
(


(


(


(




Homework 3

Alex Roque

COT 6405 

Analysis of Algorithms

HW3
20)

a) To show that there will always be a point of maximum overlap in an endpoint of one of these segments, we can prove by induction:

Proof by induction:
First, we must observe our property of 2 intervals known as the interval trichotomy. This will assure
Us that the intervals behave in one of 3 ways: they overlap, I1 is to the left of I2, or I2 is to the right of I1.

Given 1 interval, say [0,1], we can say that the point of maximum overlap will fall in an endpoint 0 or 1 (because there are no counting numbers in between).

Now we use induction n+1 in our example and extend the interval to [0,2] which is

0___1___2

and so we  have 3 different unique intervals possibilities [0,1] [0,2] [1,2] 

which gives the following overlap:

[0,1]




xxxxx

[1,2]




        xxxxx

[0,2]




xxxxxxxxx

0___1___2

we can easily see that maximum overlap lands at 1, again at an endpoint. 

Therefore, we have proved our base case, and then showed by induction that the maximum overlap will always fall in an endpoint.

b) To design our data structure for the POM, we can follow the structure of the interval tree (Red black), but we will change the structure to differ:
Our node will consist of an endpoint integer, with an overlap counter, and an endpoint value to determine if it is a left endpoint, or a right endpoint (use +1 for left and -1 for right). Our overlap counter may be traversed similarly to how the max counter is traversed, shown in section 14.3, therefore, we can find our overlap maximum by easily visiting the root.
21) We can find our optimal parenthesization by using a table:

Our informationis as follows:

Matrix

dimensions

A1

5 X 10

A2

10 X 3

A3

3 X 12

A4

12 X 5

A5

5 X 50

A6

50 X 6

	
	1
	2
	3
	4
	5
	6

	1
	0
	150
	330
	405
	1655
	2010

	2
	
	0
	360
	330
	2430
	1950

	3
	
	
	0
	180
	930
	1770

	4
	
	
	
	0
	3000
	1860

	5
	
	
	
	
	0
	1500

	6
	
	
	
	
	
	0


	
	1
	2
	3
	4
	5
	6

	1
	
	1
	2
	2
	4
	2

	2
	
	
	2
	2
	2
	2

	3
	
	
	
	3
	4
	4

	4
	
	
	
	
	4
	4

	5
	
	
	
	
	
	5


Based on the matrix s, we can see that the optimal parenthesizations is

(A1 X A2)((A3 X A4)(A5 X A6)).

22) To  determine the LCS of (1,0,0,1,0,1,0,1) and (0,1,0,1,1,0,1,1,0).

Here U= Up
D= Diagonal
L= Left

	
	0
	1
	0
	1
	1
	0
	1
	1
	0

	1
	U 0
	D 1
	L 1
	D 1
	D 1
	L 1
	D 1
	D 1
	L1

	0
	D 1
	U 1
	D 2
	L 2
	L 2
	D 2
	L 2
	L 2
	D 2

	0
	D 1
	U 1
	D 2
	U 2
	U 2
	D 3
	L 3
	L 3
	D 3

	1
	U 1
	D 2
	U 2
	D 3
	D 3
	U 3
	D 4
	D 4
	L 4

	0
	D 1
	U 2
	D 3
	U3
	U 3
	D 4
	U 4
	U 4
	D 5

	1
	U 1
	D 2
	U 3
	D 4
	D 4
	U 4
	D 5
	D 5
	U 5

	0
	D 1
	U 2
	D 3
	U 4
	U 4
	D 5
	U 5
	U 5
	D 6

	1
	U 1
	D 2
	U 3
	D 4
	D5
	U 5
	D 6
	D 6
	U 6


Table shows the slots actually seen by the memorized algorithm. The numbers in each box indicate the length of an LCS which starts from that point. 

From our table it is possible to read the following (by the diagonals)  LCS:
100110

23) To determine the solution:

We can construct our probability of a key falling between two keys I and j(ei,j)) can be computed.

	ei,j
	0
	1
	2
	3
	4
	5
	6
	7

	1
	0.06
	0.28
	0.62
	1.02
	1.34
	1.83
	2.44
	3.12

	2
	
	0.06
	0.30
	0.68
	0.93
	1.41
	1.96
	2.61

	3
	
	
	0.06
	0.32
	0.57
	1.04
	1.48
	2.13

	4
	
	
	
	0.06
	0.30
	0.57
	1.01
	1.55

	5
	
	
	
	
	0.05
	0.30
	0.72
	1.20

	6
	
	
	
	
	
	0.05
	0.32
	0.78

	7
	
	
	
	
	
