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Abstract—In supporting many distributed applications, such
as group text messaging, file sharing, and joint editing, a
basic requirement is the efficient and robust synchronization
of knowledge about the dataset such as text messages, changes
to the shared folder, or document edits. We propose Chrono-
Sync protocol, which exploits the features of the Named Data
Networking architecture to efficiently synchronize the state of a
dataset among a distributed group of users. Using appropriate
naming rules, ChronoSync summarizes the state of a dataset in
a condensed cryptographic digest form and exchange it among
the distributed parties. Differences of the dataset can be inferred
from the digests and disseminated efficiently to all parties. With
the complete and up-to-date knowledge of the dataset changes,
applications can decide whether or when to fetch which pieces
of the data. We implemented ChronoSync as a C++ library and
developed two distributed application prototypes based on it.
We show through simulations that ChronoSync is effective and
efficient in synchronization dataset state, and is robust against
packet losses and network partitions.

I. INTRODUCTION

Applications such as file sharing, group text messaging,
and collaborative editing are playing increasingly important
roles in our lives. Many of such applications demand efficient
and robust synchronization of datasets (file revisions, text
messages, edit actions, etc.) among multiple parties. The
research community has been working on distributed system
synchronization since the early days of the Internet [1] and has
produced a rich literature of solutions. Quite a few popular
applications like Dropbox and Google Docs, on the other
hand, are implemented based on a centralized paradigm, which
generally simplifies the application designs and brings many
other advantages, but also results in single points of failure
and centralized control of the data. At the same time, a
number of different peer-to-peer solutions [2], including the
recently announced BitTorrent Sync service [3], represent
another direction in the searching of efficient dataset synchro-
nization solutions, which requires either the maintenance of a
sophisticated peer-to-peer network overlay structure or critical
nodes for participants rendezvous.

The recently proposed communication paradigm, Named
Data Networking (NDN) [4], where data is the first-class
entity and multicast of data is naturally supported, brings
new opportunities to efficiently solve the problem of dataset
synchronizations in a completely distributed fashion. Thus,
we propose ChronoSync, an efficient and robust protocol to
synchronize dataset state among multiple parties in NDN. The
core idea of ChronoSync is to compactly encode the state

of a dataset into a crypto digest form (e.g., SHA256), which
we call the state digest, or digest in short, and to exchange
the state digests among all parties in a synchronization group.
Each party sends out a broadcast interest with their respective
state digest, calculated according to their knowledge of the
dataset, to all others in the group. Such interests are directly
broadcasted in small networks and are broadcasted via simple
overlays in large networks.! If the state digest carried in the
incoming interest is the same as the one locally maintained,
indicating identical knowledge about the dataset, no action is
required from the recipient. Otherwise, one of the two actions
will be triggered:

« the differences of the dataset state can be directly inferred
and sent as the response to the sync interest if the state
digest is the same as one of the previous local state
digests;

« a state reconciliation method is used to determine the dif-
ferences of the knowledge if the state digest is unknown
(for example, when recovering from a network partition).

Actions will be triggered to eliminate the differences of the
dataset state until the interests from all parties carry an
identical state digest.

The rest of the paper is organized as follows. We first
briefly introduce the NDN architecture in Section II. The main
contribution of the paper is the design of the ChronoSync
protocol as presented in Section III, which exploits the features
of the NDN architecture to efficiently synchronize dataset
state among a distributed group of users. Section IV and
Section V demonstrate the implementation of ChronoSync
and the evaluation results. Discussions and related work are
presented in Section VI and Section VII respectively. We
conclude the paper in Section VIIL

II. NDN ARCHITECTURE

In this section we briefly go over a few basic concepts of the
NDN architecture [4] that are essential to describe the design
of ChronoSync.

NDN architecture has two basic communication units: in-
terest packet and data packet, both carrying hierarchically
structured names. An interest packet is sent when a consumer
requests data. Each data packet is cryptographically signed,

INote that the cost of broadcast interests in NDN is low, as identical
interests are collapsed. Hence, there is at most one interest transmitted over a
link in one direction regardless of the number of parties in the synchronization
group.
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Fig. 1: Multicast of data is naturally supported in NDN

enabling the recipient to check the provenance and integrity
of the data regardless of how it is obtained (from the data
source, cache, or neighbor). A data packet can be used to
satisfy an interest, as long as the name carried in the interest
is a prefix of or identical to that of the data. An interest can
also carry a selector field to specify preferences in case there
are multiple data packets that can satisfy the interest.

