
(

(

(

(

Homework 1

Alex Roque

COT 6405

Analysis of Algorithms

HW1
Problem 7

Given the first phase of a heapsort, building a heap, the resulting array will be:

Array:

	16
	14
	10
	8
	7
	9
	3
	2
	4
	1

[image: image1.jpg]

Even after the array is in this this order, it is NOT possible to reduce the time complexity for a comparison based algorithm to O(n).

The only fact guaranteed to us by the Heap is that each root is bigger than either of its children. However, we are not guaranteed that the children themselves will be sorted. Therefore, each children needs to be sorted in order to attain

a sorted array. We can assume from this fact that we need to only to at least traverse each each node, and perform a sort in each level.

Each sort per level yields an interesting similarity to how a decision tree performs comparison based sorts per height/level. Thus we will use these facts to prove our theorem:

Theorem: Any comparison based algorithm requires an (NlgN) lower bound:

Proof:

· Let us assume the input contains N distinct elements.

· Now we know that there are N! different ways to arrange N distinct elements, one of these sequences being the sorted sequence.

· A comparison based algorithm which performs comparisons (or other operations) , has a time cost of at least Equal to the number of comparisons.

· The comparisons performed by the algorithm can be represented as a decision tree.

Decision Tree properties:

· In a decision tree, each node represents one comparison “ ki <= kj “. Therefore, our decision tree is a binary tree, similar to the one built by our heap.

· The leafs contain the N! different sequences of N elements.

So, in the worse case the number of comparisons is equal to the height of the decision tree.

The height of the tree is at least lg(N!) because the decision tree will have N! leafs.

Proof:

Since lg(N!)
>= lg(N * N (N-1) * … * N/2)

>= lg(N/2)N/2)

= N/2(lgN = lg2)

= N/2lgN – N/2

which is a member of ((N lg N), thus proving our initial statement.

Problem 8

Insertion Sort:

Array: | 1 | 3 | 5a | 5b | 2 | 7 |

| 1 | 3 | 5a | 5b | 2 | 7 |
(
| 1 | 3 | 5a | 5b | 2 | 7 |

| 1 | 3 | 5a | 5b | 2 | 7 |
(
| 1 | 2 | 3 | 5a | 5b | 7 |

| 1 | 2 | 3 | 5a | 5b | 7 |
(
| 1 | 2 | 3 | 5a | 5b | 7 |

| 1 | 2 | 3 | 5a | 5b | 7 |
(
| 1 | 2 | 3 | 5a | 5b | 7 |

Algorithm is stable.

Selection Sort:

Array: | 1 | 3 | 5a | 5b | 2 | 7 |

| 1 | 3 | 5a | 5b | 2 | 7 |
(
| 1 | 3 | 5a | 5b | 2 | 7 |

| 1 | 3 | 5a | 5b | 2 | 7 |
(
| 1 | 2 | 5a | 5b | 3 | 7 |

| 1 | 2 | 5a | 5b | 3 | 7 |
(
| 1 | 2 | 3 | 5b | 5a | 7 |

| 1 | 2 | 3 | 5b | 5a | 7 |
(
| 1 | 2 | 3 | 5a | 5b | 7 |

Algorithm is stable.

Bubble Sort:

Array: | 1 | 3 | 5a | 5b | 2 | 7 |

| 1 | 3 | 5a | 5b | 2 | 7 |
(
| 1 | 3 | 5a | 5b | 2 | 7 |

| 1 | 3 | 5a | 5b | 2 | 7 |
(
| 1 | 3 | 5a | 2 | 5b | 7 |

| 1 | 3 | 5a | 2 | 5b | 7 |
(
| 1 | 3 | 2 | 5a | 5b | 7 |

| 1 | 3 | 2 | 5a | 5b | 7 |
(
| 1 | 2 | 3 | 5a | 5b | 7 |

Algorithm is stable.

Merge Sort:

Array: | 1 | 3 | 5a | 5b | 2 | 7 | 8 | 6 |

 | 1 | 2 | 3 | 5a | 5b | 6 | 7 | 8 |

 / \

 | 1 | 3 | 5a | 5b | | 2 | 6 | 7 | 8 |

 / \ / \

 | 1 | 3 | | 5a | 5b | | 2 | 7 | | 6 | 8 |

 / \ / \ / \ / \

| 1 | | 3 | | 5a | | 5b | | 2 | | 7 | | 8 | | 6 |

Algorithm is stable.