	
	0.05
	0.34


Then we compute the weight wi,j and corresponding root id si,j for the optimal b.s.t. for keys between index keys I and j, based on the values of pi, qi, and ei,j:

	w
	0
	1
	2
	3
	4
	5
	6
	7

	0
	
	0.16
	0.28
	0.42
	0.49
	0.64
	0.81
	1

	1
	
	
	0.18
	0.32
	0.39
	0.54
	0.71
	0.9

	2
	
	
	
	0.2
	0.27
	0.42
	0.59
	0.78

	3
	
	
	
	
	0.13
	0.28
	0.45
	0.64

	4
	
	
	
	
	
	0.2
	0.37
	0.56

	5
	
	
	
	
	
	
	0.22
	0.41

	6
	
	
	
	
	
	
	
	0.24


	root
	0
	1
	2
	3
	4
	5
	6
	7

	1
	
	1
	2
	2
	2
	3
	3
	5

	2
	
	
	2
	3
	3
	3
	5
	5

	3
	
	
	
	3
	3
	4
	5
	5

	4
	
	
	
	
	4
	5
	5
	6

	5
	
	
	
	
	
	5
	6
	6

	6
	
	
	
	
	
	
	6
	7

	7
	
	
	
	
	
	
	
	7


Lets calculate the depth

Node

depth

probability

contribution

1

2

0.04


0.12

2

1

0.06


0.12

3

2

0.08


0.24

4

3

0.02


0.08

5

0

0.1


0.1

6

2

0.12


0.36

7

1

0.14


0.28

d0

3

0.06


0.24


d1

3

0.06


0.24

d2

3

0.06


0.24

d3

4

0.06


0.30

d4

4

0.05


0.25

d5

3

0.05


0.20

d6

3

0.05


0.20

d7

2

0.05


0.15

expected cost search is 3.12

By tracing the si,j from s0,8 we got the final optimal b.s.t. 







      ( 5 )






          /                    \






      ( 2 )                    ( 7 )






     /         \               /        \






 ( 1 )   
    ( 3 )      ( 6 )    [d7]






/      \        /    \      /    \

                                                        [d0]  [d1] [d2] ( 4 )[d5] [d6]







        /    \

 





     [d3][d4]

Our average depth comes out as 3.05.

24) Upon professor’s orders, this problem has been omitted.

25) The Hoffman code for the first 8 fibonacci numbers is:







(54)






          0/     \1
1




        (33)   (21) h



h=1






       0/     \1 

2




    (20)  (13)  g




g=01





              0/    \1   

3




(12)  (8)  f




f=001





          0/    \1
4


 
        (7)    (5)  e




e=0001





     0/    \1
5



    (4)   (3)  d





d=00001





 0/    \1
6



(2)   (2)  c





c=000001




          0/   \1
7

                 a  (1)   (1)   b   





b=0000001
7










a=0000000
This answer is the same as if the tree was leafing to the right than to left, but the digits 0 and 1 would be reversed, i.e. 0 would be 1, and 1 would be 0.

26)Problem 15-1

Given a plane, we have n points as input, and from this we wish to gather the shortest bitonic tour. We can let dist(I,j) denote the Euclidean distance between point pi and pj. We know that we may want to scan left to right, and we may assume that there are no 2 points that have the same x-coordinate. A good approach will be to start sorting the n points according to the x-coordinates. This will take time O(nlgn). We now have n points sorted according to their x value.
Our clue lies in knowing something about how the optimal solution to this problem relates to optimal solutions of sub-problems. Let us suppose we have an optimal solution to the sub-problem where we consider only the point p2 … pj . Now we add a new point pj+1 so that we have a new optimal solution.  If it is the case that there is some point pk in the upper path in both optimal solutions and there is a point p1 that is in the lower path in both optimal solutions, then the sum of the lengths of the paths to pk and pl must be equal in both optimal solutions. A contradiction occurs if this is not the case, because one of our “optimal” solutions would in fact not be optimal. So we only need to remember the last point( before pn) on the upper path and on the lower path.
For any 2 integers 1 <= I < j <=n, let

B[I,j] = length of the optimal bitonic tour through points  the points where pj is the last point before pn on one of the paths and pi is the last point before p(n) on the other path.

Noticing that b[1,2] = dist(1,2) + dist(2,3) + dist(1,3).

So, whenever  I < j we have:

B[I,j+1] = b[I,j] + dist(j,j+1) + dist(j+1,n) – dist(j,n)

The point pj+1 is added to the path that contained pj in this case. Second:
B[j,j+1] = min1<=k<j {b[k,j] + dist(k,j+1) + dist(j+1,n) – dist(k,n)}.

This is a more complicated case. We can minimize the choices for the point by calculating the smallest possible cost:

Total Cost = min  l<=i<n {b[I,n]}.

With these equations, it easy enough to write a program that fills in the values.

We can write a recursive procedure to output the optimal bitonic tour once the table is filled in.