All communication in NDN is receiver-driven, meaning
that the only way for a data packet to be delivered is that
a consumer explicitly sends out an interest requesting this
data first. When receiving a interest, routers add an entry to
the pending interest table (PIT), recording the interface from
which the interest came, and use a forwarding strategy [5]
to determine where to forward the interest. As a result, a
returning data packet can simply trace the reverse path back
to the requester. When multiple interests for the same data
come from the downstreams, NDN routers create only one PIT
entry, remembering all the interfaces from which the interests
came, and forward out only one interest to the upstream. As
shown in Fig. 1, this process essentially constructs a temporary
multicast tree for each requested data item, along which the
data is efficiently delivered to all requesters.

III. CHRONOSYNC DESIGN

In this section we describe the ChronoSync protocol design.
We first present an overview of ChronoSync components, and
then explain the naming rules in Section III-B. Section III-C
shows how ChronoSync maintains the knowledge about the
dataset and Section III-D describes how the changes to the
dataset propagate to all participants. Section III-E and III-F
discuss how ChronoSync handles simultaneous data genera-
tions and network partitions.

To better illustrate the basic components of the ChronoSync
design, we use a group text chat application, ChronoChat, as
an example throughout the paper. While a real chat application
includes a number of essential components, such as roster
maintenance, in our example we introduce only elements that
are directly relevant to ChronoSync.

A. Overview

In the core of any ChronoSync-based application there
are two interdependent components, as shown in Fig. 2: the
ChronoSync module that synchronizes the state of the dataset
and the application logic module that responds to the change
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Fig. 2: ChronoSync overview

of the dataset state. In ChronoChat, ChronoSync module
maintains the current user’s knowledge about all the messages
in the chatroom in the form of a digest tree, as well as history
of the dataset state changes in the form of a digest log. After
ChronoSync module discovers that there are new messages in
the chatroom, it notifies ChronoChat logic module to fetch and
store the messages.

To discover dataset changes, the ChronoSync module of
each ChronoChat instance sends out a sync inferest, whose
name contains the state digest that is maintained at the root
of the digest tree. Generally, with the help of digest tree
and digest log, ChronoSync can infer dataset changes directly
and reply to the sync interest with the data containing the
changes, which we henceforth refer to as sync data. In cases of
network partitioning, ChronoSync also uses recovery interests
and recovery data to discover the differences in the dataset
state.

ChronoSync focuses solely on facilitating the synchroniza-
tion of the knowledge about new data items in the dataset,
leaving the decision on what to do after ChronoSync discovers
state changes at the application’s discretion. For example, the
sync data in ChronoChat brings back the names of messages
newly added to the chatroom, and thus a user’s knowledge
of the dataset is brought up to date. However, the user may
decide whether to fetch all the missing messages or just the
most recent ones, if the total number of missing messages is
large (e.g., after recovery from a network partition).

B. Naming rules

One of the most important aspects of application design
in NDN is naming, as the names carry out several critical
functions. The name carried in an interest packet is used by
the network to figure out where to forward it and to determine
which process to pass it to when it reaches the producer.
Also proper naming rules can greatly simplify the design of
applications.

There are two sets of naming rules in ChronoSync: one for
application data names and one for sync data names.’

2The naming for recovery data will be discussed in Section III-F.
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Fig. 3: Naming rules of ChronoSync

We design the application data names to have routable
name prefixes so that the interests can be forwarded towards
the producers directly. These prefixes can be constructed by
appending one or more components under a prefix assigned
by the Internet provider. For example, part (1) of the chat data
name in Fig. 3a is such a prefix. The purpose of the part (2),
which includes the application name and the chatroom name,
is to demultiplex the interest once it reaches the data source:
it identifies the process that is responsible for handling such
interests.

The data generated by a user is named sequentially. For
example, in ChronoChat, the initial message from a user to
the chatroom has sequence number zero and whenever a new
message is generated, be it a chat message or user presence
message, the sequence number is incremented by one. As a
result, the complete knowledge of the user can be compactly
represented by just one name. Assume the name shown in
Fig. 3a is the latest chat data name used by Alice. We can
infer from the naming rules that Alice has produced 792 pieces
of chat data to this chatroom, with sequence numbers ranging
from O to 791.