QuickSort:

Array: | 1 | 3 | 5a | 5b | 2 | 7 |

| 1 | 3 | 5a | 5b | 2 | 7 |
pivot = 1

[1]

L

R

| 7 | 2 | 5b | 5a | 3 |

| 1 | 7 | 2 | 5b | 5a | 3 |
pivot = 7

[7]

L

R

| 2 | 5b | 5a | 3 |

| 1 | 2 | 5b |5a | 3 | 7 |
pivot = 2

[2]

L

R

| 3 | 5a | 5b |

| 1 | 2 | 3 | 5a | 5b | 7 |
pivot = 3

[3]

L

R

| 5b | 5a |

| 1 | 2 | 3 | 5b | 5a | 7 |
pivot = 5b

[5b]

L

R

| 5a |

| 1 | 2 | 3 | 5b | 5a | 7 |

Algorithm is not stable.

HeapSort:

Array: | 1 | 3 | 5a | 5b | 2 | 7 |

Heapify:

[image: image2.jpg]A

[image: image3.jpg]fe

[image: image4.jpg]fe

[image: image5.jpg]fe

Heapsort:

[image: image6.jpg]ﬁb
oficRe

[image: image7.jpg]

[image: image8.jpg]@ﬁb
® 0 O

[image: image9.jpg]ONCHO)

[image: image10.jpg]

Algorithm is not stable.

Counting Sort:

Array: | 1 | 3 | 5a | 5b | 2 | 7 |

C: 0 1 2 3 4 5 6 7 (C: 0 1 2 3 4 5 6 7

 | 0 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | | 0 | 1 | 2 | 3 | 3 | 5 | 5 | 6 |

B: 1 2 3 4 5 6

	
	
	
	
	
	

Sorted array:

	1
	2
	3
	5a
	5b
	7

Algorithm is stable.

Bucket Sort:

Array:

	.12
	.58a
	.58b
	.24
	.30
	.26

The bucket sort uses the insertion sort as its sorting process, therefore, since the insertion sort is stable, the bucket sort will also be stable.

B

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

B

	/

	.12/

	.24 .26/

	.30/

	/

	.58a .58b/

	/

	/

	/

	/

Sorted Array:

	.12
	.58a
	.58b
	.24
	.30
	.26

Algorithm is stable.

Radix Sort:

Array:

	1
	3
	5a
	5b
	2
	7

Radix sort is dependent on a stable algorithm to sort an Array, so its results must be stable as well.

35

41

12

41

12

35

56
(
35
(
41

78a

56

56

78b

78a

78a

12

78b

78b

Algorithm is stable.

Problem 9.

We have already proved that for any comparison based algorithm, there is a lower bound of O(nlgn). However, this time, we know something about the input, we know that the output contains duplicates. We will use modified binary trees to proof a lower bound of O(nlgn) can be bettered.

Namely, by placing n elements in a binary tree, we get an O(lgn) for any operations. However, given that we have duplicates, where we have a k (unique elements) such that: O(lgn) < k < O(n), we can guarantee the k to be smaller than n. There we have:

Proof:

Our k may not be constant, but it is guaranteed to be in between O(lgn) and O(n). Why?

Assume k = n, then we have already proved that all elements are unique, then a lower bound exist

of ((nlogn).

So, k < n, therefore log(k) < log(n).

By using a BST (Binary Search Tree) we can keep a counter of the duplicates in each node.

So, instead of having to keep n elements (which include repeats) in our tree structure, we only have to keep k unique items. Therefore, we see that this yields a time complexity of O(nlgk), which by our proof, it is better than O(nlogn).

Problem 10.

A simple algorithm we can use to manage an O(nlgn) in the above problem is a binary tree. However, taken advantage of all the duplicates found in the input, we can modify our tree to have an item, and then allow a counter that keeps the number of times the item is in the input. For example, if the key is equal, we can use the value to store the duplication number. However, a binary tree does not guarantee us an O(lgn) running time always. There is a worst time case in O(n). However, an modified typed of binary search tree, an AVLtree, may be used.

