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ABSTRACT

Named Data Networking (NDN) enables data-centric security in net-
work communication by mandating digital signatures on network-
layer data packets. Since the lifetime of some data can extend to
many years, they outlive the lifetime of their signatures. This paper
introduces NDN DeLorean, an authentication framework to ensure
the long-term authenticity of long-lived data. The design of De-
Lorean takes a publicly auditable bookkeeping service approach
to keep permanent proofs of data signatures and the times when
the signatures were generated. To assess DeLorean’s feasibility, the
paper presents a set of analytical evaluations on the operational
cost as a function of data archive volumes. The paper also identifies
several remaining issues that must be addressed in order to make
DeLorean a general solution to authenticating long-lived data.
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1 INTRODUCTION

Named Data Networking (NDN) changes the network communica-
tion model from “delivering packets to an end host” to “retrieving
(immutable) data by name.” This change enables many of the long
sought-after network properties, including efficient data distribu-
tion via multicast and in-network storage, ad hoc and delay-tolerant
communication, and many more.
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One of the key NDN mechanisms is building security (authentic-
ity) into the network-level data packets—each data packet! must
carry a digital signature to ensure its authenticity, whether it is
being transmitted or stored. However, digital signatures generally
have a limited lifespan, e.g., the current practices set validity for sig-
natures of PKI certificates from several months to several years [2].
This limited lifetime works well for today’s session-based network
security model, where certificates (their signatures) only need to be
valid at the time of establishing a session. With NDN’s data-centric
security model, on the other hand, the lifespan of signatures can be
much shorter than that of some long-lived data they authenticate.
This mismatch between the signature lifetime and the data lifetime
poses a serious challenge. A signature that used to successfully au-
thenticate a data packet a few years ago may no longer be trusted
today, while the data itself may still be relevant, especially in cases
of historical data archives.

In this paper, we propose an authentication framework for NDN
data archives, dubbed NDN DeLorean, which uses a look back
data authentication model: long-lived data can be authenticated
by checking the signature validity at the time of the data creation.
Inspired by the Certificate Transparency [10], DeLorean provides a
publicly auditable bookkeeping service that issues proofs of data
packet signature existence at a given time by logging the finger-
prints of the signatures in the form of a Merkle tree. Given a data
packet with its signature, the certificates that authenticate the sig-
nature, and the DeLorean proofs for the signature of the data packet
and certificates, one can perform the authentication regardless of
the signatures expiration.

Our main contributions in this work include: (1) the use of look
back validation model as the solution to long-lived data mainte-
nance in NDN (Section 4), (2) the design of the first publicly au-
ditable signature bookkeeping service over NDN and its initial
implementation prototype [25] (Section 5), and (3) an analytical
evaluation of the scalability of our proposed solution (Section 6).

We believe that the DeLorean framework is an important step
toward effective authentication of long-lived data. We also identify
a number of remaining issues (Section 7) that must be addressed
to make DeLorean a general solution, in particular the challenge
of scaling the design to handle unpredictable data volumes in the
future.

10r a group of packets, when a manifest-like approach is used [3, 14]
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2 BACKGROUND

Named Data Networking (NDN) is a proposed networking archi-
tecture that uses data fetching as a communication primitive. NDN
defines two types of network packets to support the data-centric
communication: interest packets as the request to retrieve desired
data, and data packets that carry the actual data. Data consumers
send interests and NDN routers forward interests based on the
names carried in the interests toward potential data sources, setting
up a state of “pending interests” along the way. Upon receiving
an interest, a data producer returns the corresponding data packet
which may already exist or is created on demand. NDN mandates
that the producer must secure each data packet as soon as it is
created, using cryptographic signature to bind together the name
and content of the packet. This data packet is returned back to the
consumer or consumers following the breadcrumb path of pending
interest states. Because each data packet is immutable and identi-
fied by a unique name, and can be authenticated on its own, NDN
routers can cache data packets to satisfy subsequent interests for
the same data.

For illustrative purposes, in the rest of the paper, we use an elec-
tronic version of “USA Today” newspaper as an example. We assume
that USA Today publishes all its articles under a namespace with
the name pattern “/UsaToday/ [Datel/[Categoryl/[ArticleID]”.
For example, a data packet with the headline story “Youth Jailed”
from October 22, 2015 would be named “/UsaToday/2015/10/22
/headline/YouthJailed”.? All the data packets of an article are
signed by the keys of its author, who should have a unique name un-
der the namespace “/UsaToday/journalist”. For example, Compu
Fax, the author of “Youth Jailed” article,® would sign the above ar-
ticle with the key “/UsaToday/journalist/CompuFax/KEY/_v=10".
Note that NDN eliminates the requirement that data producers
(USA Today) and consumers (its readers) have to be online at the
same time to communicate. A data producer can move data packets
to an external data repository (repo) to serve future requests for
the data, or the data can be carried by some devices to meet future
consumers as in a DTN scenario.

2.1 Data-Centric Authenticity

Since the data-centric communication model enables consumers’
interests “to pick data from anywhere possible”, traditional session-
based security solutions, e.g., TLS [7], IPSec [9], are no longer
applicable as they are designed to create secure connection between
two fixed end nodes. Although recent work (e.g., CoAP based on
DTLS [19]) eliminates the concept of connection at the network
layer, the concept of secure session remains in the application
layer. NDN embraces a complete data-centric security which ensures
integrity, provenance, and secrecy of data itself, instead of relying
on the security of delivery session.

NDN data producers attach digital signatures to data packets
and consumers who have the producer’s public key can directly
authenticate such data, applying the trust schema [24] (i.e., that
names of data and keys are as expected and certification chain

2 A large article can be split into multiple data packets, each getting a unique name
with this prefix and a suffix that represents the segment number, e.g., “_s=1", “_s=2",
etc.

