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COT 6405 

Analysis of Algorithms

HW2
14.

When we divide into groups of 7, we have the equation:

4 ( (1/2 ( n/7 ( ( -2) >=  2n/7 –8 which is equal to the number of elements greater than x( at least)

Therefore, we then acquire n – ( 2n/7 –8 ) = 5n/7 + 8 elements that select is called recursively.

So, if we let l be some unknown large integer, we have:

               / ((1)



if n <= 1
T(n) <= 

               \ T( ( n/7 ( ) + T( 5n/7 + 8) + an (a being some constant)
if n > l
Using the substitution method, we will show that T( n ) <= cn for some constant c for all n.

T(n) 
<= c (n/7( + c(5n/7 +8) + an


<= cn/7 + c + 5cn/7 + 8c + an


<= 6cn/7 + 9c + an


<= cn + (-cn/7 + 9c + an)

so, this is at most cn if –cn/7 + 9c + an <= 0

we can get 9c + an <= cn/7

which means:

1) 9c <= cn/14

2) an <= cn/14

from 2) we get c >= 14a which we plug into 1) to get 

126a <= 14an/14
n >= 126

So the l we defined above becomes 125 so that n > 125, which makes

(-cn/7 + 9c +an) equal 0 or less, thus making our algorithm work in cn, or linear time.

Now, we divide into groups of 3, so our equation becomes

2( (1/2 (n/3( ( - 2 ) >= 2(n/6 –2) = 1n/3 – 4

n – ( 1n/3 – 4) = 2n/3 + 4


 /((1)




if n <= 1

T(n) <= 


 \ T( ( n/3 () + T (2n/3 + 4) + ((n)
if n > l

T(n) <= c (n/3( + c(2n/3 +4) + an

        <= c(n/3) + c + 2cn/3 + 4c + an

          = cn (+ 5c +an)

so, it is at most cn when 5c + an <=0 

However, since a and c are constants, they are insignificant for a large n, we know n will always be positive because it is the number of elements, which will be 1 or greater, therefore our previous equation

5c + an will always be positive, thus voiding our proof by substitution, so if we divide by groups of 3, we know the algorithm will not run in linear time.

15. The Select algorithm can guarantee a good partition, so that if the kth element in array has a value n, then all elements to the left of the kth element are smaller or equal to n, and all elements to the right of the kth element are greater than or equal to n. This guarantees a good split, and stays away from the worst case of O(n2) which occurs when one side of the partition has 0 elements. The split resulting from our methodology will guarantee O(nlgn).

Our quicksort implementation using the worst-case SELECT algorithm from 9.3 is as follows:

Quicksort(A,p,r):


If p < r then


m ( ((r – p + 1)/2 )


x ( SELECT(A,p,r,m)


Quicksort(A,p,m)


Quicksort(A,m+1,r)

Our running time ends up being:


T(n) = T( (n/2() + T( (n/2() + ((n)

Which, by the master theorem, Case 2 is T(n) = nlgn

16. Analyzing this problem, we can see 2 extreme cases:

if k = 2, the problem becomes finding the median of the given array/list in time )(n).

if k = n, the problem becomes sorting the elements of the given array/list in time O(n lg n ).

Remembering that O( n lg n) running time ( recurrence T(n) = 2T(n/2)+n) is the result of summing the costs of lg(n) tree levels, where each cost is n. However, if we sum lg(k) levels, we get the cost of O(n lg(k)). We will employ this methodology, but we will have to make sure that the recurrence tree has only lg(k) levels in a general case.

By looking at our running time, we can see that the implementation of quantiles(k,A) should have 2 recursive calls of  quantiles(k,A) where the first argument should have about half the size of k.

We can first come up with an implementation if k is a power of 2.

Quantiles(k,A)

// k ( 1

// mod n 2 = 0 

m = SELECT ( (A.length + 1 ) / 2, A )


(l, r) = PARTITION m, (DEL m, A)

in quantiles(k div 2, l) ++ [m] ++ quantiles(kdiv2, r)

// otherwise = -- isOdd(k)


error “Not considering this case yet”

Conventions:

SELECT(k,A) is assumed to be a O(n) algorithm for returning the rank (kth) elements from an array A with n elements. The worst case selection algorithm in section 9.3 fits this description.

PARTITION X, A is assumed to be a linear time algorithm that partitions the array A into a pair (l,r) where the elements of l are all those elements in A that are <= the pivot P and the elements of r are all those elements in A that are > the pivot P.

DEL m, A is assumed to be a linear-time function that, when m is a member in array, returns the same array except without one occurrence of m.

This algorithm  finds a median using SELECT, then recursively calls quantiles to find k/2 on the 2 arrays resulting from the partition around the median.