The AVLtree is implemented with a balanced binary search tree. This tree lets you perform operations (such as storing and searching) in O(lgn) time. The binary search tree will assume that the left child has a value less than the parent, which itself has a value less than the right child. However, using the AVL algorithm, we can enforece the a condition that the left and right subtrees will differ in height by at most one. If any operation breaks this condition, the substrees are fixed bottom-up with a binary search location, which will follow all the way to the root if necessary. Therefore, an operations on the tree is O(lgn) (dependent on the height of the tree, and any binary search tree fixes or comparisons will then take constant time, this giving us an O(lgn).

Here, I shall write some psedocode for the functions of this tree:

Class BinaryNode

BinaryNode(comparable e)

This(e, null,null,null)

BinaryNode(comparable, left, right)

Key

Leftchild = left

Rightchild = right

Comparable key

BinaryNode left

BinaryNode right

Int counterValue

Find (itemToBeFound , BinaryNode)

{

while (BinaryNode is not null)

if (itemToBeFound < BinaryNode.key)

BinaryNode = BinaryNode.leftchild

Else if (itemToBeFound > BinaryNode.key)

BinaryNode = BinaryNode.rightchild

Else return BinaryNode //match

}

Insert(itemToBeInserted, BinaryNode)

{

if (BinaryNode is null)

BinaryNode is created with the itemToBeInserted and the counter value is set to 1

Else if (itemToBeInserted < BinaryNode.key)

BinaryNode.leftchild = insert(itemToBeInserted, BinaryNode.leftchild)

Else if (itemToBeInserted > BinaryNode.key)

BinaryNode.rightchild = insert(itemToBeInserted,BinaryNode.rightchild)

Else if (itemToBeInserter == BinaryNode(key)

BinaryNode.counterValue = BinaryNode.counterValue + 1 //lets update our counter, dup found

}

So, our time complexity will O(nlogk) where n is the input and k are the unique items, because it n items must be looked at, and logk is the time complexity of the tree where k is the unique elements (nodes) stored in our tree. To obtain our sorted array, we must traverse it inorder.

Problem 11.

Given a set of n tennis players, the matches will be designed the following way in order to decide a champion and a runner up:

The important facts we must acknowledge are:

· The champion is someone who never loses.

· The runner up is the person who loses to the champion only.

Base Case:

If we have 2 players, it takes 1 match to determine a champion and a POSSIBLE runner up to champion (loser).

Inductive Case:

If we have n players, it will take n –1 matches for both odd and even.

N = 3 players (a, b ,c)

Matches (M) = 2

a ___M

 | ____(a or b)_____M

b____| |

 |-----------(Champion and possible Runner up)

 c______|

N = 4 players (a, b, c, d)

Matches (M) = 3

a____M

 |______(a or b)_______M

b____| |

 | ________(Champion and possible Runner up)

c____M |

 |______(c or d)________|

d____|

However, we must realize that anyone who loses against a would be champion, may still be the runner up as long as they win over everyone else (except the champion), so they are a possible runner up. In order to determined the actually runner up, we must play all the possible runner ups who lost to the champion against each other. The winner of that tournament is the actual runner up. Therefore the previous method will NOT satisfy a correct solution.

A more efficient and elegant way to answer this problem, is to see the matches as a binary tree.

A
b
c
d
e
f g

h

 \
/
 \
/
 \
/ \ /

 a d
 e g

 \
 / \ /

 d

 e

 \

/

 e = champion

By looking at the above tree structure, we can easily see that e is the champion. By using a binary search tree, and backtracking from e, we can attain all those who lost to the champion, and must play for the runner up title. In this case, d, g, and f are the players that played against a champion, and still have a chance to get runner up. By using this structure, we easily see how our mactches for runner up is greatly reduced.

Example: Runner up sets

Number of elements in [d,g,f] < number of elements in [a,b,c,d,f,g,h]

Now we have to determine the runner up in 2 matches, instead of 5.

D
g

 \
/

 g

f

 \ /

 g = runner up

Therefore, we can see that after determining the champion(which will take n-1 matches) we can determin the possible runner ups more efficiently by using a binary search tree structure (we can use an AVL tree or Red-Black also) to extract a running time of O(lgn). We then have to play those runner ups probables to determine a final runner up (which will take constant time).

So, we have (n-1) to determine the champion, plus lg(n) to determine the runner-up probables, plus some constant k to determine the actual runner up.

The algorithm thus, is a subset of O(lgn).

Setup of Matches: First we must play n-1 matches to determine the champion. Once we have the champion, we have all the people that lost to champion play off in a tournament. The winner of the tournament is the runner up.

Problem 12.

