
iFriendU: Leveraging 3-Cliques to Enhance Infiltration Attacks in

Online Social Networks

Rahul Potharaju†, Bogdan Carbunar‡, Cristina Nita-Rotaru†

† Department of Computer Science, Purdue University, IN, USA

‡ Pervasive Platforms and Architectures, Motorola Labs, IL, USA

Email: rpothara@purdue.edu, carbunar@motorola.com, crisn@cs.purdue.edu

1 Introduction

Online Social Networks (OSNs) such as Facebook have be-
come ubiquitous in the past few years, counting hundreds
of millions of people as members. OSNs allow users to
form friendship relationships, join groups, communicate and
share information with friends. The tremendous popularity
of OSNs has naturally made them an appealing target for
privacy compromising attacks. In this abstract we propose
a novel attack against tightly knit OSN communities. Such
(artificial) communities consist of users that know well each
other and that are reluctant to accept other users as friends.
Becoming a member of such a community may be only a first
milestone for the attacker. Harvesting private information of
members of such communities and following up with offline
attacks may be the longer term benefit.

In a näıve approach, the attacker sends random friend
invitations to users in the target community “hoping” that
some of them will accept the request. However, by defi-
nition such communities are difficult to infiltrate using a
direct invitation based approach. The attack we propose re-
lies on a novel technique, which makes use of 3-cliques [1, 2]
to find the most vulnerable member of a targeted commu-
nity. The attacker then sends invitations to all the friends
of this member. After befriending its friends, the attacker’s
chances of befriending the weakest community member in-
crease. Then, the attacker not only gains initial access to
the community, but also increases its chances of befriending
other, less accessible members. Our experiments, performed
on a real-world social network, show that our attack can be
75% more efficient than the näıve attack. Using real social
network data, we also propose and evaluate a solution that
mitigates the problem.

2 Definitions

We define a social network to be an undirected, simple graph
G = (V, E) with a set of nodes V denoting users and a set
of edges E denoting friendship relations between users. Let
n denote the number of nodes and m denotes the number
of edges. We use degree d(v) := |u ∈ V : ∃ {v, u} ∈ E| for a
user v to denote the number of users in V that are friends
of v. A friendship 3-clique ∆ = (V∆, E∆) of a graph G =
(V, E) is a three node subgraph such that V∆ = {u, v, w} ⊂
V and E∆ = {{u, v}, {v, w}, {w, u}} ⊂ E. Also let δ(v)
denote the number of friendship 3-cliques of user v.

The quality of a friendship relationship between two
users A and B, χA,B, can range between acquaintance to

(a) (b)

Figure 1: (a) Infiltrating a network: Node v has the highest
δ(v) in G′, i.e., the attacker’s payoff is higher if it establishes a
link with v. (b) Method for establishing a link with v (highest ∆
value) - links are established with v’s network and finally with its
clique members.

close friendship. We propose to compute χA,B , based on

data publicly available: χA,B = |FA∩FB|
|FA|

where FA denotes

the set of friends of user A and |FA| denotes the number
of friends of A. We define then the social closeness be-
tween users A and B to be ΨAB =

χA,B+χB,A

2
. Intuitively,

this is taking into account two factors: what proportion of
A’s friends are also B’s friends and what proportion of B’s
friends are also A’s friends.

3 Attack Description

We are now ready to describe our attack, iFriendU. Let G′ ∈
G denote the target community, a subset of the OSN. For
each user v ∈ G′, the attacker computes δ(v), then picks the
user with the highest δ value (refer to Alg. 1). A member
with a high δ(v) is socially tied to a higher number of groups
so establishing a link with this member is of high value to
the attacker because he can earn the trust of more 3-cliques
that the member is participating in.