3Compu Fax is indeed a program that can write automated stories for USA Today in
“Back to the Future” film.
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Data packet (target) Data packet (key)

Name: /UsaToday/2015/10/22/ Name: /UsaToday/journalist/
headline/YouthJailed/v_1 7| 78/KEYNV_2

Content: ... L | [Content: ... ® L
Signature: KeyLocatoﬁ - Signature KeyLocatofl'

Data packet (key)
Name: /UsaToday/journalist/
CompuFax/10/KEY/v_3

Content: ... »
KeyLocatotF

Signature:
Figure 1: An example of certification chain consisting of tar-
get data, intermediate keys, and trust anchor

Trust Anchor

/UsaToday/15/KEY

terminates in a pre-trusted key—trust anchor), not worrying about
from where this data came. If consumers do not have the producer’s
public key at hand, they can retrieve the key (plus the so called
certification chain, including the signing key of the producer’s key,
the signing key of the signing key, etc.) following the information
in the “KeyLocator” field of data packets and recursively applying
the trust schema. Figure 1 shows an example of certification chain
for our USA Today example. Note that keys are just another type
of general NDN data, and given the data packet carrying a public
key binds the key to its name through the packet’s signature, it is
effectively a public key certificate.

2.1.1 Limited Cryptographic Signature Lifetime. Digital signa-
tures usually have a limited lifetime: signature algorithm can get
broken, private keys can get compromised or even reconstructed,
provided enough time and computation power. This limit is gen-
erally captured as part of a data packet signature in the form of
the validity period field, which defines a period when the signa-
ture is considered valid. Moreover, the effective validity period of
a signature can be shorter than its defined validity period, as it is
the intersection of the validity periods of all the keys along the
certification chain. For the USA Today article in our example, if the
article’s signature was set to be valid for ten years, while CompuFax
key’s signature was only valid for one year, then the effective time
when the article’s signature would be verifiable is only that one
year. Therefore, to be able to verify the validity of data packets over
prolonged time periods, one has to either (1) set the validity periods
of all signatures to unrealistically long values, (2) keep refreshing
signatures of the data and keys along the certification chain, or
(3) use a secure mechanism to verify signatures considering the
validity at the time signatures were created, e.g., NDN DeLorean
proposed in this paper.

2.1.2  Authentication Granularity. Public key cryptography is
computationally expensive, which makes it impractical with cur-
rently available technologies to create separate public key signa-
tures for individual data packets. However, it is possible to mitigate
these limitation by using only one public key signature per group of
data packets [3, 14, 20], securing the whole group using a relatively
cheap symmetric cryptography and/or cryptographic hashing. The
size of the packet group, in this case, will determine the granularity
of the authentication: individual packets can be authenticated only
in the context of the whole group.

2.2 Merkle Tree

Merkle tree [15] is a special k-ary tree data structure, where the
value of each node is the hash of the concatenation of the values of
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its children. Similar to hash chains [17] in which the last node seals
all the previous nodes so that they cannot be altered (unless the
hash algorithm is broken), the root node of the Merkle tree seals all
the leaves in the tree. Any change of any leaf leads to the change
of the corresponding intermediate nodes and ultimately the root
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Figure 2: Merkle tree evolution

Figure 2 demonstrates the construction of a binary Merkle tree,
initially with only three leaf nodes. When adding a new leaf node to
the tree, there are several cases of how the tree is updated. If there
is an unused position at the bottom level (level zero) of the tree, the
node will simply take that position (transition Figure 2a — Figure 2b
when x3 is added). If there are no unused positions and the tree
is complete, then the tree will need to grow by an additional level
and the added node will take the newly created unused position
(transition Figure 2b — Figure 2c when x4 is added). If the tree
is not complete, then a new intermediate level and new unused
positions for leaf nodes will be created. In the first and third case,
the addition changes the hash value of the nodes in the subtrees
corresponding to the added node (n1,1 recalculated using x, and
newly added x3, ng ¢ recalculated using nj,¢ and newly calculated
n1,1)- In the second case, the tree gets a new root node, calculated
using the previous root and the newly inserted branch of the tree.

Note that until a level of the Merkle tree is complete, the values
of the parent nodes on the path from the incomplete branch to the
root are not stable and will change whenever a new leaf node is

added.

3 THREAT MODEL AND ASSUMPTIONS

In this paper, we focus on the authenticity of low-volume long-lived
public data, i.e., a relatively small set of data packets or data collec-
tions that need to be preserved for a long period of time. Typical
examples of such data include newspaper articles, library archives,
historical records, experimental results, etc. We focus specifically
on ensuring that the authenticity of these long-lived data can stay
verifiable, potentially many years after the data producer ceased
to exist. We assume that the consumers know which trust schema
should be used to authenticate data and that the trust anchors do not
change over time (i.e., consumers know how to construct the valid
certification chains). We also assume that the cryptographic keys in
the corresponding certification chains of the long-lived data have
limited validity periods and the keys are not compromised/leaked
during their validity periods, i.e., there are no producer imperson-
ations while the certification chains are within their validity period.
In our future work, we plan to investigate the generic applicability
of DeLorean to other types of higher volume data, how to ensure
the long-term secrecy of confidential data, and how to mitigate
keys’ compromise and revocation during their validity periods.
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Figure 3: DeLorean’s data chronicle

In this work, we assume that attackers can reconstruct the sign-
ing key after the validity period—through key leaking or brute
force computation. In this case, an attacker may impersonate the
key owner by generating a signature on fake data using the re-
constructed key. Our counter solution to this is to provide a book-
keeping service that “certifies” the existence of data at particular
points of time. We do not assume that the bookkeeping service is
trustworthy and never misbehaves. We consider the following four
potential misbehaviors of the bookkeeping service: (1) denial of
providing the previously issued proofs, (2) repudiation (pretend-
ing that the previously issued proofs are invalid), (3) reordering
(altering the time relation of the existing proofs), and (4) injection
(injecting a new proof in the past). To ensure the correctness of
the bookkeeping service, we leverage public auditing, i.e., a large
group of auditors occasionally validate the bookkeeping history to
defer the service from misbehaving. We assume that the majority
of auditors perform the validation on time and report misbehavior
immediately when it happens.