Given n people with individual net worth, there is an algorithm to determine which group of people will have the maximum worth.

· add up all the ones with a positive net worth

· if there is no positive net worth among all, then choose the individual with the highest number, given a negative net worth (so that -.14 is preferred to -.30)

Algorithm:

Let smallest negative = NEGATIVE_SENTINEL_VALUE

for every element X in N

· if X is positive

add to group

· if X is negative

if |X| < |smallest negative|

smallest negative = X

//end for

if group contains one or more elements

group is max worth group

else

smallest negative is max worth group

Algorithm Analyzed:

From this, we analyze the algorithm to iterate through people, to find all the positive group net worth or the smallest negative. This operation will be linear with constants. The last if will be a constant operation. Thus, the complexity

will belong to the set of linear order growth. Since we will need an extra array to hold the positive group, the algorithm will not perform in place.

Problem 13.

Our initial logic to solve this problem will be to perform an exhaustive search in order to attain the maximum. However, this solution, while simple to understand, will take an ((N3) running time. This algorithm is a follows:

Algorithm:

Input: n

MaxSum = 0

For (int x = 0; x < n; x++)

For (int y = x; y < n; y++)

Sum = 0;

For (int z = x; z <= y; z++)

Sum = Sum + A[z]

If (Sum > maxSum)

MaxSum = Sum

SequenceStart = x

SequenceEnd = y

We can see that the third for loop (the z loop that iterates from x to y) may in fact not be needed. We can see this by understanding that:

y

 y - 1

(z=x Az = Ay + (z=1 Az

Therefore, we may rewrite the algorithm without that for loop, given us a more efficient ((N2) algorithm.

Algorithm:

Input: n

MaxSum = 0

For (int x = 0; x < n; x++)

Sum = 0

For (int y = x; y < n; y++)

Sum = Sum + A[y]

If (Sum > maxSum)

MaxSum = Sum

SequenceStart = x

SequenceEnd = y

The next improvement would be to try to improve this algorithm into a linear one.

To do this we would like to remove another loop. One question to ask would be whether we can eliminate

any sequence that do not satisfy the conditions, meaning any sequences that will not be the maximum. These sequences will have a sum which is of negative value.

Notation:

· Ax,y be a subsequence Ax, Ax+1,…Ay.

· Sx,y be (Ax, Ax+1,…Ay.

Theorem: Let Ax,y be any sequence with Sx,y < 0. If q > y, then Ax,q is not the maximum contiguous subsequence.

Proof:

· x, x+1,…,y,y+1,…q

· Sx,q = Sx,y + Sy+1,q
· Since Sx,y < 0 (Sx,q < Sy+1,q (Ax,q is not a maximum subsequence.

We can see that by adding an additional test, if Sum < 0, we maybe be able to get rid of the inner loop, because if a subsequence is negative, it cannot be a Maximum.

However:

Theorem: For any x, let Ax,y be the first sequence with Sx,y < 0, then for any x <= p <= y and p <= q, Ap,q either is not a maximum subsequence or is equal to an already seen maximum subsequence.

Proof: 2 case

1. x <= p <= y <= q

· if p = x (x <= y and x < q, then the previous theorem applies because part of the sum is negative.

· Else (x < p <= y <= q), as in the previous theorem, Sx,q = Sx,p-q + Sp,q Since y is the lowest index such that Sx,y < 0 (Sy,p-1 >= 0 (Sp,q >= Sx,q
· If q > y, then the previously stated theorem implies that Ax,q is not the Maximum subsequence, so neither is Ap,q.

2. x <= p <= q <= y

· Sp,q <= Sx,q. Sx,q that is seen as partil max.

Therefore, if we detect a negative sum, we can move x all the way past y.

Algorithm:

Input n

Sum = 0

MaxSum = 0

For(int x = 0, y = 0; y < n; y++)

Sum = Sum + A[y]

If(Sum > MaxSum)

MaxSum = Sum

SequenceStart = x

SequenceEnd = y

Else if (Sum < 0)

x = y +1

Sum = 0

This algorithm has the time complexity of O(N).

References:

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms [Second Edition], McGraw-Hill, Spring 2001.

Mark Allen Weiss. Data Structures & Problem Solving Using Java. Addison-Wesley, March 1998.

Kenneth H. Rosen, Discrete Mathematics and Its Applications [Fourth Edition], McGraw-Hill, 1999.