No, we can come up with an implementation for a general case where k is not necessarily a power of 2. We must be able to handle the case where k is odd. The idea we must implement is that when k is odd (2x + 1) is to partition the array into segments whose size are in the ratio x : (x + 1), and to find the xth quantiles of the smaller partition and the (x +1)th quantiles of the larger partition. 

Example, if k = 3, we partition the array into subarrays whose lengths are in the ratio 1 : 2. For a ratio of c:d, this leads to the recurrence:

T(k,n) = T((k/2(, c/c+c * n) + T((k/2( + 1, d/c+d*n) + n

In the worst case, this recurrence has the desired running time.

Thus, here is our general version algorithm:

Quantiles(k,A)

// k ( 1

// isEven

m = SELECT ( (A.length + 1 ) / 2, A )


(l,r) = PARTITION m, ( DEL M, A)

in quantiles(k div 2, l) ++ [m] ++ quantiles(k div 2, r)

// otherwise isOdd

m = SELECT ((div (k div 2 * (n-1)) k) + 1) A


(l,r) = PARTITION m, (DEL m,A)

in quantiles(k div 2, l) ++ [m] ++ quantiles(k – k div2,r)

Proof of correctness:

We know that:

Let q = n –(k –1)/k

1. If  (q( = q, then the k –1 quantiles partition the length-n array A into segments containing exactly q elements.

2. If (q( (q, then the k-1 quantiles partition the length-n array A into segments whose sizes are either (q( or (q( + 1.

We can show, by induction, that quantiles(k,A) returns a sorted array of length k –1.

This algorithm satisfies the recurrence T(k,n) = 2T(k/2,n/2) + n because there are 2 recursive calls in which k is halved and the subarrays are half the size of the original, and the divide/merge costs due to SELECT, PARTITION and DEL are linear. Therefore, it satisfies the O(n lg k) solution.

17. The deletion process has 3 cases: no children, one child, and two children.

For one child, we make a link between the child and parent. For two children, we splice out and place the successor in its place.

The operation is commutative if there are at most 3 nodes in the binary tree.  This will hold true because there will only be 0 or 1 leaves left.” 
Here is a counter example with 4 nodes (non-commutative)


( 5 )



( 6 ) 



( 6 )

         /           \

delete 5         /        \                  delete 2         
       \

( 2 )

( 9 )

     ( 2 )        ( 9 )


         ( 9 )

                      /


     ( 6 )



( 5 )



( 5 ) 



( 9 )

         /           \

delete 2                 \                  delete 5         
  /      

( 2 )

( 9 )

                 ( 9 )


         ( 6 )

                      /                                          /


     ( 6 )
                                    ( 6 )

18. Here is the red black trees which occur after inserting 41, 38, 31, 12, 19, and 8.


( 41 ) B

( 41 ) B

( 41 ) B

( 38 ) B





/


/


/       \




      ( 38 ) R

        ( 38 ) R

      ( 31 ) R ( 41) R







         /







     ( 31 ) R


( 38 ) B

( 38 ) B


( 38 ) B


/       \


/        \



/       \

      ( 31 )R   ( 41) R          ( 31 )B  ( 41 ) B

       ( 31 )B ( 41 )B

         /                
        /



        /

     ( 12 ) R  

  ( 12 ) R


   ( 12 ) R








          \








        ( 19 ) R



( 38 ) B


( 38 ) B


( 38 ) B



/       \



/       \



/       \


       ( 31 ) B ( 41 ) B

      ( 19 ) R ( 41 ) B

        ( 19 ) B ( 41 ) B

           
        /



      /       \


        /       \

   
     ( 19 ) R

           ( 12 ) R ( 31 ) B                 
 ( 12 ) R ( 31 ) R


      /

   
  ( 12 ) R



( 38 ) B



( 38 ) B



/       \




/       \


      ( 19 ) B ( 41 ) B  


     ( 19 ) R  ( 41 ) B

 
      /          \



    /         \


( 12 ) R ( 31 ) R


( 12 ) B ( 31 ) B


/




/

         ( 8 ) R



        ( 8 ) R

19. Here is the pseudo-code for LEFT-ROTATE that operates on interval trees and updates the max fields in O(1) time.

Look at the LEFT-ROTATE code on page 278.
Here, can use the max functions defined in pg. 313 to augment our data structure into updating the max fields.

So our pseudocode will consist of the code of LEFT-ROTATE, but will be modified with these 2 lines at the bottom:
Max[x] = max(high[int[x]],max[left[x]],max[right[x]])

Max[y] = max(high[int[y]],max[left[y]],max[right[y]])