In the following Sections, we describe the design of DeLorean
framework and how it prevents the above misbehaviors through
constant public auditing of the historical record of the issued proofs.

4 DELOREAN DESIGN OVERVIEW

DeLorean is an always-on service that publishes a data “chronicle”
(Figure 3). The chronicle consists of a sequence of volumes, each
containing fingerprints of the witnessed signatures (e.g., signature
of an individual data packet or signature of a manifest) within
a fixed timeslot. During the timeslot, DeLorean accumulates in
the “current” volume signatures from publishers who want their
signatures to be recorded, finalizing and publishing the volume as
a set of NDN data packets at the end of the timeslot. As explained
in Section 5.6, after the volume is finalized, it cannot be changed
without invalidating consistency with any future volumes, which
can be easily detected by auditors. The presence of a signature in a
particular volume is effectively a timestamp proof'that the signature
existed before the end of the corresponding time slot. For example,
DeLoran chronicle could have witnessed a signature of the data
packet for “/UsaToday/2015/10/22/headline/YouthJailed” USA
Today article as part of 10:50am volume on October 10, 2015. Until
the time travel becomes a reality and for as long as the data chronicle
is consistent and the corresponding volume can be retrieved, one
would be able to authenticate this article in perpetuity.

While the signature is still valid, a data producer (article’s au-
thor) or an archive service on the producer’s behalf (USA Today
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Figure 4: DeLorean workflow

publisher) can request a timestamp proof for this signature from
DeLorean (Flow P.1 in Figure 4), supplying its fingerprint in the
form of a hash digest. The response to this request is a name of the
chronicle volume that will be published by DeLorean at the end
of the current cycle (Flow D) and the index of the fingerprint in
the volume. After waiting until the volume is ready (on average
a 5-minute wait in our example), the producer can retrieve the
volume to verify whether DeLorean has included the fingerprint
in the volume (Flow P.2). In the end, the producer can publish the
timestamp proof of the signature—the full name of the volume and
the index of data fingerprint—alongside the data (Flows P.3).

To verify data despite its signature’s expiration, consumers need
to “look back” to the timepoint when the data’s signature was wit-
nessed by DeLorean. To securely do so, a consumer needs to obtain
the corresponding timestamp proof signature (Flow C.1) and verify
this proof with the DeLorean service, if necessary fetching addi-
tional chronicle volumes (see Section 5). Similarly, the consumer
can verify signatures of the signing keys, signing keys of the sign-
ing keys, etc. (i.e., the trust chain) With all timestamp proofs, the
consumer can verify the authenticity of data signature, as if it was
at the time of time-stamping.

In order to ensure the correct and truthful operations of De-
Lorean, a number of auditors must continuously check the consis-
tency of the chronicle (Flow A), i.e., checking that DeLorean has not
modified the previously published volumes. The more auditors are
involved in the process, the less frequently each individual auditor
needs to perform consistency checking (Section 6.3). If an auditor
detects that DeLorean has modified the chronicle through obtaining
several mutually inconsistent volume records, represented as NDN
data packets signed by the DeLorean provider 4, it can share them
publicly as discussed in Section 7.4. This public-eye audit serves
as a deterrent from the service’s misbehavior, in the worst case
requiring a transition to another provider preserving the consistent
part of the chronicle.

4.1 Design Discussion

The look-back validation service realized by the NDN DeLorean
service essentially requires “certification” of the timestamp while
the signature is still considered valid, e.g., just after it is created.
Such certification can be implemented in several different ways.

4As a first design, we focus on a single provider that maintains the chronicle and
volumes, concentrating on the design of an NDN naming scheme for DeLorean and a
scalability analysis of such a system. Future work may investigate more decentralized
ways of maintaining chronicle and volumes (e.g. as in bitcoin).
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One approach is a dedicated trusted service (e.g., Apple’s timestamp
certification service) which issues the signed timestamps. To ensure
the long-term timestamp validity, the service would need to period-
ically update its signed keys and even re-issue timestamps. While
this approach provides relative strong non-repudiation guarantees,
the drawback is a “blind” trust that the service behaves correctly,
without the ability to reliably detect out-of-order or back-issued
timestamps.

Another approach is to use a block-chain (hash-chain) approach,
where each new signature is added to the chain and potentially
associated with a timestamp; while the chain is distributed across
many (all) interested parties. In this way, the existence of a signature
in the chain indicates its validity at the time (either absolute time
or relative to other signatures); and signatures cannot be added
or removed in the middle of the chain without breaking chain’s
consistency.

NDN DeLorean belongs to the second approach and realizes
the concept of a hash-chain efficient form in terms of storage and
verification time. In DeLoran chronicles, each item in the “chain”
represents an aggregation of all signatures issued within a specific
time range and “chain” (the chronicle) is organized as a Merkle tree
allowing fast O(log n) lookup to verify consistency.

5 DELOREAN

The design of DeLorean, largely inspired by the Certificate Trans-
parency framework [10] [11], realizes the look-back signature vali-
dation via creating proofs that certify the existence of the signatures
at the specific times in the past. These proofs are recorded in the
DeLorean Chronicle tree and grouped into per time period Volume
trees. Similar services exist on the Internet today [13]. Our contri-
bution is the design of such a system and corresponding naming
scheme for NDN as well as a scalability analysis of this approach.
Further, we propose and analyze a decentralized, public audit of
the DeLorean service provider and show how NDN can facilitate
this public audit. In the following, we describe how Chronicle and
Volumes trees are constructed and published in the NDN network,
what are the mechanisms and algorithmic complexity to verify
existence of a signature in the chronicle, as well as show details
of the publicity-based trust mechanisms that underlie the security
properties of DeLorean.

5.1 Chronicle Construction

The DeLorean chronicle is a multi-dimensional Merkle tree (Fig-
ure 5), whose overall state is reliably captured by the hash of the
root node (chronicle digest). The chronicle digest state is calculated
using the top-level Merkle structure (“Chronicle tree”) that records
causal relationships between volume states (volume digests), i.e.,
that the volume vy4 goes after the volumes v and vs, etc. The vol-
ume digests are calculated using their own Merkle trees (“Volume
trees”) that capture signatures (their cryptographic hashes) wit-
nessed during the time interval corresponding to the volume.