Similarly, the name for sync data (Fig. 3b) also consists of
three parts. Part (1) is the prefix in the broadcast namespace
for a given broadcast domain. A broadcast prefix ensures that
the sync interests are properly forwarded to all participants of
a group, as it is often impossible to predict who will cause the
next change to the dataset state. Part (2) serves the purpose of
demultiplexing (similar to that of the application data name),
and the last part carries the latest state digest of the interest
sender.

C. Maintaining dataset state

The application dataset can be represented as the union of
the subsets of data generated by all producers.

Since the knowledge of a data producer can be solely
represented by its name prefix and the latest sequence number,
ChronoSync tracks the latest application data name of each
producer in order to maintain up-to-date knowledge of the
dataset. For the sake of simplicity in writing, we refer to
the latest application data name of a producer as its producer
status.

Inspired by the idea of Merkle trees [6], ChronoSync uses
a digest tree to quickly and deterministically compress knowl-
edge about the dataset into a crypto digest, as illustrated in

Alice's Digest Bob's Digest Ted's Digest
Name Prefix Name Prefix Name Prefix
Max Seg-No Max Seg-No Max Seg-No

Fig. 4: An example of digest tree used in ChronoChat

State Digest Changes
0000... Null
9w35... [Alice’s prefix, 1]
23ab... [Bob’s prefix, 31], [Alice’s prefix, 19]
05tl... [Bob’s prefix, 32]

TABLE I: An example of digest log

Fig. 4. 3 Each child node of the tree root holds a cryptographic
digest calculated by applying, for example, SHA-256 hash
function over a user’s producer status. Recursively applying
the same hash function to all child nodes of the root results
in the digest that represents state of the whole dataset, which
we refer to as the state digest. To ensure that every participant
calculates the same state digest when observing the same set of
producer statuses, the child nodes are kept in the lexicographic
order according to their application data name prefixes.

The digest tree is always kept up-to-date to accurately reflect
the current state of the dataset. Whenever a ChronoChat user
sends a new chat message or learns about the name of a new
message from another participant, the corresponding branch of
the digest tree is updated and the state digest is re-calculated.

As an optimization, each party keeps a digest log along with
the digest tree. This log is a list of key-value pairs arranged in
chronological order, where the key is the state digest and the
value field contains the producer statuses that caused the state
change. An example of digest log is illustrated in Table I.
The log is useful in recognizing outdated state digests. For
example, when a user resumes from a temporary disconnection
and sends out a sync interest with an outdated state digest,
other parties, if recognizing the old digest, can quickly infer
the differences between the dataset states and promptly reply
the sender with missing data names.

Although the digest log facilitates the process of state
difference discovery in many cases, it is not essential ensure
the correctness of the ChronoSync design. Depending on the
available resources, applications can set an upper bound on
the size of the digest log, purging old items when necessary.

D. Propagating dataset changes

To detect dataset changes as soon as possible, every party
keeps an outstanding sync interest with the current state digest.
When all parties have the same knowledge about the dataset,

3While we use an one-level hash tree here, a more canonical form of hash
trees can be used if the applications demand different naming rules.
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Fig. 5: State change propagation in ChronoSync

the system is in a stable state, and sync interest from each
party carries an identical state digest, resulting in efficient
interest collapsing in NDN routers [4]. Fig. 5a shows an
example of a system in stable state, where there is no ongoing
conversation in a chatroom.

As soon as some party generates new data, the state digest
changes, and the outstanding interest gets satisfied. For ex-
ample in Fig. 5b, when Alice sends a text to the chatroom,
ChronoSync module on her machine immediately notices that
its state digest is newer and hence proceeds to satisfy the
sync interest with sync data that contains the name of text
message. Because of the communication properties of NDN,
the sync data is efficiently multicasted back to each party in
the chatroom. Whoever receives the sync data updates the
digest tree to reflect the new change to the dataset state, and
sends out a new sync interest with the updated state digest,
reverting the system to a stable state. Meanwhile, the users
may send interests to request for Alice’s text message using
the data name directly. In other more complex applications,
the sync data may prompt the applications to perform more
sophisticated actions, such as fetching a new version of a file
and applying changes to the local file system.

Normally, the state digest carried in the sync interest is
recognized by the interest recipients: it is ether the same as
the recipient’s current state digest or the previous one if the
recipient just generated new data. However, even in a loss-
free environments, out-of-order packet delivery can result in
receiving sync interests with digests that cannot be recognized.
For instance, in Fig. 5b, Ted’s sync interest with the new state
digest (after incorporating Alice’s sync data into digest tree,

/sync-prefix/d;

/sync-prefix/d;

Fig. 6: An example of simultaneous data generation

not shown on the figure) may reach Bob before he receives
Alice’s sync data, due to the possible out-of-order delivery in
the transmission.