The crux of our attack lies in the observations we made
during our initial experimentation: a user may be more will-
ing to accept an invitation if it shares a certain number of
mutual friends with the inviter. Therefore, to establish a
link with a member having a high δ(v), the attacker has to
first establish links with v′s friends. Note that the same
reasoning can be applied to v′s friends: having more links
with the friends of v′s friends will help establish links with
v′s friends. This is a recursive pattern and depending on
the payback of infiltration, the depth can be set to a higher
value. In our current attack, we set this value to 2 i.e., to
establish a link with v, the attacker has the patience and re-
sources to establish links with the friends of v′s friends. The

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

Users

(a)

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 0 2 4 6 8

U
se

rs

Profile

Accepted
Pending
Ignored

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8

U
se

rs

Profile

Accepted
Pending
Ignored

(c)

Figure 2: (a) 3-clique distribution for 339K links between 178K users (b) Establishing links with friends of 72 users using 9 fake
accounts, (c) Establishing links with the 72 users

steps taken then are depicted in Fig. 1(b). In Step 1, the
attacker’s primary goal is to establish links with v’s friends
(excluding those already belonging to G′). Thus, he starts
off by sending invitations to the friends of v′s friends and
then v′s friends. In Step 2, the attacker invites v and finally
in Step 3, it repeats this process, to establish links with the
remaining clique members of v.

Algorithm 1 iFriendU’s Enhanced Infiltration

1. G
′ = Sample(G)

2. Triangles = ListTriangles(G′)
3. do

4. vmax = extract max(Triangles)
5. f = V(vmax) − {x ∈ G

′
, x 6= vmax}

6. u = getMaxIVS(f)
7. RequestOrder = Sort(x ∈ V(u), Ψxvmax)
8. foreach node p in RequestOrder :
9. Send request to p

10. endfor

11. FinalRequestOrder = Sort(x ∈ {w, x, y, z}, Ψxvmax)
12. Send requests according to FinalRequestOrder

13. while(len(Triangles) > 0)

14. Procedure ListTriangles(G′ = (V, E)) :
15. Construct Adj(v) ∀ v ∈ V

16. foreach edge e in E :
17. //e consists of v1, v2

18. vmin = min{|v1|, |v2|}
19. foreach node x in Adj(vmin) :
20. if(x ∈ Adj(e − vmin))
21. store {x, v1, v2}
22. endfor

23. endfor

4 Infiltration Evaluation

We have investigated the effectiveness of iFriendU by con-
ducting several experiments with Facebook. Specifically, we
captured a relationship graph with 339K edges (friendships)
between 178K nodes (users). We implemented an efficient
version of Alg. 1 that found 679K 3-cliques in roughly under
five minutes (had a similar performance on a dataset from
[3]). Fig. 2(a) shows the 3-clique distribution for the nodes
in the network. Note that the large number of 3-cliques fol-
lows immediately from the small world property of OSNs [2].
To test our attack, we randomly picked 72 profiles that re-
flected the profiles of an average user (who typically has 130
friends according to data from Facebook), such that every
user is at most two hops away from every other user. Our
G′ then is the total number of 3-clique friends for these 72
users which totaled to 150. Our goal is to establish as many
links as possible with these 150 users. We performed the
following two experiments:
Experiment 1 - Naive Approach: Using a fake account,
we sent invitations to the 150 users directly. 67 users ac-
cepted the invitation giving us an acceptance rate of 45%.

Experiment 2 - iFriendU Approach: We associated one
fake account to a set of 8 users out of the 72 users. Thus,
we needed 9 fake accounts in total. In the first phase, each
fake account was used to send invitations to the friends of
each of the 8 users assigned to it (following the constraints
outlined in Alg. 1). Fig. 2(b) shows the result of this phase,
where for instance, the first set of bars indicate that roughly
750 users (out of 1550 users in total for one set of 8 users)
accepted invitations from the first fake account. In the sec-
ond phase, the 9 fake accounts attempted to befriend the 72
users. Fig. 2(c) shows the results of this intermediate phase
where 48 out of the 72 established links with the 9 fake ac-
counts. Note that this high number is due to the presence of
a significant number of mutual friends. In addition, 12 users
are yet to decide giving us an actual success rate (excluding
the 12) of 80% and an overall success rate (including the
12) of 66.55%. As a final step, we befriended the 3-clique
members of these 72 members (i.e., the 150 members). The
acceptance rate was 79%.

Our approach clearly outperforms the näıve approach
and is 75% more efficient. Note that we used the most basic
form of attack i.e., our fake accounts were anonymous pro-
files having some random names with no profile picture. By
forging real profiles, an attacker can achieve a higher degree
of success in establishing links with the 3-clique members.