At the end of each time interval, the DeLorean service adds a
new volume digest node to the Chronicle tree. To do so, the service
creates a set of data packets corresponding to the newly inserted and
updated nodes, signing each data packet with the service’s private
key. In other words, the signature certifies that the chronicle digest
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Figure 5: Two-level hierarchy of the timestamp service

(and all other children digests) was produced by the DeLorean
service; while the digests provide assurances of the Chronicle and
Volume trees consistency.

5.2 Volume Construction

Each DeLorean volume is a set of signatures (their cryptographic
hashes) that were witnessed during the corresponding time period.
During the current time period, the DeLorean service collects the
signatures from the publishers by adding them as leaves to the
volume tree. As soon as the time period is over, the DeLorean adds
the latest version of the volume digest to the chronicle tree, effec-
tively “sealing” the volume from further modifications. After this,
the publishers can contact the service and retrieve DeLorean proofs
of signature existence during the volume’s time period, which can
be used to reliably roll-back clocks for future validation of their
data.

5.3 Proof of Existence

In order to prove the existence of a particular leaf node in a Merkle
tree, one needs to be able to reconstruct a part of the tree along
the path from the leaf to the root. For example, given the current
state of the chronicle represented by its digest c; ,, to check that
the volume with digest v; exists in the Chronicle tree (Figure 5),
the path vy — ¢1,0 = c2,0 — Cé,o needs to be reconstructed: cio =

hash(vg, v1), Cg,o = hash(cio,cl,l), C;,O = hash(cg’o,cil). After
;0 and C:f},o serves as a proof of chronicle
consistency and that vy is part of it. Similarly, one can prove that
signature s; exists in the Volume tree using the equality between

? .
reconstructed volume tree root v, , and a known volume digest v;.

that, equality between ¢

The computational cost to prove the existence of a single volume
is O(log V) hash computations, where V is the total number of
volumes in the chronicle; and the computational cost to verify the
existence of a signature in the chronicle is O(log V + log S), where
S is the (average) number of signatures witnessed per time period.
The arity of the Merkle tree used for Chronicle and Volume trees
will determine the base of the logarithm in the above equations.

Given a volume tree, a consumer can quickly locate a record
according to the local record index. Based on the local index, a
consumer can compute a verification path from the record back
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to the volume tree root and verify the existence of the record in a
volume, same way as verifying the volume existence in chronicle.

In summary, to assure that a specific signature was witnessed
by the DeLorean service at a specific time interval, the consumer
needs to have: (1) volume digest, (2) volume index, and (3) index of
the signature within the volume. The first two are used to recon-
struct the relevant portions of the chronicle tree; and the last one
along with the fingerprint of the data signature (obtained from data
directly) can reconstruct and verify consistency of the volume tree.

5.4 Publishing Node States

In order to successfully prove the existence of any volume or sig-
nature in the chronicle, one needs to obtain sibling nodes in the
chronicle and volume trees. To allow that, DeLorean leverages the
power of NDN to publish each such node as an immutable, named,
and cryptographically signed NDN data packet. We use the follow-
ing naming convention for these data packets (Figure 7): “/<prefix>

/<TREE-TYPE>/<NODE-STATE>/<NODE-INDEX>/<DIGEST-VALUE>”, where

e “<prefix>” is a prefix to identify instance of the DeLorean
chronicle service, e.g., if there is only one service in the
world, this could be just “/DeLorean”;

e “<TREE-TYPE>” is an identification of the tree type and can
be either “_CHRONICLE” or “_VOLUME-<ID>” for the chronicle
or a specific volume tree. “<ID>” in the volume tree name
is a sequence number of the volume, since the beginning
of DeLorean service instance;

e “<NODE-STATE>” is the state of the Merkle tree node, which
is either “complete” when a node has the full set of descen-
dents or “incomplete=<ID>" when one or more descen-
dents do not yet exist. Recall that until a subtree of the
Merkle tree is complete, the root digest of this tree changes
whenever a new leaf node is added. “<ID>” in the incom-
plete tree is used to disambiguate the name for different
incomplete states.

The naming of the incomplete state nodes is designed
to simplify retrieval of the latest state, is consistent across
all incomplete nodes at a given time, and is directly related
to the number of nodes in the tree. In other words, at
any given point of time, the current state of any node in
the chronicle tree is determined by the current number
of volumes. For a 32-ary chronicle tree with the largest
volume sequence number s, for the node with index i at
the level I (both i and [ start from 0) :

ifs>32l x(i+1)

“incomplete-(s+1)”, otherwise

) Y “complete”,
<NODE-STATE>" =

For example in Figure 6, all incomplete nodes are pub-
lished using the “incomplete-2050” state.

e “<NODE-INDEX>” is a tuple of the level of the node in the
Merkle tree (0 for leaf nodes, up to [log; N7 for parent
nodes, where N is the number of leaf nodes and k arity of
the Merkle tree) and the index of the node at the specified
level (from 0 to k), such as “2,1”.

Given the sequence number s of the leaf node of interest,
and the desired level [ of the intermediate node, its index
is (I, [s x k7L )).
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e “<DIGEST-VALUE>” is the digest value of the Merkle tree
node.

2048, 2049

Figure 6: 32-ary Merkle tree example

Each published node data packet includes the hash values of all
its children. With a 1500-byte MTU and SHA-256 hash algorithm, a
single data packet can safely carry at least 32 SHA-256 hashes (1024
bytes in total), leaving enough space for other fields in the data
packet. For this reason, we chose a 32-ary Merkle tree (exemplified
in Figure 6) to construct DeLorean’s chronicle and volumes and
publish data packets for each node of the trees (Figure 7). Note
that the leaf nodes of the Chronicle tree are published only as root
nodes of the corresponding Volume trees and their hash is simply
included in the data packets that represent the first-level of the
Chronicle tree.