To cope with this problem, ChronoSync employs a ran-
domized wait timer T,,, with value being set approximately
on the order of the propagation delay. More specifically, a
recipient sets up the wait timer 7,, when an unknown digest
is received and postpones the processing of the corresponding
sync interest until the timer expires. In the example mentioned
above, Bob’s state digest would become the same as the new
digest after Alice’s reply reaches him, before T, expires.

E. Handling simultaneous data generations

In simultaneous data generation cases, more than one data
producer reply to the outstanding sync interests. As one
interest can only bring back one piece of data in NDN,
simultaneous data generations would partition the system into
two or more groups, with each group maintaining a different
state digest, depending on whose sync data they have received.
At the same time, users in different group will not be able to
recognize each other’s state digest. This is illustrated in Fig. 6,
where Alice and Bob reply to the sync interests at the same
time and only Bob’s sync data reaches 7ed. Thus, the new
state digest of Alice is different from that of the other two.

This problem can be solved with the exclude filter [ 7], which
is one of the selectors that can be sent along with the interest
to exclude data that the requester no longer needs. When the
wait time T, times out, Ted proceeds to send a sync interest
with the previous state digest again, but this time with an
exclude filter that contains the hash of Bob’s sync data. Routers
understand that Bob’s sync data, although has the same name
as the one carried in the sync interest, cannot be used as
the reply to the interest. As a result, this sync interest brings
back Alice’s sync data from router C’s cache. Similarly, Alice
and Bob also retrieve each other’s sync data with the help of
the exclude filter. At this point, all three users have obtained
the knowledge about the simultaneously generated data and
compute an identical state digest.

If there are more producers involved in a simultaneous
data generation event, multiple rounds of sync interests with
exclude filter have to be sent. Each of such interest has to
exclude all the sync data of a particular state digest known to
the requester so far.
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Fig. 7: An example of recovery interest

F. Handling network partitions

When network partitions happens, the users become physi-
cally divided (as opposed to the logical division in the simul-
taneous data generation case) into multiple groups. Although
within each group users may continue to communicate due
to ChronoSync’s decentralized design, there is a challenging
synchronization problem when the network partition heals:
parties in different groups accumulated different subsets of
data and it is impossible for them to recognize each other’s
state digests. Different from what happens in simultaneous
data generations, where multiple users reply to the same sync
interest with different sync data, during network partitioning
an unknown number of sync data with different state digests
may have been generated by multiple parties, rendering the
exclude filter ineffective in determining the differences of
dataset. Hence, when the interest with exclude filter times out
(such interests should have very short lifetime, as the sync
data, if there is any, should already be cached in the routers),
ChronoSync infers that the network partitions have happened
and measures have to be taken to resolve the differences.
Depending on specific application requirements, various set
reconciliation algorithms [8]-[10] can be used to solve this
problem.

For applications such as ChronoChat, for example, Chrono-
Sync resorts to a simple but effective recovery procedure,
outlined as follows. The recipient of the unknown digest sends
out a recovery interest, as shown in Fig. 7. It is similar to a
normal sync interest, but has a “recovery” component before
the digest and includes the unknown state digest, instead of
the one in the root of the local digest tree. The purpose of
such an interest is to request missing information about the
dataset from those who produced or recognized the unknown
state digest. Those who recognize the digest (e.g., having it
in their digest log) reply the recovery interest with the most
recent producer status of all users, and others simply ignore
the recovery interest. Upon receiving the recovery reply, the
recipient compares the producer statuses included in the reply
with those stored in the local digest tree and updates the tree
whenever the one in the reply is more recent. This recovery
procedure guarantees that the system will revert to the steady
state within few recovery rounds (e.g. one round for two
groups that have different state digests).

IV. IMPLEMENTATION

We implemented the ChronoSync protocol as a C++ library,
and also built a proof-of-concept ChronoChat application
(Fig. 8 shows screenshot of a demo chat session) and tested
it on both Linux and Mac OS X platforms with up to 20
participants. The chat messages were disseminated correctly
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Fig. 8: ChronoChat: a distributed multi-user text chat app

and promptly to all participants. Furthermore, to demonstrate
the effectiveness of ChronoSync in supporting more complex
applications, we also developed and tested ChronoShare, a
distributed file sharing application based on ChronoSync that
provides similar user experience as what provided by the
commercial counterparts (such as Dropbox), but takes full
advantage of NDN’s caching and multicast capabilities.

