
with a higher probability because it has a greater chance of
leading to a better path.

6. DISCUSSION
Datagram is the basic unit in packet switched networks,

just like atom is the basic unit of all material. Therefore,
controlling Interest forwarding using per-datagram, per-hop
state o↵ers a network the flexibility to support a wide vari-
ety of functions. While semantics of the per-datagram state
can di↵er (i.e., what kind of information is remembered in
the state and how this information is used), it is the gran-
ularity of NDN’s data plane state that allows (1) loop-free
(multipath) data retrieval, (2) native support of temporal
and spatial multicast (i.e., servicing requests from di↵erent
users that are sent either at the same or di↵erent time),
(3) efficient recovery from losses of packets in transition,
(4) e↵ective flow balancing (congestion avoidance), (5) ro-
bust recovery from network problems, such as link failures
and hijacks, as illustrated in Section 4, and many other im-
portant network functions.

Many attempts have been made over the years to add
the above mentioned functions into IP networks, with each
solution installing its own state into the network that cannot
be used to solve other problems. An NDN network can use
the same datagram state to provide all the functions at once,
and the fundamental reason is because per-packet state is of
the finest control granularity in a packet switched network.

It is conceivable that one may set up state of coarser
granularity, e.g., per-connection or per-destination-prefix,
for control purposes in IP or some other network architec-
tures. The trade-o↵ in choosing state granularity is between
the functionality to be supported versus the amount of re-
source it consumes. When a coarser (than datagram) gran-
ularity of state is used for control purposes, it can be ad-
equate to support a specific solution, but is unlikely to be
able to support other uses, simply because di↵erent con-
trol purposes require certain state information that is in-
compatible with the chosen granularity. For example, IP
multicast requires state information associated with {host,
multicast group} pair, which is incompatible with the state
information needed by XCP [4] to control congestion. Simi-
larly, the state information needed by XCP is di↵erent from
that needed by PushBack [1], a solution to mitigate DDoS
attacks. Other piecemeal solutions include Pretty Good
BGP [3] to mitigate route hijacks, Failure-Carrying Pack-
ets [6] to deliver packets under failures. Each of them may

solve one problem well by adding its own state or mecha-
nisms tailored to the specific problem.

NDN’s datagram state does incur significant cost, which
is perceived by many as infeasible based on today’s tech-
nologies. For example, today’s router hardware may not be
able to hold a PIT or operate at wire speed. We consider
these challenges as part of the research issues in realizing
NDN, as discussed in Section 5.1.

7. CONCLUSION
NDN’s communication model of retrieving data by names

leads to a data plane design that keeps datagram state at
every router. Because datagram is the basic unit in packet
switched networks, this datagram state provides the flexi-
bility to solve a host of existing problems that have resisted
e↵ective solutions up to now. In this paper we described a
specific design on how to utilize this datagram state to pro-
vide high performance and resilience in an NDN network.

At the same time, we are fully aware that installing data-
gram forwarding state at routers brings largely open issues
in terms of both technical feasibility and economical viabil-
ity. The history of IP development shows that, when a new
architecture solution provides significant functional advan-
tages as well as new application opportunities, even though
its overhead may seem higher and its initial implementa-
tion o↵ers inferior performance compared to the highly en-
gineered implementation of the incumbent architecture, re-
search and technology advancements would eventually catch
up to close the gap and even go further. Thus, we remain
modestly optimistic about the future of NDN and its state-
ful data plane, and this paper serves as our invitation to the
research community to further examine this new direction
for building resilient networks.

8. REFERENCES
[1] J. Ioannidis and S. M. Bellovin. Router-based defense

against DDoS attacks. In Proc. of NDSS Symposium,
2002.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.
Plass, N. H. Briggs, and R. L. Braynard. Networking
named content. In Proceedings of ACM CoNEXT, 2009.

[3] J. Karlin, S. Forrest, and J. Rexford. Pretty good BGP:
Improving BGP by cautiously adopting routes. In
Proceedings of IEEE ICNP, 2006.

[4] D. Katabi, M. Handley, and C. Rohrs. Congestion
control for high bandwidth-delay product networks. In
Proc. of SIGCOMM, 2002.

[5] L. Zhang et al. Named data networking (NDN) project.
Technical Report NDN-0001, PARC, October 2010.

[6] K. Lakshminarayanan, M. Caesar, M. Rangan,
T. Anderson, S. Shenker, and I. Stoica. Achieving
convergence-free routing using failure-carrying packets.
In Proceedings of ACM SIGCOMM, 2007.

[7] Paolo Gasti, Gene Tsudik, Ersin Uzun, Lixia Zhang.
DoS & DDoS in named-data networking, May 2012.
Under submission.

[8] Y. Wang, K. He, H. Dai, W. Meng, J. Jiang, B. Liu,
and Y. Chen. Scalable name lookup in NDN using
e↵ective name component encoding. In Proceedings of
IEEE ICDCS, 2012.

[9] Y. Cheng et al. Smart forwarding: A case for stateful
data plane. Technical Report NDN-0002, May 2012.

ACM SIGCOMM Computer Communication Review 67 Volume 42, Number 3, July 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /FelixTitlingMT
 /FencesPlain
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Gabriola
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MT-Extra
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