Each data packet representing a node in the tree is signed by
the DeLorean provider and can be independently authenticated
within its signature validity 5. At the same time, to authenticate the
whole chronicle it is enough to authenticate just one data packet
representing the root node: the rest of the tree can be implicitly
validated using the included cryptographic hashes. Therefore, the
Chronicle and Volume trees can be successfully authenticated as
long as the signature of the root node is valid, which is true as long
as the service keep witnessing and recording signatures.

Note that retrieval of tree nodes leverages efficient data distribu-
tion of NDN: requests from multiple requesters can be efficiently
joined or served from in-network caches. Because nodes at higher
layers are involved in more verifications, they are more frequently
requested and have a high chance of being universally cached in
the network.

Also note that all nodes in all states are represented as immutable
data packets, and can be easily replicated in the network. At the
same time, as we describe in the next session, only nodes with
complete state and the latest versions of the nodes in incomplete
state need to be preserved by the DeLorean service provider and
auditors.

5.5 Incomplete Chronicle Node States

The chronicle digest and rightmost intermediate nodes at each
level of the Chronicle tree will be represented as incomplete state
nodes almost all the time, only occasionally becoming complete (i.e.,

SNDN supports short-lived signatures as an alternative for key revocation. Signatures
from the DeLorean service, however, may have a rather long lifetime, as the keys
used for signatures are assumed to be reasonably protected. For such keys thus key
revocation mechanisms may be considered.
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Name: /DelLorean/_CHRONICLE/complete
/2,1/5b3dc9..

Content:
| [a2ed8b.. [,7acodd.. [ 757bel 4] [T0595t.. 4
A e 32 children hasties, ----------------- =3

Signature: ...
--»> .../complete/1/32/a2ed8b..

».../complete/1/33/7ac9dd.. ;
.../complete/1/34/757bel.. =

.../complete/1/63/1b595f.. <----

Name: /DelLorean/_VOLUME=5/incomplete=2050
/2,1/5b3dc9..

Content:

Signature: ...

S » .../complete/1/32/a2ed8b..
.../incomplete=2050/1/34/abc1e3.. <------""" .

Figure 7: Examples of 32-ary chronicle and volume tree node
data packets

only just before the tree needs to grow one level up). For example,
an incomplete node Cé,o in Figure 5 captures the state of volumes
9, - - . Vg, which will change as soon as a new volume added to the
chronicle.

This fact, however, does not impact the ability to perform the
tree reconstruction nor requires keeping data packets that represent
all versions of the incomplete states. Because each newly published
version of the incomplete node includes all previously existing child
node digests, it is effectively a superset node and only the latest
version would be needed to perform any required tree reconstruc-
tion. Therefore, as soon as the new incomplete node is created, the
data packet representing the old incomplete version of the same
node can be safely removed from the system.

5.6 Publicity-Based Trust / Public Audit

One of the objectives behind the design of DeLorean is to avoid
dependency on a complete trust of a single operational party. While
DeLorean still relies on a single party to create and publish Chron-
icle and Volume trees based on witnessed signatures, the overall
trust of the service comes from the consistency verification by pub-
lic eyes. More specifically, a DeLorean service provider is trusted
only while its behavior is consistent, as monitored by “public audi-
tors” (e.g., librarians who are dedicated to ensuring consistency of
newspaper archives) or dedicated set of trust auditors (e.g., provided
by Google, Amazon, Microsoft, etc.). Moreover, to ensure trustwor-
thiness of the time periods of volumes, the state of each newly
published volume needs to be checked at the time it is published.
Since the producers of data recorded by DeLorean rely on it to
provide the existence proofs, they have a strong motivation to audit
the consistence as soon as volume information becomes available.
With the trivial overhead of DeLorean consistency verification, as
shown in Section 6, this can be easily achieved.

A DeLorean service, once being detected as inconsistent (i.e.,
a previous volume being modified), immediately loses its trust-
worthiness. We expect that in general the public-eye pressure and
the importance of the service will prevent the DeLorean provider
from modifying any previous volumes without being immediately
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caught, thus effectively deterring from modifying the history or
injecting “fake news” in the past. For example, it would be impossi-
ble for DeLorean to modify the record for October 22, 2015 issue
of USA Today or deny its existence without actually using a time
machine and altering the reality. At the same time, in Section 7.4
we discuss ideas of actions that public auditors can take to inform
the public of the inconsistent behavior and what can be done to
recover from a failure.

To audit the consistence of the chronicle, auditors need to occa-
sionally retrieve the current chronicle digest (i.e. the hash of the
root node) and check whether it “covers” a chronicle digest that
the auditor has retrieved before. Overall, to assure correctness of
time information, each published volume should be verified by at
least one auditor / data producer around the time the volume was
published (we discuss the number of auditors needed to achieve
this goal in Section 6.3). Once the auditor verifies the consistence
between the two digests, he/she can keep the new digest and dis-
card the old one. Therefore, the auditor’s storage overhead can be
kept constant.

Similar to the existence verification (see Section 5.3), the consis-
tence verification is to re-compute the new root hash from the old
one, retrieving missing nodes along the way. With all the nodes
of the chronicle tree being published, an auditor can retrieve the
nodes that are necessary for consistence verification in at most
O(log V + log S) number of iterations.

6 ANALYTICAL EVALUATION

To understand the scalability properties of NDN DeLorean, we per-
formed a series of analytical evaluations. In particular, we devised
the formulations for (a) the amount of storage capabilities necessary
at the DeLorean service provider depending on the timeslot dura-
tion of a volume and the amount of fingerprints within a volume,
(b) the amount of data an average user needs to retrieve to verify
the existence of a data item at a certain point in time, and (c) the
number of auditors and the number of audits per day per auditor
needed on average to ensure that each volume in the chronicle is
verified for correctness.