V. EVALUATION

To understand characteristics and tradeoffs of the Chrono-
Sync protocol, we conducted a number of simulation-based
experiments of the group text chat service (ChronoChat) using
NS-3 [11] with ndnSIM module [12], which fully implements
the NDN communication model. In particular, we are inter-
ested in confirming that ChronoSync propagates state infor-
mation quickly and efficiently, even in face of network failures
and packet losses. To get a baseline for the comparison,
we also implemented a simple TCP/IP-based approximation
of the centralized Internet Relay Chat (IRC) service, where
the server reflects messages from a user to all others. For
simplicity of the simulation, we did not implement heartbeat
messages for either ChronoChat or IRC service simulations.
Also, chat messages in the simulated ChronoChat application
are piggybacked alongside with the sync data. That is, when,
for example, Alice sends a new message, her ChronoChat app
not only notifies others about the existence of a new message,
but also includes the actual message data in the same packet.

In our evaluations we used the Sprint point-of-presence
topology [13], containing 52 nodes and 84 links (Fig. 9).
Each link was assigned measurement-inferred delay, 100 Mbps
bandwidth, and drop-tail queue with the capacity of 2000
packets. As the size of the text message is usually small, there
is no congestion in the network. All nodes in the topology act
as the participants of a single chatroom. The traffic pattern in
the room was determined based on the multi-party chat traffic
analysis by Dewes et al. [14] as a stream of messages of sizes
from 20 to 200 bytes with inter-message gap following the
exponential distribution with the mean of 5 seconds.

A. State synchronization delay

ChronoSync-based applications are fast in synchronizing
dataset state. To evaluate this property quantitatively, we define
state synchronization delay to be the the time interval between



Fig. 9: Sprint point-of-presence topology
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the message generation and discovery of this message by
all of the chatroom participants. We performed 20 runs of
the chatroom simulation with 52 participants that produced
together a total of 1000 messages under various network
condition. Each individual simulation run featured different
sets of messages injected to the chatroom, with different inter-
message delays, different message sizes, and different order of
participants talking. In the IRC case, we randomly chose one
of the nodes in the topology as the position of the central
server for each run.

1) Performance under normal network conditions:
As an initial step, we evaluated ChronoChat under normal
network conditions without network failures or packet losses,
which allowed us to understand the baseline performance of
ChronoSync protocol.

Since in ChronoChat sync data always follows optimal paths
built by outstanding sync interests, the synchronization delay is
significantly lower, compared to that of the client-server based
IRC implementation, as shown in Fig. 10: for ChronoChat,
more than 40% of all messages sent in 20 runs experienced
delay less than 20 ms, compared to ~13% of messages in IRC
case for the same delay range.

2) Performance in lossy environments: We evaluated
ChronoChat in lossy network environment, with varying level
of per-link random packet losses, ranging from 1% to 10%.
Fig. 11 summarizes the simulation results in form of cu-
mulative distribution function graphs for ChronoChat and
IRC services (for better visual presentation, x-axis is pre-
sented in the exponential scale and y-axis is in the quadratic
scale). A conclusion can be made from these results that
the performance of ChronoChat stays practically unaffected

if the network experiences moderate levels of random losses
(<1%). Moreover, even if network conditions deteriorate and
random losses increase to abnormally high values (5%—-10%),
ChronoChat continues to show significantly shorter state syn-
chronization delay, compared to IRC-like systems.

Overall, regardless of the random loss rate value, more
messages in ChronoChat experienced smaller delay, compared
to those in IRC. This trend is more clear as the loss rate
grows: the percentage of messages with small delay drops
rapidly in IRC and in ChronoChat it drops more gracefully.
However, a careful reader may note that there is a small
fraction of messages in ChronoChat that experienced longer
delay, compared to IRC. This is because ChronoChat uses
NDN’s pull based model: a receiver needs to discover a new
state first in order to request for it, as opposed to TCP/IP
where the source keeps (re-)sending the data packets until it
is acknowledged by the receivers. In cases where the sync
interests or sync data are dropped so heavily that some par-
ticipants are not aware of the state change, it has to wait until
these participants re-express sync interests or another state
change occurs before the message can be disseminated to all
users. We believe that adaptive adjustment of sync interest re-
expression interval, depending on application requirements and
network conditions, should be able to keep synchronization
delay within reasonable ranges.