5 Mitigation Approach

The solution we present in this section is part of our system
called MORPH-x, which is designed to defend a user against
the infiltration attack presented previously in addition to a
variety of other attacks not discussed in this abstract. The
goal of MORPH-x is to protect rational users, that lack the
tools or time to analyze each decision against cyber stalkers,
while minimally impacting the experience of honest social
network users. Due to space limitations we only present a
brief overview of our system internals.

Figure 4 shows the architecture of MORPH-x with
its primary components: (i) client-side component (imple-
mented as a Facebook application) that runs on a user’s
account and collects relevant data, (ii) a Firefox extension
that runs inside the user’s browser where it monitors its ac-
tivity and intercepts (accepted and pending) friend requests
and (iii) a server component that uses the information col-
lected to detect safe inviters and report them back to the
clients. MORPH-x works by inferring trust information be-
tween users and their friends. In our current design, we
use χA,B defined in Section 2 to calculate the inferred trust
between users A and B.

After installing the MORPH-x client, a user’s newly ac-
cepted friends are confined to a probation list, where they

Figure 3: MORPH-x Architecture

are not provided access to the user’s profile. A probation
friend is promoted to a full friend status (and given pro-
file access) based on the trust values previously built. That
is, the promotion occurs only when the MORPH-x server is
able to infer a trust value for the probation friend exceeding
a given threshold value, TR-Thr.

6 Experimental Results

We have evaluated the ability of MORPH-x to block the at-
tack using data collected from Facebook. While the attacks
were evaluated in the real world settings, evaluating the de-
fense requires the system to be under attack so we adopted
a hybrid approach - we built a Java based simulator that
uses the graph (with 179000 users and 380000 relationship
edges) we previously crawled to evaluate the success rate of
an attacker.

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 10 20 30 40 50 60 70 80

90
%

 A
tta

ck
 B

lo
ck

in
g

T
hr

es
ho

ld

Percentage of Morph-X Users

(a)

Figure 4: Evolution of the TR-Thr for MORPH-x users to
block 90% of the attacks for various MORPH-x user densities.
The decrease is sub-linear, with TR-Thr as small as 0.02 when
80% of the users run MORPH-x.

Figure 4 shows the evolution of the TR-Thr threshold
that blocks 90% of the attacks, when launched against den-
sities of MORPH-x users ranging from 10% to 80%. Note
that when 80% of users run MORPH-x, a TR-Thr thresh-
old value as small as 0.02 is sufficient to block 80% of the
attacks. This is because higher densities of MORPH-x users
among a user’s friends are more efficient in blocking attacks.
Note that MORPH-x users can detect which of their neigh-
bors are also running MORPH-x. Then, knowledge of the
density of MORPH-x users in its vicinity can be used to lo-

 0

 10

 20

 30

 40

 50

10 30 50 80

%
 o

f u
se

rs
 c

om
pr

om
is

ed
% of Morph-X users

MORPH-x
No-Protection

(a)

Figure 5: Comparison of the effectiveness of MORPH-x with
non MORPH-x users in blocking the attack.

cally set a threshold value that provides a user desired level
of protection against attacks. Finally, Figure 5 compares
MORPH-x users (to be less conservative, we set TR-Thr to
be 0.08) with users having no protection. Observe that our
defense is clearly efficient: only up to 7% of the attacks suc-
ceed. This comes in contrast with users having no protection
where around 45% of the attacks succeed. Note that as the
MORPH-x user density increases, the attack success rate de-
creases significantly: when 80% of the users run MORPH-x,
only 2% of the attacks succeed.

7 Conclusion and Future Work

In this paper we study an innovative attack based on 3-
cliques in a real world social network setting. Through an
extensive implementation we show that such an attack is
75% more efficient than a näıve approach and can be very
valuable to spammers and phishers. We design and imple-
ment MORPH-x, a solution for mitigating this attack which
we evaluated using a real data set. The experimental results
demonstrate that our solution is clearly efficient in blocking
the proposed attack.

References
[1] N. Alon, R. Yuster, and U. Zwick. Finding and counting given

length cycles. Algorithmica, 17(3):209–223, 1997.

[2] D. Watts and S. Strogatz. Small world. Nature, 393:440–442,
1998.

[3] B. Viswanath, A. Mislove, M.Cha and K.P. Gummadi. On the
Evolution of User Interaction in Facebook. WSON, 2009.