It is important to point out two key aspects of our evaluation (or
rather NDN DeLorean): First, we assume that the system will not be
used for every data item in an actual NDN deployment, but rather
only for certain data items for which proof of existence is of crucial
value. For instance, music downloaded by a user (from a service
such as iTunes) normally would not require proof of existence.
However, a newspaper article (in particular in the age of fake news)
may benefit a lot from the NDN DeLorean service, as it would be
possible to verify in the future that a certain authority vouched for
the correctness of the article at a certain point in time.

Second, as pointed out earlier, even for a very large volume of
data represented as a big set of NDN data packets, a public signature
of a single manifest file [3] can provide strong authenticity and
provenance properties for the whole dataset. Therefore, creating
a DeLorean proof-of-existence just for the manifest packet alone
would be sufficient to ensure that the whole data volume can be
authenticated at any point in the future. Note that this does neces-
sarily mean that archived data must be in the format of manifest.
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Producers can create a manifest separately and log the signature of
manifest for proof-of-existence.

Moreover, to justify the practicability of DeLorean for data archives,
we reference the statistics of a real-world archive system: news-
paper archive in public libraries. According to Statista, there are
1,331 daily newspapers in the United States in 2014 [21]. A rough
estimation shows that every day a mainstream newspaper (e.g.,
Washington Post, New York Times, etc.) publishes 200 to 500 pieces
of contents [16], including stories, graphics, blog posts, etc. Based
on these numbers, we estimate at most 700,000 pieces of newspaper
content published per day, and on average 486 pieces of content
per minute. In contrast, according to American Library Association,
there are 9802 public libraries in the United States in 2012 [1], which
can serve as auditors for newspaper content.

6.1 DeLorean Service Storage Requirements

Here we estimate the overall storage requirements for the NDN
DeLorean service (T), for the chronicle-tree (y.), and for a volume-
tree (y»), with notation explained in Table 1. Time t is the age of
the chronicle. Note that the leaves of the chronicle and volume
trees are not represented as NDN data packets: their hashes are
simply included in data packets representing the first-level tree
nodes. Therefore, equations 3 and 4 only account for intermediate
nodes of trees. In our analysis, we assume k = m = 32, as suggested
in Section 5.1.

Table 1: Symbols used in Evaluation

Symbol | Explanation
I'(t) Overall storage requirement at time ¢
V() The number of the leaf nodes (volumes) in the chron-
icle tree at time ¢
Ye(t) Storage requirement for the chronicle tree at time ¢
k The arity of the chronicle tree
|S| The average number of the leaf nodes (signatures)
in a volume tree
Yo(Si) | Storage requirement for a volume tree i

m The arity of the volume trees
o Size of node data packet (in bytes)
A The duration of a timeslot within a volume
L) = ye(t) + V() X yo(IS) 1)
V(t) = t/A] @)
_ V| V@) V()
Ye(t) = o X ({ p } + { 7 }4— et ’rk“ng T D
3
Mogy V(1)1 [V( ﬂ ®©)
=0 X _j
=
[log,,, ISI1 S|
ro(ISl) = o Z‘ {ﬂ @
i=

Equations 1-4 give quasi-linear storage requirement growth over
time. To highlight the yearly requirements, we calculated a 20-year
storage requirement for different witnessed signature volumes and
averaged the resulting value over the years (year-to-year variation
was less than 0.01%). Figure 8 shows the result of timeslot size
A = 10 minutes.
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Figure 8: NDN DeLorean service storage requirements

For a timeslot duration of A = 10 minutes, one year of De-
Lorean service requires creation of about 52,560 volumes (equa-
tion 2), which can be summarized using about 1698 Chronicle tree
nodes (equation 3). This number will be slightly smaller or larger
depending on how many new intermediate nodes need to be created
and whether the tree grows a level. Overall, each year the Chronicle
tree (only complete nodes and the latest versions of incomplete
nodes) would require ~ 2.5 MB or fewer if a longer timeslot is used.
At the same time, depending on how many signatures DeLorean ser-
vice records per timeslot, the storage requirements can significantly
increase. For example, when recording 500 signatures per minute
(according to the statistics of newspaper content [16] discussed in
the introduction of Section 6, and assuming it is constant over the
years, equations 1 and 4), 12 GB storage per year for the volume
trees will be needed and this value will dominate the storage cost.

When a larger timeslot is used, a slightly smaller amount of space
is needed. For example, the storage requirement for 60-minute A
is 11.9 GB per year for 500 signatures per minute and just under
the value for A = 10 minutes for higher signature rates. This dif-
ference is mainly because storing a smaller number of signature
fingerprints in the volume is less space-efficient: more incomplete
nodes resulting in higher overhead for NDN data packet name and
signature.

Note that the yearly storage requirement is linear to the number
of witnessed signatures, i.e., it depends on the popularity of the
DeLorean service and can grow or shrink over time.

6.2 Verification Cost

The amount of data a user would need to retrieve to verify the
existence of a signature at a certain point in the past, ry, is ex-
pressed in equations 5-7. A user needs to retrieve certain parts of
the chronicle-tree (r¢) and certain parts of the actual volume (ry)
to which the signature in question belongs, according to the time it
was published. Since we store the hash values of a node’s children
in a node’s NDN data packet, for each level in the tree one node
needs to be retrieved.

Ty =Trc+Ty (5)
re =o X [logk V(t)] 6)
ro =0 X |—10gm |S|-| 7)

For k = 32, the height of the Chronicle tree would change very
infrequently, defining almost a constant overhead for the r.. For a
10-minute timeslot, this would be just three 1500-byte data packet
retrievals for the first 20 years of the DeLorean service and four
retrievals for foreseeable future (> 600 years). r,, depends on the
number of signatures per volume, but is also logarithmically scaled:
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for 500 signatures per minute, it would account for another three
retrievals.

The same considerations apply for storage costs for a verifier. In
order to ensure DeLorean chronicle consistency, the retrieved data
packets need to be stored until the next verification, requiring a
trivial overhead, generally fewer than 20 KB.