B. Synchronization resiliency to network failures

Another key feature of ChronoSync is its serverless design,
which means that users can communicate with each other
as long as they are connected. Even in the case of network
partitioning, the group of participants in each partition should
still be able to communicate with each other, and when
the partition heals, different groups should synchronize the
chatroom data automatically.

1) Basic verification of link failure resiliency: To verify
this property we conducted a small-scale 4-node simulation
with link failures and network partitioning (Fig. 12). The total
simulation time of 20 minutes was divided into 5 regions: 0—
200 seconds with no link failures (Fig. 12a), 200—400 seconds
with one failed link between nodes 0 and 1 (Fig. 12b), 400-
800 seconds with two failed links between nodes 0, 1 and
2, 3 (partitioned network, Fig. 12¢), 800-1000 seconds with
one failed link between nodes 2 and 3, and finally 1000-
1200 seconds period with no link failures.

The results are depicted in Fig. 13, visualizing node 0’s
knowledge about the current states of all other participants as a
function of time. This figure not only confirms that the parties
within a connected network continue to communication during
the partitioning event, but also the fact that when the network
recovers from partitioning, the state is getting synchronized as
soon as interests start flowing through formerly failed links.

2) Impact of link failures: To quantify the effect of
network failures on ability of text chat participants to commu-
nicate with each other, we again used our 52-node topology
that is now subjected to varying level of link failures. In
each individual run of the simulation we failed from 10 to
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50 links (different set of failed links in different runs), which
corresponded to ~10% and ~50% of the overall link count
in the topology. We performed 20 runs of the simulation for
each level of link failures, counting the number of pairs that
are still able to communicate. As shown in Fig. 14, we use

Fig. 14: Distribution of the number of communicating pairs
versus number of failed links (violin plot)

a violin plot* for this graph to highlight a bimodal nature of
the distribution for the percent of communicating pairs in the
centralized IRC service: with significantly high probability the
users were almost not able to communicate at all (notice the
portion of the violin plots near the bottom of the y-axis for
IRC). ChronoChat, being completely distribute, always allows
a substantial number of pairs able to communicate. For any
centralized implementation, like IRC, there is always a single
of point of failure and the communication can get completely
disrupted even with a small level of link failures.

C. Network utilization pattern

To understand how the fast state synchronization and robust-
ness to links failures in ChronoSync relates to the network
utilization, for the same sets of experiments we collected
statistics about the number of packets transferred over each

4The violin plot is a combination of a box plot and a kernel density
estimation plot. Wider regions represent higher probability for samples to
fall within this region.
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link in the topology (we call it packet concentration for a link).
When counting the packets, we included both interest and
data packets in ChronoChat, and both TCP DATA and ACK
packets in IRC. The obtained data for our 52-node topology
experiment is summarized in Fig. 15,° where the links were
ordered and visualized by the packet concentration value (
with 97.5% confidence interval).

The results presented in Fig. 15 show that ChronoChat
more or less equally utilizes all of the available network links
between participants. ¢ Results for network utilization in IRC
case show a completely different pattern. A few links close
to the server have high packet concentrations, with value as
large as ~90,000 packets (=290 times of the total number of
messages in the chatroom) in the link directly adjacent to the
server. Many links that are close to clients have a low packet
concentration, while some links, which are not on the shortest
path between clients and the server, are not utilized at all.

D. Overall overhead

The difference between network utilization patterns in
ChronoChat and IRC highlights an important design trade-
off of ChronoSync protocol. As the primary objective of
ChronoSync is to synchronize the state in a complete distribute
manner as fast as possible, and with ability to mitigate network
failures, it utilized more links in the topology compared to
IRC. At the same time, as ChronoSync does not have triangu-
lar data distribution paths and NDN architecture ensures that
each piece of data travels over a link no more than once, the
overall overhead in ChronoChat can be even lower than that of
the centralized solutions which are generally considered to be
efficient in network utilization. For example, the cumulative
sum of packet concentrations presented in Fig. 16 shows that
in our experiments, where sync interests are distributed by
broadcast, ChronoChat still has considerably lower overall
overhead compared to that of the IRC service.

Sthe figure summarizes data about experiments under ideal network condi-
tions, but results in lossy environments show similar trends

SWhen not all nodes participate in chat sessions, the interest forwarding
strategy would ensure that links that are not on the path between participants,
will not be unnecessarily utilized. The specific implementation of a such
strategy is one of our future research directions.
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Fig. 16: Cumulative sum of per-link packet concentrations

Note that ChronoSync also features application-specific
trade-offs, which can be directly related to the overall over-
head. In particular, when an application seldom generates new
data and can tolerate certain synchronization delay, it is not
necessary to always keep an outstanding sync interest. Instead,
the sync interests can be expressed with longer intervals to
reduce the overall overhead.

VI. DISCUSSIONS

In this section we briefly discuss application domain where
ChronoSync fits the best, as well as the scalability and security
issues of the ChronoSync protocol.

A. Target application domain

ChronoSync strives to be an efficient general-purpose state
synchronization protocol. At the same time, it is most suited
for applications with the following features and properties:

1) state synchronization needs to be done in a distributed
way, without relying on a mandatory central node;

2) parties contribute to the dataset in a non-deterministic
fashion, i.e., it is hard or impossible to predict either
who will be generating the new data or when the data
generation will happen.

3) all parties wish to have the same knowledge about a
dataset;

4) the probability of simultaneous data generations by a
large number of parties is low.

Decentralized synchronization keeps the local communica-
tion local. For example, synchronizing photos between a laptop
and a nearby smartphone does not need to go through the
cloud and should be able to happen even without a wireless
access point. However, note that ChronoSync can easily work
together with infrastructure based storage services without
any special configurations. For example, if a chatroom in
ChronoChat utilizes a backup service provided by a cloud stor-
age server, the server can simply participate in the chatroom
as a regular user.

The non-deterministic way of data generation and the desire
to synchronize knowledge of a dataset are often natural for
the applications in this domain. For example, in collaborative
editing, every user wishes to have the up-to-date version of the



Fig. 17: Overlay broadcast network for ChronoSync

document, but it is unrealistic to predict users’ editing behav-
ior. Furthermore, if the data generation pattern is predictable,
one can simply request the data directly from the producers
at the expected data generation time.

The last requirement ensures that ChronoSync can deduce
the differences of dataset states efficiently using recent history
of state digests for most of time, without resorting to relative
costly state reconciliation methods.

B. ChronoSync in large networks

ChronoSync uses the broadcast sync interests to exchange
state digests. However, broadcasting sync interests to the
parties scattered in large networks, such as the Internet, could
be costly. A possible solution is to build an overlay broadcast
network over NDN. As shown in Figure 17, each network with
users of ChronoSync-based applications sets up a gateway
node, which knows how to forward sync interests to other
overlay gateways. A gateway node relays the sync interests
received from its local network to gateways in other networks.
Vice versa, the sync interests received from other gateway
nodes would also be broadcasted in the local network. As a
result, the broadcast of sync interests is confined to networks
where such interests are desired to be received. Gateways can
learn each other’s presence through configurations or some
other means, but this is out of scope for this paper.

Furthermore, various different distributed applications based
on ChronoSync can share the same gateway overlay.

C. Security considerations

From the security point of view, ChronoSync needs to
address two problems. First, outsiders and non-cooperative
users should not be able to disrupt the state synchronization
process by injecting false information about the statuses of
other users. Second, non-authorized users should not have
access to the data published by eligible users.

In solving both problems, we assume that users can obtain
each other’s public keys through a trustworthy key manage-
ment system, such as manually configured key files, certifi-
cates signed by a trusted entity, or some other means.

The first problem can be solved by requiring parties to
include a signature of the producer status when replying the
sync interest. That is, whenever a party needs to reply the sync

/ndn/broadcast/chronos/lunch-talk/000...

Alice's name prefix 37 Alice's signature
Bob's name prefix 21 Bob's signature
Ted's name prefix 96 Ted's signature

NDN packet signature

Fig. 18: Example of a sync reply to a newcomer

interest with the producer statuses of other parties (e.g., to a
recovery interest), it also needs to include the corresponding
original signatures. Figure 18 shows an example of sync reply
to a newcomer. The recipient can easily verify the validity of
each producer status and update the digest tree only if the
signature is valid.