6.3 Required Number of Auditors

The trustworthiness of the DeLorean service comes from the con-
stant verification of the published chronicle by a set of decentralized
auditors. In this section, we assess how many auditors are needed
in the system to provide reasonable service assurances. In a dis-
tributed system with volunteering auditors, there is no guarantee
that all auditors behave reliably all the time. Thus, the basis of our
evaluation is the probability that there is a volume that has not
been verified by at least one auditor around the time the volume
has been finalized. The existence of such a timeslot means that the
DeLorean service could have published the volume at a different
time than claimed.

We assume that each of the auditors in a set A fetches and verifies
the chronicle at least once during an epoch e. Each fetch happens
at a random point of time within the epoch, stochastically indepen-
dent from all the other auditors. We consider the following event
probabilities:

e P(NV): “Probability that a volume in the epoch has not
been verified by any of the |A| auditors” (equation 8),

e P(V7): “Probability that a volume in the epoch has been
verified by at least one of the |A| auditors” (equation 9), and

o P(V4): “Probability that all volumes in a given epoch have
been verified by at least one auditor” (equation 10).

|A] [A]
P(NV) = (1 - e/LA) = (1 - %) ®)
P(Vi) = 1~ P(NV) (9)
P(Va) = P(V1)¢/A (10)

Figure 9 visualizes the probability results for V4 versus the num-
bers of auditors |A| for different epoch period lengths e and timeslot
durations A. It is clear that when there are not enough verification
events, the trustworthiness of the DeLorean service can be really
low, as in the case of 100 auditors performing only a single verifica-
tion a day of the Chronicle with 10-minutes timeslots. At the same
time, the same number of auditors could be sufficient to provide
~ 75% chance that all 60-minute volumes within a day are checked.
Of course, the larger population of auditors ensures higher prob-
abilities of consistency verification and, therefore, ensures better
trustworthiness of the DeLorean service. For example, about 2000
auditors (much less than 9081 auditors in the newspaper archive
example) would be enough to reliably verify chronicle with 1-hour
time intervals, even when each of the auditors performs only one
verification a week.

7 DISCUSSION
7.1 Multiple DeLorean Providers

The example presented in this paper only involves a single in-
stance of DeLorean. In deployment multiple instances of the De-
Lorean service would run in parallel, with data publishers making
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Figure 9: DeLorean audit probabilities

individual decisions on which specific instance to use. We envi-
sion the DeLorean service to be provided by service providers
either as a voluntary community service (e.g., similar to Certificate
Transparency [10]), or as a fee-based service (e.g., based on micro-
payments). The only change to the described protocol would be
in the naming: instead of a single “/DeLorean” prefix, the chroni-
cle volumes will be published under “/google/DeLorean”, “/apple
/DeLorean”, and similar prefixes. However, note that the consis-
tency guarantee of a single DeLorean instance depends on the
quality of the public audit, discussed in Section 6.3. We envision
that in addition to the public-eye audit, the DeLorean instance will
be cross-verified by major service providers, as they have incentives
to catch a competitor’s wrongdoings and to avoid being caught by
others.

7.2 Incentives to Audit

Users of the system have a clear interest in its trustworthiness: a
misbehaving service provider or one with a bad reputation is of
low value to them (in convincing consumers of the validity of their
signature in the future). Therefore, every user should have a natural
interest in becoming an auditor. In reality, however, it is likely that
only a fraction of users actually will act as auditors. Estimating the
precise fraction of users being willing to audit is challenging. Our
calculations on the number of necessary auditors in Section 6.3
show that a comparatively small number of auditors suffices to
assess the trustworthiness of the service provider.

7.3 Chronicle Resiliency

In addition to traditional methods of providing service resiliency
using DeLorean instance replication, DeLorean leverages the power
of NDN to disseminate and preserve the data. In other words,
all DeLorean data is published as NDN data packets and is con-
stantly retrieved by the publishers (to retrieve just issued signature
proofs), the auditors (to verify consistency), and consumers (to ver-
ify proofs). Even if the primary servers of the DeLorean provider
become (temporary) unresponsive, the already issued proofs can be
retrieved directly from the in-network caches and/or from produc-
ers’, auditors’, and consumers’ records. Given the modest storage
requirement, we expect that in addition to cross-verification in
the multi-provider deployments, the providers will simply mirror
the complete chronicle data of each other, improving the overall
resiliency to potential failures even more.
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7.4 Recovery from Inconsistency

Whenever an auditor detects that the DeLorean provider is not con-
sistent with the previously recorded states, it needs to take actions.
These actions include contacting the provider to remediate the is-
sue, as well as notify publishers, consumers, and other auditors of
the service about the detected problem. This course of actions is
another side of the security-through-publicity concept [18], requir-
ing an open public channel between auditors, system users, and
system providers, e.g., a simple bulletin board or a blog.® Through
this channel, the problem can be confirmed by multiple auditors,
forcing the provider to immediately address the problem or risk
to lose its business. Note that auditors cannot falsely accuse a De-
Lorean service of failure or intentional modification of the chronicle.
Because every data packet published by the DeLorean service bares
the service’s signature on the root node data packet, an auditor
can claim the inconsistency only by presenting two (or more) data
packets signed by the service that show the inconsistent state.

In an unlikely case when the DeLorean provider does not respond
to the reported issues or no longer wishes to provide the service, it is
possible to transition to a new provider. Recall that the authenticity
of previous volumes can be implicitly verified through Merkle tree
state (i.e., root digest). The new provider can pick up the service
from a state under the consensus of the auditors and obtain copies
of the existing volumes that represent the last consistent state. After
updating the publisher public key, users of the timestamp service
can keep using the same historical volumes, and start re-creating
volumes.

7.5 Preventing Multiple Histories

As mentioned before, one of the design objectives of DeLorean is
to reinforce the trust of the service by auditors’ consistency veri-
fication. This ensures that chronicle publisher cannot modify the
history without being detected by auditors. However, if chronicle
publisher could identify the source of audit requests, the publisher
can cheat by presenting one consistent chronicle to a group of au-
ditors while presenting a completely different but still consistent
chronicle to another, which is usually called a multiple history is-
sue. In this case, none of the auditors in the two groups can detect
any modification, while the timestamp service would be obviously
inconsistent.

NDN intrinsically eliminates the possibility of identifying an
auditor or a group of auditors from the audit request. First of all,
the NDN interests for DeLorean data do not carry any information
about auditors. Second, interests may be merged by routers (when
multiple auditors request state at the same time) or get served by
in-network caches, so that DeLorean may not receive the interests
from every auditor. For example, an auditor in one group can detect
inconsistent history when picking a piece of data that is prepared
for another group. Thus, NDN provides some basic protection. We
consider further investigation of potential threats in this area and
the design of countermeasures (e.g. concrete gossiping solutions)
as interesting future work.

©Potential Denial-of-Service (DoS) attacks on such a bulletin board with an overwhelm-
ing amount of false claims by auditors are out of scope of this paper.
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7.6 Relation to Real-Time Data Production

Note that creating proofs-of-existence for signatures is an addi-
tional procedure to ensure data can still be authenticated after the
signature expires. Therefore, it has not effect on real-time data
production and consumption: before the original signature of a
data packet expires, consumers can directly verify the data without
needing the timestamp. For our example, “Youth Jailed” article of
USA Today could have been directly authenticated on October 22,
2015 or several days after, while the original signature is still valid.
Only when the readers access that article year or so later, they may
need to use the timestamp proof in order to ensure the authenticity
of the article at the time it was originally published.

7.7 Hash Rollover

For the sake of simplicity, we used only one hash algorithm (SHA-
256) in the description above. However, no hash algorithm can
be secure forever. To address this issue, a DeLorean service can
publish two versions of chronicle tree, of which each is constructed
using hash algorithms with different crypto strength. Since it is
very unlikely that the two hash algorithms will be broken at the
same time, the stronger hash algorithm offers the publisher enough
time to find another hash algorithm with more crypto strength and
to rebuild the chronicle trees according to the surviving tree. Given
hash algorithm breaking happens rarely, the overhead of building
and verifying a new tree though can relatively expensive but is still
affordable.

8 RELATED WORK

To the best of our knowledge, Haber and Stornetta [8] were the
first to propose the use of the timestamp service to secure digital
documents. They built the service by linking documents in a time
order using a crypto hash function, allowing users to check the ex-
istence of a document by checking against a set of documents along
with the timeline. Buldasi et al. [4] later proposed a binary linking
timestamp that simplified implementation of the timestamp service.
Additional information and history of the timestamp service de-
signs are available in the survey by Vigil et al. [22]. RFC4810 lists
(among others) requirements for such timestamping services [23].

The timestamp service work that is most related to DeLorean de-
sign is KASTS [12]. KASTS not only timestamps signed documents,
but also keeps a secure storage of verification keys. Compared to
KASTS that builds the timestamp service over hash chains, De-
Lorean uses Merkle tree hierarchy to allow efficient public auditing.
Moreover, KASTS is focused on a single trust model, i.e., the PKI
model, while DeLorean supports data signing under arbitrary trust
models, as long as consumers know the corresponding trust schema.

The foundation of DeLorean design is a work of Crosby and
Wallach [6] that proposes the use of Merkle tree to implement
a tamper-evident logging system. They conducted the detailed
performance analysis to prove the efficiency of the Merkle tree
based logging system. They also proposed a scheme to safely delete
log entries that are no longer needed, which we plan to investigate
in the next revisions of the DeLorean design.

Certificate Transparency (CT) [5, 10] offers one of the most im-
portant use cases of Merkle tree based logging system and inspired
the design of DeLorean. CT is designed to mitigate the certificate
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mis-issuance problem through a “security through publicity” ap-
proach. CT uses Merkle tree to build a public board, on which
certificate authorities are required to post all the issued certifi-
cates. Using this board, the legitimate owners of the domain names
can easily detect the mis-issued certificates. DeLorean borrows the
same “security through publicity” concept, but applies it to ver-
ification of absolute time of the chronicle volumes: any attempt
to “back-publish” or modify volume will be detected by a set of
public auditors. Because of the nature of IP protocol, CT instance
will always know the source address of the requester. To avoid the
problem of multiple consistent views to different users, CT design
includes an additional gossip protocol [5]. DeLorean intrinsically
avoids this problem by being an NDN-based system: data retrieval
in NDN does rely on source addresses, but uses states set up by the
incoming requests.

BitCoin [17] represents another example of “security through
publicity” approach to support a consistent append-only log based
on hash chain. However, BitCoin requires an efficient peer-to-peer
overlay multicast network and also requires each peer in the sys-
tem to keep a copy of the history, thus making it unsuitable for
maintenance of a large amount of long-lived data.

9 CONCLUSION

In this paper, we presented the design of NDN DeLorean, the au-
thentication framework for the long-lived data archives in NDN. To
our best knowledge, it is the first design to address the long-lived
data authenticity challenges in ICN. DeLorean enables secure au-
thentication of the long-lived data considering the times when the
original signatures of the data were valid. At the heart of DeLorean
is a publicly auditable bookkeeping service that keeps a record of
data signatures and the times these signatures were witnessed by
the service. More specifically, the collected signatures (their finger-
prints) during the pre-defined time intervals are aggregated into the
DeLorean volumes, and each volume is getting attached to the data
chronicle, both organized as multi-ary Merkle trees. This structure
ensures that once an item is added (signature fingerprint into the
volume, volume hash into the chronicle), it cannot be removed or
replaced with another without changing the overall state of the De-
Lorean chronicle. Trustworthiness of the DeLorean service is based
on the public audit of the record consistency over time, which can
be accomplished in time- and space-efficient manner, as verified
by a set of analytical evaluations for modest rates of witnessed
signatures.

DeLorean is our first step toward securing long-lived data in
NDN and lays the foundation for our future of trust management
in NDN. As the next step, we plan to continue our investigation,
as well as to seek help from the research community to complete
the construction of a generic authentication system for all kinds of
long-lived data, including public and confidential datasets, and in-
vestigate how to mitigate keys’ compromise and revocation during
their validity periods.
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