Restricting access to the private data can be implemented
through dataset sharing moderation. That is, each sharing
group can have one or several moderators, who can grant
or reject access to the data. The protected data should be
encrypted using a shared secret key, effectively preventing
outsiders from eavesdropping. To request access privilege to
the protected data, a party would need to publish its encryption
public key and to ask for permission from the moderator(s).
As each data packet in NDN is signed, the moderator(s) can
easily fetch the key and verify if the party is authorized to
access the data based on the signing public key for the NDN
packet signature (which is different from the encryption public
key). If the access should be granted based on the policy, the
moderator publishes a shared secret key, encrypted with the
encryption key provided by the requester.

After a requester fetches and decrypts the shared key, it
gains the ability to participate in the synchronization process
with others who are already in the group.

VII. RELATED WORK

There is an extensive amount of research to bring multicast
functionality, and in particular reliable multicast functionality
[15]-[17] to the Internet. NDN architecture, based on which
ChronoSync is designed, natively solves the multicasting prob-
lem, but requires applications to be implemented using a pull-
based data delivery model, i.e., users need to explicitly request
for data. ChronoSync protocol gives an opportunity for the
classes of applications listed in Section VI-A to efficiently
discover names for dynamically generated data.

To some extent, the design of ChronoSync protocol was
inspired by the CCNx Synchronization protocol (ccnx-sync):
the protocol to facilitate automatic synchronization of data
collections in CCNx repositories [18]. However, ChronoSync
and ccnx-sync are completely different protocols with different
objectives—synchronizing knowledge about the data collec-
tions versus synchronizing the data collection itself.

The key building block of ChronoSync design—a compact
representation of the knowledge about the whole dataset as
a hash value—is based on concept of Merkle trees (hash
tree) [6]. The Merkle tree is widely used in many different
areas, including file systems to verify/maintain integrity of



the data on disk [19], anti-entropy mechanism in distributed
key/value stores [20], and many others.

Another component of ChronoSync design (reconciliation
of knowledge about the date collection) is closely related
to numerous research efforts that aim to efficiently discover
differences in files, folders, and databases: RSYNC [21], [22],
CDC in LBFS [23], TAPER [24] to name a few. However, in
most cases, the nature of applications for which ChronoSync
was designed (see Section VI-A) allows efficient difference
discovery without resorting to any complex state reconciliation
procedures. For other types applications, ChronoSync supports
the use of any of the existing or new promising algorithms,
for example the algorithm crafted by Eppstein et al. [8], in
addition to the simple state reconciliation approach described
in Section III-F.

There is also a rich literature of peer-to-peer solutions [2].
In general these solutions are designed to run over today’s
TCP/IP network and build an application level overlay to
interconnect peers. Such an overlay can be subject to fre-
quent changes as users join and leave, and are unaware of
the underlying network topological connectivity. Even though
some solutions offer application level multicast data delivery,
the resulting data distributions tend to be inefficient due to
the mismatch between the overlay and the underlay network
topology.

VIII. CONCLUSION

In this paper we presented ChronoSync, a dataset syn-
chronization protocol for distributed applications running in
NDN networks. Leveraging on NDN’s interest-data packet
exchanges for fetching named data, ChronoSync effectively
names the state of a dataset by its digest at a given time.
Carrying the name of the dataset state, each sync interest is
broadcasted to all participants in a synchronization group to
solicit “data” that reports changes in the dataset. The design
takes a completely distributed approach, and the resulting
ChronoSync protocol removes both single point of failure
and traffic concentration problems commonly associated with
centralized implementations. Our simulation results also show
that ChronoSync is highly robust in faces of packet losses,
link failures, and network partitions.

We hope that ChronoSync represents a step towards a new
direction of providing useful building blocks in supporting
distributed applications development. The initial ChronoSync
design emerged during our effort of developing a chatroom
application to run over NDN. Since then we have also
used ChronoSync in developing a rather different application,
ChronoShare (a.k.a. NDN-Dropbox) that provides distributed
file sharing among a set of users. To verify whether Chrono-
Sync can support a wide range of distributed applications, or
what needs to be changed to enable it, as part of our ongoing
efforts we plan to apply ChronoSync to support more types
of applications running over NDN. For example multi-party
audio conferencing over NDN [25] can leverage ChronoSync

to propagate the speaker information and instruct the listeners

to fetch the audio streams from active speakers; resource dis-
covery applications such as zero configuration networking [26]
could be another candidate to apply ChronoSync protocol.

We also hope that this work can help stimulate more
discussions on the design space of distributed applications over
NDN and identify and implement useful building blocks to
lower the hurdle of application development.
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